
A MULTI-BUNCH, THREE-DIMENSIONAL, STRONG-STRONG
BEAM-BEAM SIMULATION CODE FOR PARALLEL COMPUTERS

A. Kabel, Y. Cai
Stanford Linear Accelerator Center, Stanford, CA 94309, USA∗

Abstract

For simulating the strong-strong beam-beam effect, us-
ing Particle-In-Cell codes has become one of the methods
of choice. While the two-dimensional problem is readily
treatable using PC-class machines, the three-dimensional
problem, i.e., a problem encompassing hourglass and
phase-averaging effects, requires the use of parallel pro-
cessors. In this paper, we introduce a strong-strong code
NIMZOVICH1, which was specifically designed for par-
allel processors and which is optimally used for many
bunches and parasitic crossings. We describe the paral-
lelization scheme and give some benchmarking results.

PARALLELIZATION

NIMZOVICH uses parallelization according to the
SPMD (Single Program, Multiple Data) scheme. A cluster
of processors is divided in two sections, called Rings. Each
Ring is subdivided into several Bunches. Bunches within
a Ring are completely independent. Bunches in opposing
Rings are independent, except if they have a design or par-
asitic interaction point in common, i.e., if one of their two
geometric interaction points falls into a section of the ring
(the Window) shared by both beams.

Each Bunch is divided longitudinally into several Slices.
For reasons of load balancing, the slicing scheme is cho-
sen in such a way as to have the same number of particles
within each slice, assuming an initial gaussian distribution
of given length. Slice borders are, however, not dynami-
cally adapted to changed longitudinal distributions.

Given enough available processors, each Slice’s portion
of particles can be further subdivided. Portions of a Bunch
with the same subdivision index in each slice are called a
Slab. They do not represent any geometric subdivision.

Each processor on each Ring runs through the following
sequence of steps for each Turn:

• For each Bunch in the sequence of opposing Bunches:

– For each Slice in the opposing Bunch:

∗ Deposit particles onto grid in the center of
gravity of my slice

∗ Solve Poisson’s equation on that grid

∗ Calculate electric field

∗ Work supported by U.S. Department of Energy, contract DE-AC03-
76SF00515.

1The code was previously named b2b3 (for beam-to-beam in three di-
mensions), however, 1. b2-b3. . . , in chess, is known as the Nimzovich-
Larsen attack; also, the code runs well on 64 processors

∗ Exchange electric field with opposing Slice
in opposing Bunch

∗ Kick particles
∗ Advance particles to the next Slice

– Advance particles to next opposing Bunch

• Advance particles according to one-turn map, possi-
bly redistributing longitudinally

We assume that the bunch is longitudinally frozen during
interactions, so the slice-to-slice interactions are indepen-
dent and can be done in parallel. Also, bunches in the same
ring are independent, their mutual interaction can be han-
dled in parallel. Synchronization is automatic, i.e., a Bunch
will see the opposing Ring’s bunches in the right order, as
the slice-to-slice operation constitutes a barrier synchroniz-
ing the two Rings.

When a Slice has passed the last opposing Slice of its last
opposing Bunch within a Window, it is transported back to
the design IP, and the one-turn map is applied to its parti-
cles. After that, a particle may fall out of its current Slice.
All particles with changed Slice numbers are moved to one
out of a set of send queues, and an asynchronous send op-
eration to its new Slice initiated. The leftover particles are
deposited on the Grid. Then, the process opens a receive
queue for particles from backward Slices, which might be
moved onto this Slice by the action of the one-turn map.
The process does not have to wait for all backward slices,
as the synchrotron tune is usually small and a particle is ex-
tremely unlikely to pass distances of the order of a bunch
length within a single turn. The actual number of back-
ward slices a process will wait is dynamically adapted at
run time; if the number of particles received after a Slice’s
first interaction with the next Bunch crosses a threshold (of
the order of a few particles), the waiting period is increased.

A complication arises from the fact that the longitudinal
resolution required is very different for parasitic and de-
sign interactions. Thus, a Bunch will have different slicing
schemes, with NSlabsNSlices constant, for different interac-
tion points. It is easy to see that communications due to re-
assignment of slices by a change of resolution can be kept
at its minimum by (1) letting the numbers of slices in ad-
jacent IPs be integer multiples (provided the bunch length
does not change between IPs) and (2) have formerly neigh-
boring slices end up in the same new slice for a resolution
decrease.

FIELD CALCULATION

Point charges are deposited onto a cartesian grid with
typical dimensions of Nx = 64 . . .512⊗ Ny = 64 . . .512,

Proceedings of EPAC 2004, Lucerne, Switzerland

509

using a 9-site stencil. As the beam pipe is usually far
away, Poisson’s equation on the grid can be solved us-
ing free boundary conditions. This is done by convolv-
ing with an appropriately discretized and regularized ver-
sion Ĝik of the free Green’s function G(r) = 1

4π logr2.
The convolution is done by multiplication in momentum
space; the transformation into momentum space is done by
a two-dimensional Fast Fourier Transformation using the
FFTW[2] package. Free boundary conditions are imple-
mented by using the Hockney trick[1] of padding the array
with zeroes to 2Nx⊗2Ny.

The transformation is done by two sequences of one-
dimensional transformations with a matrix transposition in
between. In its parallel version, the transposition involves
an expensive all-to-all communication, which might can-
cel the speed gains of parallelizing the transformation. In
NIMZOVICH, the user has the choice of how finely to par-
allelize the solver. In our calculations, we find that the time
spent in the solver equals the kick-deposit time at around
104 particles.

Note that this is not the optimal solution; the fact that
the array was zero-padded initially allows one to get rid
of 2Nx of 2Nx + 2Ny FFT’s right away. 2Nx other trans-
formations can be done out-of-place. Also, the parallel
transposition becomes simpler, as the padding space can
serve as a scratch space, so send and receive operations can
be done simultaneously and asynchronously, decreasing la-
tency. We have implemented this scheme for the special
case of symmetric G functions and observe a speed gain of
almost a factor of 2.

SLICE-TO-SLICE INTERACTION AND
ADAPTIVE SLICES

The longitudinal domain decomposition makes use of
Hirata slicing. The ith slice in the bunch± is characterized
by the longitudinal positions te < tc < tl for its early bound-
ary, center of gravity, and late boundary. Each [t e,tl) con-
tains the same number of particles for an initially gaussian
distribution. To avoid field discontinuities at slice bound-
aries, we use a scheme due to Ohmi [5, 4] to evaluate the
field within the ith slice in bunch ∓ opposing the kth slice
in bunch ±: Particles are deposited (by longitudinal pro-

jection) onto a grid each at times t±,i
e +t∓,k

c
2 and

t±,i
l +t∓,k

c
2 . The

field of the distributions is calculated, and the resulting kick
is applied to a particle µ with longitudinal coordinate t µin

bunch ± with weights tµ−t±,k
e

t±,k
l −t±,k

e
and

−tµ+t±,k
l

t±,k
l −t±,k

e
. When on-

the-fly luminosity calculation is desired during an interac-
tion (see below), a processor will transmit the ρ matrices
along with the calculated �E matrices. The target proces-
sor will then sample and sum the longitudinally interpo-
lated ρ at its particles’ locations along with the �E, thus cal-
culating a good approximation for

R
slice ρ±ρ∓d2x. For N

slices, −t1,±
e = tN,±

l = ∞, so the linear scheme degenerates
to a t-independent kick. There are two possible prescrip-

tions to still introduce some smoothing. One is to modify
the open Hirata slicing to a closed slicing with finite (and
user-selectable) cutoff −t 1,±

e = tN,±
l = T . Particles with tµ

without that closed interval will be discarded, resulting in
a relative particle loss of exp(−σt/T), which will occur
over the first 1/2νsync turns, provided the beam-beam ef-
fect does not increase the longitudinal emittance. The other
prescription is to use an open slicing, but use the ith center
of gravity as a reference point for field interpolation, thus
turning the interpolation into an extrapolation in the fringe
slices.

In general, each slice will execute grid operations (sam-
pling fields or depositing particles) on 4 different temporal
positions. In a beam with a pronounced hourglass effect,
the transverse dimensions of the beam might vary substan-
tially for these times. We adapt the transverse extensions
of the grids to the expected extensions of the beam, cal-
culated from the unperturbed Twiss functions. This way,
we achieve constant effective resolution across the interac-
tion process and can use a lower-resolution grid than codes
with grids of constant absolute resolution. For each slice,
we have to pre-calculate two Ĝ matrices for each oppos-
ing slice, as Ĝ does not follow a simple scaling law under
temporal displacement for βx �= βy. We are currently test-
ing a dynamic scheme in which the grid sizes are adapted
to the beam dimensions as measured during the course of
the simulation, which would relieve the user of having to
have an estimate of beam size increase. Note that this
scheme is very memory-intensive, as each Green’s func-
tion on the grid has to be stored. Thus, the user can turn off
this feature, losing usable resolution but gaining memory
efficiency.

INPUT AND OUTPUT

The code allows for a very general description of the
storage ring. The input parameters are specified as ring
properties (particle masses, energies, and charges; tune ad-
vances; damping times; Twiss functions at the design IP,
equilibrium emittances) for both rings, as bunch properties
(emittances, particle numbers, and position in the bunch
train) and IP properties (transverse offsets, crossing angles,
grid resolutions). For now, we assume the IPs are dis-
tributed symmetrically around the design IP and that they
are separated from the design IP by pure drift spaces and
that properties like offsets and crossing angles are indepen-
dent from the sequence number in the train, which is not
necessarily true for non-equidistand bunch trains. We will
generalize the parametrization to allow for machines such
as LHC and the Tevatron.

The complete content of the particle heap will be written
to disk in regular intevals, selectable by the user. The files
generated are platform-independent HDF5 files [3], they
comprise the complete information for all the particles,
including loss flags and the internal state of the random
number generators. We use the MPI parallelized version
of HDF5; thus, the output will be completely independent

Proceedings of EPAC 2004, Lucerne, Switzerland

510

from the computing platform or the number of processors
used, thus facilitating a restart facility.

Also, each processor writes to a log file. This logfile
contains collective quantities calculated on-the-fly, such as
luminosity (summed over a complete turn for each single
bunch), coordinate averages, and correlation matrices. All
these quantities refer to coordinates of particles in the in-
teraction point in the same turn. To calculate them, one has
to stop the earliest slice in a bunch in the design IP, wait
for the other slices to catch up, calculate the quantities in
question, and restart the interaction process. It is easy to
see that this method would decrease efficiency by a factor
of 2 if applied in each turn; thus, the calculation are done
at user-selectable intervals.

We also implemented an on-the-fly tune calculation. The
user can specify a number of particles for which the tune is
to be calculated, the particles will be selected at random
from each bunch. The selected particles’ coordinates will
be stored for a number of turns specified by the user and de-
termining the tune resolution. As the affiliation or particles
to processors might have changed, the particles’ histories
will be sorted according to particle number across proces-
sors at the end of the cycle. The coordinate vectors are
fast-fourier-transformed, and the tunes are determined us-
ing the Laskar algorithm and written to the log file. The
stop-restart procedure described above also applies to this
calculation.

BENCHMARKING

We have checked two typical cases: One is a single-
bunch luminosity simulation for Super-KEKB with param-
eters as given by table 1. The other is a simulation of PEP-
II, including the two nearest parasitic crossings, taken into
account with a longitudinal resolution of 1, and for a bunch
train of 4 bunches. It was not possible to do a multi-bunch
simulation with sufficient resolution due to a bug in the
HDF5 implementation at NERSC occuring for high num-
ber of processors. We could, however, check the code for
consistency in this case. The results for Super-KEKB lu-
minosity and rms y beam radius are given in figures 2, 1
and show good agreement with [6].

REFERENCES

[1] R. W. Hockney and J. W. Eastwood, Computer Simulation
Using Particles. Bristol and Philadelphia, 1988.

[2] M. Frigo and S. G. Johnson, FFTW 2.15 User’s Manual,
http://www.fftw.org/fftw2 doc/

[3] F. Baker for the HDF5 project, HDF5 User’s Guide,
http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/

[4] K. Ohmi, Phys. Rev. E62, 7287 (2000)

[5] K. Ohmi, in Proceedings of the 2003 IEEE Particle Acceler-
ator Conference

[6] K. Ohmi, M. Tawada, Y. Cai, S. Kamada, K. Oide, and
J. Qiang, PRL 92 (2004), 214801-1–4

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 0 5000 10000 15000 20000 25000 30000

σ y
;lo

,h
i [

m
]

Turns

Beam Blow-up for Super-KEKB Nominal Parameters

Low Energy Ring
High Energy Ring

Figure 1: Beam Blow-Up for Super-KEKB.

 0

 2e+30

 4e+30

 6e+30

 8e+30

 1e+31

 1.2e+31

 1.4e+31

 1.6e+31

 0 5000 10000 15000 20000 25000 30000

Lu
m

in
os

ity
 [m

-2
]

Turns

Luminosity Development for Super-KEKB Nominal Parameters

Figure 2: Luminosity for Super-KEKB.

Symbol PEP-II Super KEKB Units
LER HER LER HER

E0 3.1 9.0 3.5 8.0 GeV
N 7.15 4.41 12.6 5.5 1010

β∗x 0.50 0.27 0.30 0.30 m
β∗y 10.5 11.1 3.0 3.0 mm
σz 10.5 11.6 3.0 3.0 mm
σδ 0.65 0.61 0.7 0.7 10−3

εx 22.0 59.0 24.0 24.0 nm
εy 1.40 2.33 0.18 0.18 nm
νx 0.5162 0.5203 0.508 0.508
νy 0.5639 0.6223 0.550 0.550
νs 0.0270 0.0495 0.02 0.02
τx,y 9800 5030 4000 4000 Turns
τs 4800 2573 2000 2000 Turns

Table 1: Benchmark Parameters. For PEP, a bunch spacing
of 1.26 m is used

Proceedings of EPAC 2004, Lucerne, Switzerland

511

