

Fast -Pulsed Superconducting Magnets

G. Moritz, GSI Darmstadt, EPAC04, Lucerne July 5 – 9, 2004

- Introduction to the planned facility 'FAIR'
- Main R&D topics
- Fast-pulsed superconducting magnets for the synchrotrons of FAIR
- Related R&D activities
- Conclusions

International Facility for Beams of Ions and Antiprotons (FAIR)

Key parameters synchrotrons

Gain Factors of FAIR

- Primary beam intensity: factor 100 1000
- Secondary beam intensities for radioactive nuclei: up to factor 10000
- Beam energy: Factor 15

Ring	Bending	Circum-	Reference	Operation modes
	power	ference	energy	
	(Tm)	(m)		
SIS 100	100	1080	$1.5 \text{ GeV/u} \text{ U}^{28+}$	• acceleration mode: continuous
				triangular cycle with 1 sec
			29 GeV protons	injection time, cycle length 1-
				2 s
SIS 300	300	1080	34 GeV/u U^{92+}	• acceleration mode: continuous
				triangular cycle with 50%
			20	duty cycle, cycle length: 18 s
			$1 \text{ GeV/u } \text{U}^{28+}$	• stretcher mode: DC operated

	Number of Magnets	Aperture (mm)	Magnet Length (m)	Max. Field / Max.Gradient	Max. Ramprate
SIS100					
Dipoles	120	130 x 65	2.6	2 T	4 T/s
Quadru- poles	162	120 x 63 (pole radius: 40)	0.6 1.0 0.6	34.2 T/m 36.7 T/m 34.2 T/m	73.4 T/m/s
SIS 300					
Dipoles	120	100 (circular)	2.6	6 T	1 T/s
Quadru- poles	132	100 (circular)	0.6 1.0	93 T/m 89 T/m	15.5 T/m/s 14.8 T/m/s

Main R&D Topics for fast-pulsed magnets

Minimization of eddy current and persistent current effects

• affect field quality

• produce large steady-state AC-losses

appropriate magnet cooling system

- heat load is dominated by AC-losses
- heat load varies with cycles

Mechanical structure / lifetime of the magnets

• SIS100 : 200 millions cycles within 20 years

material fatigue, crack propagation

Cryogenic stability

conservative stability margins

Main R&D Topics for fast-pulsed magnets (continued)

Quench protection of the individual magnets

- high charging voltage
 - stack of diodes or 'warm bypass'

Iron selection

• search for the best compromise between high saturation flux density and

low coercive force / high specific resistivity

(I. Bogdanov, WEPKF061)

Radiation deposition due to primary beam loss affects (in the high intensity synchrotrons)

- heat load of the cryogenic system
- lifetime of components (coil insulation, diodes)
- quench stability

(E. Mustafin, TUPLT112)

- look for existing magnets with similar parameters
- establish collaborations
- start R&D for dipoles, transferring results to quadrupoles...
- build model magnets with existing material and tooling

 \Rightarrow saves time and money

Collaborations 2004

Superconducting Magnets for SIS 100

R&D goals

- Improvement of DC-field quality
 • 2D / 3D calculations
- Guarantee of long term mechanical stability
 (≥ 2.10⁸ cycles)
 - concern: coil restraint in the gap, fatigue of the conductor
- Reduction of eddy / persistent current effects (field, losses)

Nuclotron Dipole

- Collaboration: JINR (Dubna)
- Iron Dominated (window frame type) superferric design
- Maximum magnetic field: 2 T
- Ramp rate: 4 T/s
- Hollow-tube superconducting cable, indirectly cooled
- Two-phase helium cooling

Nuclotron-type Dipole – AC Losses

AC heat load to Helium (4K) triangular cycle: 0-2T, 4 T/s, 1 Hz	Nuclotron-Dipole (1.4 m)	planned prototype (2.6 m)
Total (W/m)	38	
Yoke (W/m)	29	
Coil (W/m)	9	

- Coil (30%):
 - main contribution: wire magnetization (74%)
 ⇒ reduction of filament size to 3.5 µm
- Yoke (70%):
 - magnetization losses in the central core
 - eddy current losses
 - in structural elements of the central core
 - in the endparts due to longitudinal field components B_z

AC Losses along Magnet axis z

• Temperature rise in the end part !

• OPERA-3D calculations of the integral magnetic flux Φ (z)

New end blocks

New 200mm end block

Nuclotron-type Dipole – AC Losses

R&D- results (A. Kovalenko,WEPKF057)

AC heat load **Nuclotron-Dipole** planned prototype (1.4 m)(2.6 m)to Helium (4K) triangular cycle: 0-2T, 4 T/s, 1 Hz 38 15 Total (W/m) 29 9 Yoke (W/m) 9 Coil (W/m) 6

SIS 100 Dipole - Alternatives

Comparison sc and nc 100 Tm dipole

TOTAL	<u>44</u>	<u>82</u>
OPERATING	8	45
PRODUCTION	36	37
COSTS (M€)	SC	nc

based on:

- 248 dipoles (SIS 100 and beamlines)
- 20 years of operation, 6500 h/ y
- present status of the R&D
- aperture (55 mm x 110 mm)
- operation cycles mix
- present electricity costs

includes costs for

- power supplies, quench detection and protection
- cryogenic system
- tests and operation crew

 \rightarrow saves <u>17 000 t</u> CO₂ / year

Vision of the final magnet

- cold mass: coil + yoke
- ceramic aperture spacer
- laminated and horizontally cut endblocks
- Rogowski end profile
- negative shimming
- homogenisation slits
- more rigid coil structure
- coil ends restrained
- stainless Steel end plates

Superconducting Accelerator Magnets: SIS 200 / 300

- RHIC dipole
- Collaboration with BNL
- Coil dominated: cosθ
- Maximum field: 3.5 T \Rightarrow 4 T
- Ramp rate: 70 mT/s \Rightarrow 1 T/s !!!
- Supercond. Rutherford cable
- One-phase helium cooling

R&D Goals for RHIC type dipole

- Reduce the effects due to the high ramp rate:
 - lower loss in wire, cable and iron
 - better AC field quality
- Improve the cooling of the Rutherford cable
 - open Kapton insulation with laser cut holes
- Use collars to ensure longterm mechanical stability

Dipole Parameters

RHIC dipole

RHIC type dipole GSI 001

Superconducting wire:

- NbTi-Cu (1:2.25)
- filament diameter 6 μ m
- twist pitch 13 mm
- no coating

Rutherford cable

no core

Coil

- phenolic spacer
- Cu wedges

Yoke

- H_c= 145 A/m
- 6.35 mm laminations

Superconducting wire:

- NbTi-Cu (1:2.25)
- filament diameter 6 μ m
- twist pitch 4 mm
- Stabrite coating

Rutherford cable

 – 2 x 25µm stainless steel core

Cable cross section

Coil

- stainless steel collar (G11 keys)
- G11 wedges

Yoke

- H_c= 33 A/m, 3.5% Silicon
- 0.5 mm laminations, glued

RAMP RATE TESTS GSI001 (vertical bath)

GSI001 QUENCH TESTS

Thermal time constant ~ 1 min.

Measured total losses for GSI 001

0-4 T, 1 T/s, triangular cycle: 8.8 W (7.3 W/m)

by A. Ghosh

Calculated and measured losses of GSI001

by M.N. Wilson

SIS 300 - Dipole

UNK Dipole

- 2 layer cosθ design
- 80mm bore \Rightarrow 100 mm
- 5.11 T ⇒ <mark>6</mark> T
- 0.11 T/s \Rightarrow 1 T/s

Conceptual Design Study by IHEP, Protvino (6/2004)

Main results:

- cooling: one phase Helium 4.4 K
- temperature margin: 1.0 K
- option: lowering Helium-temperature
- collared coil supported by iron shell (taking part of the load)
- strand: diameter: 0.825 mm

filament size: 3.5µm

- Rutherford-cable: 36 strands with core
- quench protection: needs heater, 20 magnets per PS / dump resistor

WEPKF062 (Quench), WEPKF063 (mechanical structure), WEPKF064 (cable losses), WEPKF066 (Stability, margin)

Further work SIS 300 magnets

- GSI001 dipole (BNL / GSI)
 - losses in a bipolar cycle
 - quench current as a function of the ramp rate (RRL)
 - static and dynamic magnetic measurements (harmonics)
 - loss measurement of the collared coil alone
 - horizontal test of the magnet, with one-phase helium cooling in the new test facility at GSI.
- SIS 300 dipole (IHEP / CERN / GSI)
 - technical design
 - construction and testing of two 1 m model dipoles
- SIS 300 quadrupole (CEA Saclay / GSI)
 - parameters, work packages and milestones defined by 08/2004

Small filament size wire R&D

Motivation: 60 -70% of the coil AC- losses caused by wire magnetization

- \rightarrow filament size reduction
- → but limit due to 'proximity coupling' $d_{fil} \ge 3.5 \mu m$ for Copper matrix

ERS

 $d_{eff} = 3.5 \ \mu m$, but problems with stacking of 12000 monocores (1.5 mm wide)

 $d_{eff} = 4.8 \ \mu m$ due to filament distortion (near the copper)

Small filament size wire R&D (continued)

- Modified double stack method:
 - 6 x 2050 filaments
 - 0.65 mm wire diameter
 - 1.80 :1 Cu / NbTi ratio
 - 4 mm twist pitch
 - j_c = 2759 A / mm² @ 5T, 4K
 - 3.3 micron NbTi filaments (nominal)
 - full size billet (120kg) is ready for wire production

• Cu-Mn-matrix (2.5 micron NbTi filaments) wire is under investigation !

Cable R&D

Rutherford cored cable R&D

- different cores (stainless steel, titanium, Cu-Ni, brass, Kapton)
- different mandrels (hollow, slotted)
- measurement of j_c, R_a, R_c, AC-losses

details in A. Ghosh, WAMS-workshop, Archamps, 2004

EU INTAS 03-54-4964 : improved N- CICC

Fast-pulsed sc magnets are foreseen for the synchrotrons of FAIR

- R&D to develop these magnets has started
- First dipole models have been built and tested.
- R&D will continue on quadrupoles and full size magnets.

ACKNOWLEDGEMENTS

I am greatly indebted to all members of the collaborations, to our consultants and to the members of the GSI magnet group for their dedicated work.