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Abstract

Formulae of magnetic field enhancement at a two-

dimensional semi-elliptical bump and a two-dimensional

pit with chamfered edges are derived by using the method

of conformal mapping. The latter can be regarded as an

approximated model of the two-dimensional pit with round

edges studied in Ref. [1].

INTRODUCTION

A surface magnetic-field of superconducting accelerat-

ing cavity could be enhanced at a defect on a cavity surface.

The enhanced magnetic-field can be written as

H (r) = β(r)H0 (0 ≤ β(r) ≤ β∗) , (1)

where H0 is a surface magnetic-field of the cavity, β(r) is

a magnetic-field enhancement factor at a position r, and β∗

is the maximum value of β(r) along the defect. When βH0

exceeds a threshold value, vortices start to penetrate into a

superconductor and a surface dissipation increases, which

could be a cause of quenches and limit the maximum accel-

erating field. Understanding a relation between β and the

geometry of defect is a first step to understand the mecha-

nism of quench at defect.

In Ref. [1], the two-dimensional (2D) pit with a triangu-

lar section is proposed as the minimum model of the pit,

which contains only two parameters: a ratio of a curvature

radius to a half-width of pit and a slope angle. First the an-

alytical formula of β(r) of a model with sharp edges was

derived by the method of conformal mapping, from which

that of a model with round edges was obtained by a poly-

nomial extrapolation. The model was consistent with ex-

periments [1]. Note that the 2D well is a special case of

this model. The functional form of the β of the 2D well

is also derived analytically in Ref. [1], which is consistent

with the numerical result of 3D well obtained by Shemelin

and Padamsee [2].

In this paper the method of conformal mapping is applied

to other interesting geometry: a 2D semi-elliptical bump

and a 2D pit with chamfered edges. The former is a good

exercise of this method before we tackle the complicated

problem. The latter can be regarded as an approximation of

the 2D pit with round edges given in Ref. [1].
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FORMULATION

The solution of a two-dimensional magnetostatics prob-

lem (Hx ,Hy ) is given by

Hx − iHy = −Φ′(z), (2)

where Φ(z) is an holomorphic function of a complex vari-

able z = x + iy. When a complex potential Φ̃(w) on a com-

plex w-plane is known, Φ(z) is derived from Φ̃(w) through

a conformal mapping, z = F (w), and is given by

Φ(z) = Φ̃(F−1(z)) , (3)

where F−1 is an inverse function of F. Then the β can be

computed as

β(x, y)=
|Hx−iHy |

H0

=

|Φ′(z) |
H0

=

1

H0

����
Φ̃

′(w)

dF/dw

����
, (4)

where dF−1/dz = dw/dz = (dz/dw)−1
= (dF/dw)−1 is

used. Eq. (4) is the general formula to obtain β used below.

Our tasks are to find Φ̃(w) and F (w) of each problem.

2D SEMI-ELLIPTIC BUMP

ζ =
w +
√
w2 − 1

2
. (5)

and that between the ζ- and z-plane is given by

z =
r0

2

(
2ζ

e−θ
+

e−θ

2ζ

)
. (6)

where r0 is a constant, a = r0 cosh θ and b = r0 sinh θ. Sub-

stituting Eq. (5) into Eq. (6), we obtain the mapping func-

tion between the w- and z-plane:

z = a

(
w +

b

a

√
w2 − 1

)
≡ F (w) . (7)

The complex potential on the w-plane is given by

Φ̃(w) = −H̃0w , (8)

which certainly yields the magnetic field on the w-plane,

Hu − iHv = −Φ̃′
bump

(w) = H̃0. Then the β-factor is derived

from the general formula given by Eq. (4):

β(x, y) =
1

H0

����
H̃0

a + bw/
√
w2 − 1

����
=

1 + b
a

1 + b
a

w√
w2−1

. (9)

Figure 1(a) shows a semi-elliptical bump with a major
axis, a, and aminor axis, b. Figure 1(b) and (c) are schematic
views of its maps on w- and ζ -plane, respectively. The map
between the w- and ζ-plane is given by
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Figure 1: (a) 2D semi-elliptic bump with a major axis, a,

and a minor axis, b, and its maps on (b) the ζ-plane and (c)

the w-plane. Gray regions correspond to superconductors

in the Meissner state. A surface magnetic field far from

the bump is given by (Hx ,Hy ) = (H0, 0) and (Hu ,Hv ) =

(H̃0,0) on the z- and w-plane, respectively.

where a condition β → 1 (z → ∞), namely, H̃0 = (a+b)H0

is used. The maximum value of β is given by the top of the

bump (z = ib or w = 0):

β∗ = β(0,b) = β |w=0 = 1 +
b

a
. (10)

Note that β∗ |a=b = 2 is consistent with the well-known

results of β of the cylinder.

2D PIT WITH SHARP EDGES REVIEW

Let us review a model with sharp edges shown in Fig. 2.

The map z = F (w) is given by the Schwarz-Christoffel

transformation:

z = F (w) = κR

∫ w

0

f (w′)dw′ + λR , (11)

where the integrand f (w) is given by

f (w) =
(w2 − 1)α

w2α
. (12)

The constant λ is determined by the condition that C′ on

the w-plane is mapped into C on the z-plane:

λ = −i tan(πα) . (13)

Figure 2: (a) 2D pit with sharp edges and its maps on (b)

the w-plane. Gray regions correspond to superconductors

in the Meissner state. A surface magnetic field far from

the bump is given by (Hx ,Hy ) = (H0, 0) and (Hu ,Hv ) =

(H̃0,0) on the z- and w-plane, respectively.

Similarly the constant κ is determined by the condition that

A′ on the w-plane is mapped into A on the z-plane:

κ =

√
π

cos πα Γ(1 + α)Γ( 1
2
− α)

. (14)

The complex potential on the w-plane is given by

Φ̃(w) = −H̃0w , (15)

Then β is derived from the general formula given by Eq. (4):

β(x, y) =
1

H0

����
H̃0

κR f (w)

����
=

1

| f (w) |
=

����
w

2α

(w2 − 1)α

����
, (16)

where a condition β → 1 (z → ∞), namely, H̃0 = κRH0 is

used. The β at A, B and C are immediately obtained as





β(A) = β |w=1 = ∞ ,
β(B) = β |w=−1 = ∞ ,
β(C) = β |w=0 = 0 .

(17)

The magnetic field is enhanced at the edges, vanishes at the

bottom, and is not enhanced far from the pit. The expansion

in the vicinity of the edges and its extrapolation to the model

with round edges are found in Ref. [1].

2D PIT WITH CHAMFERED EDGES

A pit with chamfered edges shown in Fig. 3 can be re-

garded as an approximation of a pit with round edges. The

map z = F (w) is given by the Schwarz-Christoffel transfor-

mation with

f (w) =
{w2 − (1 + η)2} α2 (w2 − 1)

α

2

w2α
. (18)
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Figure 3: (a) 2D pit with chamfered edges and its maps

on (b) the w-plane. Gray regions correspond to supercon-

ductors in the Meissner state. A surface magnetic field

far from the bump is given by (Hx ,Hy ) = (H0, 0) and

(Hu ,Hv ) = (H̃0,0) on the z- and w-plane, respectively.

where η is a constant. The constant λ is determined by

much the same way as 2D pit with sharp edges. The condi-

tion that C′ on the w-plane is mapped into C on the z-plane

yields

λ = −i tan πα . (19)

The constant κ is determined by the condition that A′
0

on

the w-plane is mapped into A0 on the z-plane:

R + re tan
πα

2
− re sin πα − ire (1 − cos πα)

= F (1) = κR

∫ 1

0

f (w)dw − iR tan πα .

Using 1 + i tan πα = eiπα/ cos πα, 1 + i tan(πα/2) =

ei
πα

2 / cos(πα/2) and f (w) = eiπα ((1 + η)2 − w
2)

α

2 (1 −
w

2)
α

2 w
−2α , the abvoe condition becomes

1

cos πα
− re

R
tan
πα

2

= κ

∫ 1

0

dw ((1 + η)2 − w
2)

α

2 (1 − w
2)

α

2 w
−2α

=

κ

2

∫ 1

0

dt t−α− 1
2 (1 − t)

α

2 ((1 + η)2 − t)
α

2 ,

=

κ

2
(1 + η)α

∫ 1

0

dt ta−1(1 − t)c−a−1(1 − tζ )−b

=

κ

2
(1 + η)α

Γ(a)Γ(c − a)

Γ(c)
2F1(a,b; c, ζ ) ,

where t ≡ w
2, a ≡ −α + 1

2
, b ≡ −α

2
, c ≡ −α

2
+ 3

2
,

ζ ≡ (1 + η)−2, and 2F1(a,b; c, ζ ) is the Gaussian hyper-

geometric function. The gamma functions in the last line

can be simplified by using Legendre’s duplication formula,

Γ(1 + α
2

)Γ(α
2

+ 1
2

) = 2−α
√
πΓ(α + 1), and Euler’s reflection

formula, Γ( 1
2
− α

2
)Γ( 1

2
+ α

2
) = π/ sin( π

2
− πα

2
) = π/ cos πα

2
.

Then the condition is finally written as

1

cos πα
− re

R
tan
πα

2

= κ
(1 + η)α cos πα

2
Γ( 1

2
− α)Γ(1 + α)

2α
√
π(1 − α)

2F1(a,b; c, ζ ) ,

namely,

κ=
1 − re

R
cos πα tan πα

2

(1 + η)α

2α (1 − α) κ0

2F1(a,b; c, ζ ) cos πα
2

, (20)

Note here that Eq. (20) converges Eq. (14) as re/R → 0.

The constant η is determined by the condition that A′
1

on

the w-plane is mapped into A1 on the z-plane:

R + re tan
πα

2
= F (1 + η) = F (1) + κR

∫ 1+η

1

dw f (w) .

Substituting f (w) = (−1)
α

2 {(1+η)2−w2} α2 (w2−1)
α

2 w
−2α ,

the above condition becomes

2
re

R
sin
πα

2
= κ

∫ 1+η

1

dw
{(1 + η)2 − w

2} α2 (w2 − 1)
α

2

w2α
.

The integral can be performed under the assumption η ≪ 1.

Substituting w = 1 + ϵ (ϵ ≪ 1), we find

2
re

R
sin
πα

2
=

2α+1κ

2 + α
ηα+1,

or,

η =

( (2 + α) sin πα
2

2α κ

re

R

) 1
1+α

, (21)

Then β is derived from the general formula given by Eq. (4):

β(x, y) =
1

| f (w) |
=

����
w

2α

{w2 − (1 + η)2} α2 (w2 − 1)
α

2

����
, (22)

with Eq. (21) and (20).

SUMMARY

Formulae of β at a 2D semi-elliptical bump and a 2D pit

with chamfered edges are given by Eq. (9) and (22), respec-

tively. See Ref. [1] for the pit with round edges.
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