A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W    

cyclotron

  
Paper Title Other Keywords Page
TUPLT014 Comparative Design Studies of a Super Buncher for the 72 MeV Injection Line of the PSI Main Cyclotron impedance, simulation, linac, injection 1162
 
  • J.-Y. Raguin, A. Adelmann, M. Bopp, H. Fitze, M. Pedrozzi, P. Schmelzbach, P. Sigg
    PSI, Villigen
  The envisaged current upgrade from 2 to 3 mA of the PSI 590-MeV main cyclotron requires an increase of the global accelerating voltage of the 50-MHz cavities which leads to a nearly unacceptable RF requirement for the 150-MHz flattop cavity. In order to preserve the longitudinal acceptance and transmission of the machine while relaxing the high demands on the flattop system, it is conceivable to install a buncher in the 72-MeV injection line. To this end, normal-conducting 150-MHz half-wave resonators and 500-MHz two-gap drift-tube cavities have been designed and optimised for minimum input power and peak surface fields. The dependence of the RF properties (Q0, shunt impedances and peak fields) with beam apertures and gap voltages compatible with beam-dynamics requirements are presented.  
 
TUPLT052 GANIL Status Report ion, target, secondary-beams, acceleration 1270
 
  • F. Chautard, J.L. Baelde, C. Barue, C. Berthe, A. Colombe, L. David, P. Dolegieviez, B. Jacquot, C. Jamet, P. Leherissier, R. Leroy, M.H. Moscatello, E. Petit, A. Savalle, G. Sénécal, F. Varenne
    GANIL, Caen
  The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams for nuclear physics, atomic physics, radiobiology and material irradiation. The production of radioactive ion beams for nuclear physics studies represents the main part of the activity. The in-flight fragmentation method was already used, since 1994, with the SISSI device. Since September 2001, SPIRAL, the Radioactive Ion Beam Facility at GANIL, delivers radioactive species produced by the ISOL method. The heavy ion beams of GANIL are sent onto a target and source assembly, and the radioactive beams are accelerated up to a maximum energy of 25 MeV/u by the cyclotron CIME. The operation and the running statistics of GANIL-SPIRAL are presented, with particular attention to the first SPIRAL beams. Few results about the cyclotron CIME, as the mass selection and tuning principle are summarized. The recent developments for increasing stable beams intensities, up to a factor 13 for argon, for use with SPIRAL, SISSI, or the LISE spectrometer, are presented. Considering the future of GANIL, SPIRAL II projects aims to produce high intensity secondary beams, by fission induced with a 5 mA deuteron beam in an uranium target.  
 
TUPLT060 Production of Radioactive Ion Beams for the EXCYT Facility target, ion, ion-source, cathode 1291
 
  • M. Menna, G. Cuttone, M. Re
    INFN/LNS, Catania
  The EXCYT facility (EXotics with CYclotron and Tandem) at the INFN-LNS is based on a K-800 Superconducting Cyclotron injecting stable heavy-ion beams (up to 80 MeV/amu, 1 emA) into a target-ion source assembly to produce the required nuclear species, and on a 15 MV Tandem for post-accelerating the radioactive beams. After thermal ANSYS simulations, during May 2003 the Target-Ion Source assembly (TIS) was successfully tested at GANIL under the same operational conditions that will be initially used at EXCYT. Yields and production efficiencies for 8,9Li were compatible with the ones obtained at SPIRAL. Following suggestions by the Referees and the LNS Research Division, we decided to deliver 8Li as the first EXCYT radioactive beam (primary beam 13C). This choice also takes in account the availability of MAGNEX in 2004 as well as the requests and the first results obtained by the Big Bang collaboration. The commissioning of the EXCYT facility is foreseen by the end of 2004 together with the start of nuclear experiments program. In this poster we also report prospective ion beams currently in development.  
 
TUPLT062 Design of the Proton Beam Line for the Trade Experiment quadrupole, target, dipole, emittance 1297
 
  • C. Ronsivalle, L. Picardi
    ENEA C.R. Frascati, Frascati (Roma)
  • S. Monti, F. Troiani
    ENEA C.R. Rome, Rome
  The TRADE (Triga Accelerator Driven Experiment)experiment, to be performed in the TRIGA reactor of the ENEA-Casaccia centre consists in the coupling of a 140-300 MeV, 0.5 mA proton beam produced by a cyclotron to a target hosted in the central thimble of the reactor scrammed to sub-criticality. A 30 m long beamline has been designed to transfer the beam injecting it from the top of the pool with special care of having low losses in TRIGA building where a limited shielding of the line is possible. A particular attention was paid to reduce the number and size of elements in the last part of the beamline that are immersed in the pool's water. The paper presents a description of the beam line, the design criteria and the results of beam dynamics calculations.  
 
TUPLT070 Study of a Linac Booster for Proton Therapy in the 30-62 MeV Energy Range linac, proton, booster, impedance 1312
 
  • V.G. Vaccaro, A. D'Elia, M.R. Masullo
    Naples University Federico II and INFN, Napoli
  • D. Capasso, S. Lanzone
    Naples University Federico II, Napoli
  • T. Clauser, A. Rainò
    INFN-Bari, Bari
  • C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • V. Variale
    Bari University, Science Faculty, Bari
  Recent results in accelerator physics have shown the feasibility of a coupling scheme between a cyclotron and a linac for proton acceleration. Cyclotrons with energies up to 30 MeV, mainly devoted to radioisotopes production, are available in a large number of medical centres. These two evidences have suggested the idea to study and design a linac booster able to increase the initial proton energy up to the values required for the treatment of tumors, like the ocular ones. The main challenge in such a project is related to meet the requirements arising from the beam dynamics with the constrains due both to the mechanical structures and tolerances and to the heat dissipation mechanism chosen in the design. In this paper we will review the rationale of the project and we will discuss the basic design of a compact 3 Ghz linac with a new approach to the cavities used in a SCL (Side Coupled Linac) structure  
 
TUPLT095 Precision Field Mapping System for Cyclotron Magnet alignment, undulator, insertion, insertion-device 1378
 
  • K.-H. Park, Y.G. Jung, D.E. Kim, L.W.W. Lee
    PAL, Pohang
  • J.-S. Chai, Y.S. Kim
    KIRAMS, Seoul
  • B.-K. Kang, S.H. Shin, M. Yoon
    POSTECH, Pohang
  A 13 MeV cyclotron has been developed by KIRAMS for radio-isotopes production such as F-18 and O-15 for positron emission tomography(PET). To characterize the cyclotron magnet precisely, a Hall probe mapping system with very high precise positioning mechanism in the Cartesian coordinate has been developed. Hall probe assembly was translated in two dimensions by two stepping motors at both sides of the Hall-probe-carrier to keep synchronously rotation sharing one step-pulse source for x-axis and one motor for y-axis. The data acquisition time had reduced to 60 minutes in full mapping by 'flying' mode. The accuracy of the measurement system is better than during the entire mapping process. In this paper the magnetic field measurement system for the cyclotron magnet is described, and measurement results are presented.  
 
TUPLT098 Vertical Beam Motion in the AGOR Cyclotron beam-losses, proton, resonance, betatron 1384
 
  • M.A. Hofstee, S. Brandenburg, H. Post, W.K. van Asselt
    KVI, Groningen
  Large-scale vertical excursions have been observed in the AGOR cyclotron for light ionbeams at energies close to the focussing limit (E/A =200 Q/A MeV per nucleon). With increasing radius the beam gradually moves down out of the geometrical median plane by several mm, leading to internal beamlosses. It was concluded that this effect is caused by a vertical alignment error of the coils combined with the weak vertical focussing for the beams concerned. Moving the main coils by a total of 0.37 mm has significantly improved the situation at large radii, but results in internal beamlosses for certain beams at small radii due to a large upward excursion. A systematic study of the vertical beam dynamics as a function of beam particle and energy will be presented. Possible causes and solutions will be discussed.  
 
WEPKF032 A General Method for 2d Magnet Pole Design synchrotron, quadrupole, dipole, storage-ring 1672
 
  • Z. Martí, J. Campmany, M. Traveria
    LLS, Bellaterra (Cerdanyola del Vallès)
  Accurate conventional combined magnets working in saturation are currently required to fulfil the increasing demands on low emittance accelerators with long straight sections required by the newest Synchrotron Light Sources. This fact yields stringent requirements on pole profile design, manufacture and characterization. The aim of this poster is to present a general method for designing two-dimensional pole profiles. To this end, we have set up a procedure with which to select an optimum pole profile in 2D without the constraint of relying on a set of initial assumptions, not only a particular set of initial parameters but even a particular pole profile model. Moreover, we have developed a group of codes that can be compiled and run on MS-DOS or UNIX which use POISSON or OPERA-2d codes. This procedure also includes the evaluation of the sensitivity of the final pole profile to geometrical and current intensity errors for tolerance estimation, a big requirement in this context. In order to test the feasibility of this method, we have applied it to the case of the 1.2 T combined magnet of the new synchrotron to be built nearby Barcelona.  
 
WEPLT048 Beam Dynamic Studies of the 72 MeV Beamline with a 'Super Buncher' simulation, space-charge, transverse-dynamics, proton 1945
 
  • A. Adelmann, S. Adam, R. Dölling, M. Pedrozzi, J.-Y. Raguin, P. Schmelzbach
    PSI, Villigen
  A significant increase of the beam intensity increase of the PSI 590 MeV proton accelerator facility above 2 mA requires a higher accelerating voltage in the main RF cavities. A corresponding increase of the voltage in the flattop cavity would result in a complete rebuild of this device. As an alternative, a scheme with a strong buncher in the 72 MeV beam transfer line is being studied. The goal is to restore the narrow phase width (~ 2 deg/RF at 50 MHz) of the beam bunches observed at extraction from Injector 2 at injection into the Ring Cyclotron. If we can find and inject a stable particle distribution, as done in the Injector 2, the flat-top cavity might eventually be decommissioned. First results of multi particle tracking in full 6 dimensional phase space with space charge are presented.  
 
WEPLT152 Experimental Results of the Small Isochronous Ring space-charge, simulation, diagnostics, ion 2194
 
  • J.A. Rodriguez, F. Marti, R.C. York
    NSCL, East Lansing, Michigan
  • E. Pozdeyev
    Jefferson Lab, Newport News, Virginia
  The Small Isochronous Ring (SIR) has been in operation since December 2003. The main purpose of this ring, developed and built at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU), is to simulate the dynamics of intense beams in large accelerators. To observe the same effects, the beam power needed in SIR is orders of magnitude lower and the time scale is much longer than in the full scale machines. These differences simplify the design and operation of the accelerator. The ring measurements can be used to validate the results of space charge codes. After a variable number of turns, the injected hydrogen bunch (with energies up to 30 keV) is extracted and its longitudinal profile is measured using a fast Faraday cup. We present a summary of the design, the results of the first six months of operation and the comparison with selected space charge codes.  
 
THZCH03 JACoW, a Collaboration Serving the Accelerator Community site, feedback, linac 249
 
  • J. Poole, C. Petit-Jean-Genaz
    CERN, Geneva
  The Joint Accelerator Conferences Website started from an idea to publish the conference proceedings on the WWW and has grown to an international collaboration which does much more than just publish the proceedings and is currently supported by seven conference series. Through attendance at Steering Committee meetings and Team Meetings and through active participation in the work of the editorial teams of sister conferences, people with the responsibility for the production of the electronic versions of conference proceedings come together to learn from the experience of colleagues, and to develop common approaches to problems. The activities of the collaboration cover all aspects of electronic publication and have recently extended into conference scientific programme management. This paper reviews the history of the collaboration, describes some of the highlights in the activities during the life of the collaboration and presents the current status and future plans.  
Video of talk
Transparencies
 
THPLT047 Beam Position Monitor Development for the IThemba LABS Cyclotron Beamlines vacuum, proton, diagnostics, alignment 2589
 
  • J. Dietrich, I. Mohos
    FZJ/IKP, Jülich
  • A.H. Botha, J.L. Conradie, J.L.G. Delsink, P.F. Rohwer
    IThemba Labs, Somerset West
  In cooperation of iThemba LABS (South Africa) and Forschungszentrum Juelich the specification of a sensitive tunable rf narrowband beam position monitor system for cyclotron beamlines has been elaborated. iThemba LABS developed and manufactured the four section stripline monitor chamber. The monitor electronics were developed in the Forschungszentrum Juelich-IKP. The electronics consisting of an RF signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ) sequentially processes and measures the monitor signals and deliver via serial network calculated horizontal and vertical beam position data. First measurements with cyclotron beam has been performed in the iThemba LABS in November 2003. Changed beam position due to changing different cyclotron parameters could be studied with high accuracy. The resolution of the beam position measurement was better than 0.1 mm with beam currents down to 0.0005 mA.