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Abstract 
A relativistic electron passing through an undulator 

generates electromagnetic radiation at the expenses of its 

own kinetic energy. This effect is usually not taken into 

account if the number of periods of the undulator is 

relatively small (100 - 200). However, at FEL facilities, 

long installations have been built, planned or are under 

construction, where many undulators are installed one 

after another for a total of several thousand undulator 

periods. For instance, the SASE1 and SASE2 lines at the 

European XFEL will consist of 35 undulators with 124 

periods each. In this case, because of the electron energy 

decrease along its trajectory, the radiation from different 

undulators will drop out of synchronism. As a result, the 

radiation spectral line will be much wider. In the 

presented report, this effect was analyzed analytically and 

numerically for the case of spontaneous undulator 

radiation. An expression for the critical number of 

undulator periods, when the effect of electron energy loss 

should be properly taken into account, is derived. It is 

found that, for the case of the European XFEL, this 

number is about 1400 periods.  

INTRODUCTION 

Travelling down the undulator, the electron transfers 

part of its energy to the light wave and consequently 

decreases its kinetic energy. This effect is of crucial 

importance in free electron lasers. In this case, the beam 

energy decreases with the undulator distance z, and the 

undulator deflection parameter K should be tapered 

accordingly to maintain the resonant condition in order to 

both maintain minimal SASE bandwidth and not degrade 

the gain. The idea of tapering the undulator period and/or 

field amplitude along its axis was initially suggested in 

[1], and now is widely covered in the literature (see, for 

example, [2] and references therein). The spontaneous 

radiation from such devices has been analyzed 

analytically as well as numerically in [3 - 9].  

Let us consider a non-tapered undulator with number of 

periods N. An electron kinetic energy loss increases 

proportionally with increasing number of undulator 

periods N, and the electron moves out of the resonant 

condition, broadening in such a manner spectral width of 

undulator spontaneous radiation harmonic. On the other 

hand, as larger is the number of undulator periods, as 

narrower is the harmonic spectral width because it is 

inversely proportional to N. It is apparent that at some 

sufficiently large number of undulator periods 
lossNN 

the radiation energy loss will have a pronounced effect on 

radiation harmonic spectral width.  

In this contribution we analyze the undulator 

spontaneous radiation spectral broadening due to radiation 

energy loss. It has been shown that 
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Here cmre

1310818.2  is the classical electron radius, 

u is the undulator period, K is the undulator deflection 

parameter,   is the electron reduced energy.  

RADIATION ENERGY LOSS 

For simplicity, we consider ultra-relativistic electron 

propagating in a planar undulator with vertical sinusoidal 

magnetic field (see Fig.1) )
2
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u  is the undulator period length.  

Figure 1: Sketch of a permanent magnet undulator. 

The instantaneous radiation energy loss of the electron 

is given by  




 )(
2

sin
3

2

3

2 22

0

2224
2

tzBcr
c

e

dt

dE

u

e
r 

 .  (1) 

Here e is the electron charge, c is the speed of light, 
and   are the electron reduced energy and acceleration.  

Integrating over the period, we get the following 

expression for the energy loss per one undulator period:  
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Here  is the fine structure constant, 
11 2  c is 

photon energy of the fundamental, 
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wavelength of the fundamental.  

It can be easily derived from Eq. (2) that the relative 

energy loss   per one period is equal to:  
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RADIATION SPECTRAL DISTRIBUTIONS 

Let us consider the radiation field of a moving electron, 

which is seen by the observer at time   and at the 

observation point },,{ ****
zyxX   in the far-field zone, 

so 
*

z  tends to infinity. The far-field radiation component 

is given by the following expression:  
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Here, 
**

XXn  , )(tr  and 
cdt

trd
t

)(
)(   are the 

electron trajectory and reduced velocity respectively. The 

quantities )(t  and )(t  are to be evaluated at the 

retarded time t  which must obey the equation:  

)(*
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It can be shown by direct calculations that:  
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The number of photons 
yxdN ,

 with horizontal ( x ) 

and vertical ( y ) polarization, emitted by a single electron 

during one passage through the undulator per solid angle d  per relative bandwidth d  is given by the Fourier 

transform of the electric field given be Eq. (4):  
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By changing the integration variable from   to 

retarded time t and using the electron longitudinal 

coordinate z instead of t, we obtain the following results:  
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For more details see [10]. It is significant that the 

outlined above expressions are very general in nature and 

can be applied for electrons which slowly change their 

energy.  

For simplicity, we will consider here the shape of the 

radiation spectral line along the undulator axis: 0, yxn . 

For high-energy electrons ( 1 , 1K ) we have:  
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Let )1(  iz ui  , Ni ...,2,1  are the initial points 

of the i -th period. We can conveniently split the integral 

in Eq. (9) into integrals over periods:  
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Substituting (14) and (15) we will get:  
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Numerical analysis shows that practically the functions 

)(
~

,)( yxiE  do not depend on the number of period ( i ) in 

far-field approximation. As a result we have from (16):  
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Let 
i be the electron reduced energy at the initial point 

of the i -th period,  

))1(1(1  ii  ,     (20) 

where   is given by Eq. (3).  

We have from (14) and (15):  0)( 1  z ,  
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The direct solution for Eqs. (20) and (21) is equal to:  
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If we neglect by the radiation energy lost that is putting 

0  into (22), we obtain from (19) and (22) the 

standard interfering function for undulator radiation with 

perfectly periodical trajectory:  
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The additional term in the phase (22), which describes 

the radiation energy loss at the wavelength of 

fundamental, is equal to )2)(1(2  ii . We can find the 

critical number of undulator periods 
lossN  from the 

relation  2)2)(1(2  lossloss NN , obtaining the 

estimation for 
lossN   


1lossN .      (24) 

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-WEPRO041

WEPRO041
2036

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

02 Synchrotron Light Sources and FELs
T15 Undulators and Wigglers



NUMERICAL SIMULATIONS 

The simulations were performed with the European 

XFEL parameters listed in the Table 1 (see [11]). 

Table 1: European XFEL Parameters for Simulation 

Electron beam energy  17.5 GeV 

Undulator period u   40 mm  

Undulator deflection parameter K 4 

Energy of fundamental harmonic 1 8078 eV 

Number of undulator periods N 124 

We can readily calculate from the foregoing equations:  

The energy loss per one undulator period is equal to:  

)( periodEr =8889 eV.  

Relative energy loss   per one period is equal to: 

7105
)(  

 period .  

Critical number of undulator periods 
lossN  is equal to:  

1
1414 lossN .  
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Figure 2: Normalized undulator radiation intensity without 

energy loss (black curve) and with energy loss (red curve). 

N = 750 periods. 
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Figure 3: Normalized undulator radiation intensity without 

energy loss (black curve) and with energy loss (red curve). 

N = 1400 periods. 
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Figure 4: Normalized undulator radiation intensity without 

energy loss (black curve) and with energy loss (red curve). 

N = 2500 periods.

Figures 2–4 show the numerically calculated spectral 

intensities along the axis of the undulators with 750, 1400 

(which is close to Nloss) and 2500 periods correspondently. 

Calculations were carried out in the framework of 

approach described above. The European XFEL undulator 

parameters were used for simulations, see Table 1. These 

numerical results clearly show that for undulator 

spontaneous radiation the energy loss should be taken 

properly into account if the number of undulator periods 

is large enough. The simple estimation for critical number 

of periods, given by Eq. (24), is in a good agreement with 

results of numerical simulations, see Figures 2 - 4. 
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