Production of Quasi-Monochromatic GeV Photons byCompton Scattering using Undulator X-ray Radiation at SPring-8

<u>H. Ohkuma</u>, A. Mochihashi , M. Oishi, S. Suzuki, K. Tamura, T. Nakano⁽¹⁾, H. Shimizu⁽²⁾

JASRI/SPring-8, ⁽¹⁾Osaka Univ., ⁽²⁾Tohoku Univ.

This work is supported by the Japan Society for the Promotion of Science under the Grant-and-Aid for Scientific Research (Contract no. 24241035)

IPAC'14@Dresden 2014.06.17

Outline

- Motivation
- LEPS2 Activity at SPring-8
- Theory of Backward Compton Scattering of Quasi-Monochromatic γ-ray
- Preliminary Reflectivity Measurements of Single Crystal
- Plan of Test Experiment for γ-ray Production
- Summary

Motivation

 BCS using laser (infrared to ultra-violet) established with successful results, but extension of the maximum photon energy of γ-ray opens <u>new</u> <u>fields of the photo production experiments of nuclear and particle physics</u>

LEP and LEP2(BL31LEP) at SPring-8

• Quasi-monochromatic γ-ray

No tagging system (\gamma -ray intensity and energy are measured)

• In SR facility, many high power X-ray undulators. Very attractive to use as incident photon source for BCS

Photon energy close to the kinematic limit

• Single crystal with high-reflectivity at normal-incidence (K-J. Kim et al.)

X-ray photon reflected back by a single crystal

• Low energy operation in future SPring-8

BL31LEP constructed at long straight section of SPring-8

Theory of Backward Compton Scattering

Schematic diagram of BCS

$$k_2 = k_1 \frac{1 + \beta \cos \theta_1}{1 + \beta \cos \theta_2 + \frac{k_1}{E_e} (1 - \cos \chi)}$$
(1)

In case of head-on collision, maximum energy of scattered Photon :

$$k_{2\max} = \frac{k_1(1+\beta)}{1+\beta+\frac{2k_1}{E_e}} \approx \frac{4k_1E_e^2}{(m_ec^2)^2+4k_1E_e} \qquad (2)$$

When k_1 is 10 keV, $E_e = 8 \text{ GeV} \implies k_{2\text{max}} \sim 8 \text{ GeV}$ (photon energy of γ -ray is almost equal to electron energy). **Spectrum shape (Milburn, 1963)**

$$\frac{1}{\sigma_0} \frac{d\sigma}{d(k_2/E_e)} = \frac{3}{16\lambda} \left[\frac{\lambda^2 (1-x)^2}{1+\lambda(1-x)} + 2(1+x^2) + O[x^n] \right] \quad (3)$$

 σ_0 : Thomson scattering cross-section, $\lambda = 2\gamma k_1/m_e c^2$, $x = \cos\theta_0 (\theta_0$: photon scattering angle)

For small k_1 (e. g. laser light, $E_1 = 3.49$ eV), the second term of Eq. (3) is dominant. γ -ray spectrum is the parabolic shape with wide photon energy range.

For large k_1 (e. g. undulator, $E_1 > 100 \text{ eV}$), the first term is dominant and γ -ray spectrum damps in the low energy region.

Calculated γ -ray distribution as a parameter of incident photon energy

10keV incident X-ray and Produced γ -ray in kinematic limit

Reflectivity Measurement

cf. Si (333) **R≈0.11 (~11%)**, Si (555) **R≈0.05 (~5%)**

Si (008) Bragg Reflection at normal-incidence

Si (5 5 5)

Si (3 3 3)

Scanning Pattern of ion-chamber output signal (I) by 2-axis (θ_x and θ_y) scanning

0.173

0.172

0.171

0.17

0.169

0.168

0.167

0.166

0.165

 θ_x and θ_y : ± 1.5

Photon energy of incident X-ray matched Bragg condition at the normal-incidence (left) and unmatched (right).

Plan of Test Experiment for γ-ray Production

Schematic Drawing of γ-ray Production System

Single crystal (Bragg Mirror)

Multipole Wiggler

76mm × 51 periods K_{max} = 5.8 Photon Energy = 5 ~ 30keV

Mirror Chamber Mirror Cooling System 4-Axis Goniometer

γ-ray Detector

Plan of GeV Photons production at <u>a beam diagnostics beamline</u>, <u>BL05SS</u>

Multipole Wiggler 76mm × 51 periods K_{max} = 5.8 Photon Energy = 5 ~30keV

Mirror Chamber

Outer Dimension : 1120 mm × 820 mm × 610 mm

Mirror mounting system with cooling device 4-Axis Goniometer (Focusing System)

Front-end of BL05SS at SPring-8

Mirror Chamber (29m from ID center)

Summary

- We proposed backward Compton scattering using undulator radiation to reflect back by Bragg mirror.
- Preliminary reflectivity measurement of silicon single crystal.
- Experimental setup of γ-ray production by BCS using a single crystal (diamond) is now under preparation.

Thank you for your attention