Broadband Frequency Electromagnetic Characterisation of Coating Materials

IPAC 2021

Istituto Nazionale di Fisica Nucleare The Italian National Institute for Nuclear Physics

Andrea Passarelli, Can Koral*, Maria Rosaria Masullo, Vittorio Giorgio Vaccaro, Antonello Andreone*, Maria De Stefano* *University of Naples "Federico II"

Coatings at high frequency

Layers of coating materials significantly increase the resistive wall impedance at high frequency

- Low conductivity, thin layer coatings (NEG, a-C)
- Rough surfaces (LESS)

Surface impedance of the beam pipe depends on electromagnetic properties of *coatings*

Electromagnetic characterization of "coating materials" is fundamental to evaluate accelerator performance limitations and build up a machine impedance model

Two different methods

Electromagnetic characterization of Coating materials Dielectric resonator Sub-THz waveguide

high sensitivity

small skin-depth

LESS (Laser engineered surface structures) **NEG** (Non-Evaporable Getter)

- conductivity compared with copper
- small samples

homogeneous coating •

a-C (Amorphous carbon) coating thickness issues

Andrea Passarell

First method

Sub-THz waveguide attenuation

The proposed method

Evaluation of the **signal attenuation** inside a DUT with coating deposited.

Electromagnetic characterization of coating material.

Andrea Passarelli

The Device Under Test

Dimension in mm	
Material	Iron
Waveguide	Circular
Length	42
Radius	0.9
Horns	Pyramidal
Length	39
External side	6
Total Length	120

The Device Under Test

Methodology advantages: 1)Homogeneous deposition 2)System reusability 3)Large area coating

Analytical evaluations

Attenuation along the foil

Waveguide of length I_g (TE_{1,1} mode) + pyramidal transitions of length I_t (TE_{1,0} TE_{0,1} modes)

$$A_{DUT} = \alpha l_g + 2 \int_0^{l_t} \alpha(z) \, dz = \frac{1}{2} Re(Z_s) \frac{\int_l |\mathbf{n} \times \mathbf{H}_{1,1}|^2 \, dl}{Z_{1,1} |I_{1,1}|^2} l_g + \int_0^{l_t} Re(Z_s) \frac{\int_l |\mathbf{n} \times (\mathbf{H}_{1,0} + \mathbf{H}_{0,1})|^2 \, dl}{Z_{1,0} |I_{1,0}|^2 + Z_{0,1} |I_{0,1}|^2} \, dz$$

Analytical evaluations – comparison with numerical solver

First set of measurements on NEG coated foil[®]

INF

Measurement system upgrade

Measurement results on a-C

Two samples with 3 µm of Amorphous carbon on copper bulk

12 [

10

8

Mechanical stress a-C coating on Cu slab

Andrea Passarelli

Second method

Resonant structure methodology

Resonant structure methodology

Dielectric resonator: Resonant structure methodology improves the sensitivity for the electromagnetic characterization of very thin laser surface treated structures and conductivity close to copper one

Cu coated DUT		
	Sapphire	
	Hh	
	0 0	
	l d	
	o e	
	wr	
Internal view		

Resonant structure methodology

The maximum Q-factor percentage difference is obtained with a minimum distance between the DUT and the sapphire

Resonant structure methodology

The sapphire with larger radius (3.5 mm) will be used, because of its higher sensitivity in EM characterization of coating materials (LESS)

Andrea Passarelli

Conclusion & next steps

Electromagnetic characterization of coating materials

- Sub-THz waveguide attenuation
 - Reliable analytical model for the conductivity retrieval. Good agreement with CST solver.
 - Successful measurement campaign: reliable and handy method to evaluate the electromagnetic properties of samples under test.
 - Published results on NEG and novels on a-C coatings.
- Resonant structure methodology
 - Improves the sensitivity, useful for electromagnetic characterization of very thin laser surface treated structures (i.e. LESS)

