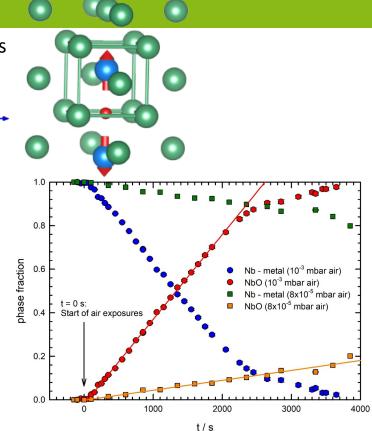


In-Situ EXAFS Investigations of Nb-Treatments in  $N_2$ ,  $O_2$  and  $N_2$ - $O_2$  Mixtures at elevated Temperatures

P. Rothweiler, J. Kläs, B. Bornmann, R. Wagner, D. Lützenkirchen-Hecht

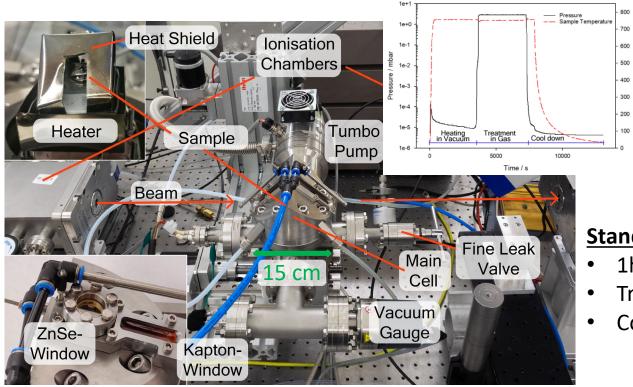



### Motivation

- Nowadays Nb-cavities are treated in N<sub>2</sub>-gas atmospheres at elevated temperatures to improve performance
- Many different treatments (N-Doping (880 °C), N-Infusion (150 °C), Mid-T-Bake (400 °C) etc.)
- $\rightarrow$  Cell for in-situ investigations on treatment process
- Earlier studies:
  - Uptake of N-atom in octahedral interstitial sites is crucial
  - Nb during heating is sensitive to oxidation even at small pressures of O<sub>2</sub>

# **Central Questions:**

- $\rightarrow$  Is nitrogen-uptake still possible in the presence of O<sub>2</sub>?
- $\rightarrow$  Does heating in poor vacuum supresses N-uptake?




In-Situ EXAFS Investigations of Nb-Treatments in  $N_2$ ,  $O_2$  and  $N_2$ - $O_2$  Mixtures at elevated Temperatures M.Sc. Patrick Rothweiler

3

BERGISCHE UNIVERSITÄT WUPPERTAL

### The Vacuum Heating Cell and Treatment



- In-situ-EXAFS setup
- $T_{max} = 1200 \,^{\circ}\text{C}$
- $p_{min} < 10^{-6}$  mbar
- ZnSe-window for IR-T-measurement
- Fine leak + magnetic valves for gas treatments
- Water and air cooling

# Standard - treatment:

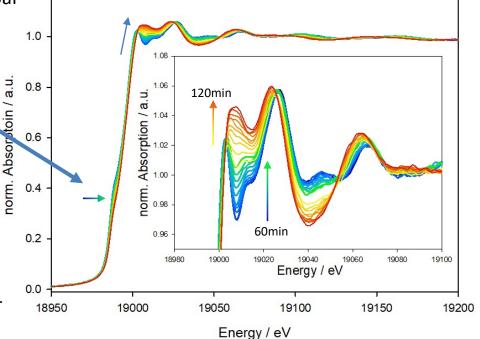
- 1h at 900 °C in vacuum
- Treatment in gas
- Cool down in vacuum



## Heating in bad vaccum and N<sub>2</sub> treatment afterwards

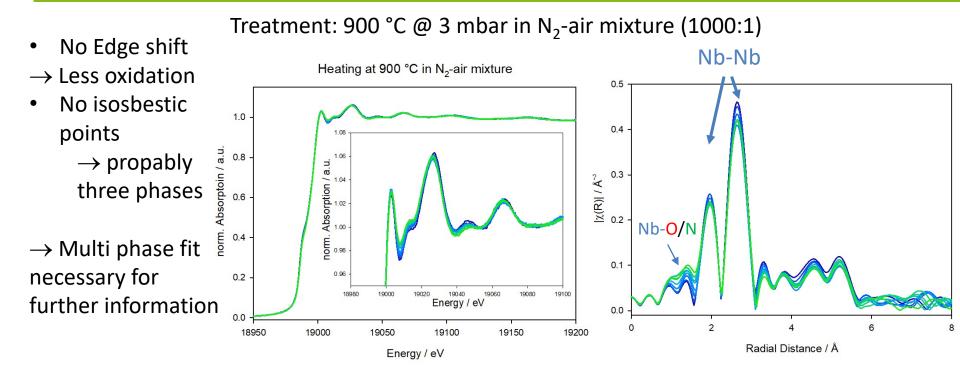
### Raw absorption spectra:

- Blue  $\rightarrow$  green: bad vacuum @ 900 °C, 2x10<sup>-4</sup> mbar
- Yellow  $\rightarrow$  red: N<sub>2</sub> treatment @ 900 °C, 3 mbar


## Poor vacuum conditions:

- Slight shift in edge energy to higher energy
  → Indiction for Nb oxidation
- Isosbestic points → two phases only

# N<sub>2</sub> treatment:


- No additional oxidation
- XANES development continuous
- Isosbestic points smear out
  - $\rightarrow$  Nb unit cells partly occupied with O- and/or N-atoms on octahedreal interstitial sites

#### Heating at 900 °C first in air and later N2 atmosphere





# Treatment in $N_2$ -atmosphere of bad purity (1000:1 $N_2$ - $O_2$ )



In-Situ EXAFS Investigations of Nb-Treatments in  $N_2$ ,  $O_2$  and  $N_2$ - $O_2$  Mixtures at elevated Temperatures M.Sc. Patrick Rothweiler

5

#### Conclusions

- Heat treatments of Nb: Effect of oxygen on the short range structure ۲ of Nb similar to N
- O and N "compete" on interstitial octahedreal sites in the Nb unit cells •

 $\rightarrow$  O has an effect on N-doping treatments!

 $\rightarrow$  Influence on mid-T-bake and/or N-infusion as well?

 $\rightarrow$  Effect of oxygen on Nb cavity performance (Q-factor, RF-superconductivity) has to be investigated!

Fits of the first two shells and multi phase fits have to be done for mode detailed ٠ information on the effect

We gratefully acknowledge financial support by the BMBF under project number 05H18PXRB1

In-Situ EXAFS Investigations of Nb-Treatments in N<sub>2</sub>, O<sub>2</sub> and N<sub>2</sub>-O<sub>2</sub> Mixtures at elevated Temperatures M.Sc. Patrick Rothweiler

GEFÖRDERT VOM



RERGISCHE

# Thank you for your interest!



