TPPT  —  Radio-Frequency Systems   (17-May-05   13:50—17:10)

Paper Title Page
TPPT003 Development of a Normal Conducting CH-DTL 883
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt-am-Main
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  Funding: GSI, EU (CARE, contract number RII3-CT-2003-506395).

The normal conducting "Crossbar H-Type" (CH) accelerating structure is a good candidate for pulsed, high intensity linac application, covering the energy range from 3 to 100 MeV. H Mode cavities are outstanding in the low-beta range with respect to shunt impedance, high acceleration fields, and compact design, That's why we propose to base the 70 ma, 70 MeV, 352 MHz proton linan for GSI FAIR project on that structure. The actual design consists of 11 CH-DTL's for a total length of around 25 m. Latest results from beam dynamics optimisation will be discussed. Moreover, this paper describes the CH-DTL cavity design with enphasis on the optimisation with MacroWave Studio (single cell cross section, as well as multi cell cavity simulation), and on the achieved progress in the development of mechanical design concepts. A stainless steel multicell model cavity is presently fabricated by our institute in collaboration with GSI, in order to investigate manufacturing and assembly details. Based on this experience, the design of a CH prototipe power cavity will be optimised.

TPPT004 A 175 MHz RFQ Design for IFMIF Project 904
  • S. Maebara, S. Moriyama, M.S. Sugimoto
    JAERI, Ibaraki-ken
  • M.S. Saigusa, Y. Saitou
    Ibaraki University, Electrical and Electronic Eng., Ibaraki
  International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based neutron irradiation facility employing the D-Li stripping reaction, to produce the neutron field similar to the D-T Fusion reactor (2MW/m2,20 dpa/year for Fe). The required beam current of 250 mA is realized by two beam lines of 125mA, and the output energies at injector,RFQ and DTL were designed to be 0.1, 5 and 40 MeV,respectively. The operation frequency of 175MHz was selected to accelerate the large current of 125mA. After an intensive beam simulation, the RFQ with a total length of 12m was designed to keep the minimum emittance growth with the RF injection power of 2.3MW CW. For such a 175MHz RFQ, a design for RF input coupler with loop antenna and co-axial window, supplying RF power shared by 3 x 4 ports, was conducted by using the 3-D electromagnetic code of MW-Studio. In order to withstand the voltage exceeding 200kW CW per one loop antenna, the co-axial line of 4 1/16” diameter is necessary, and it is found that the electric field distortion factor less than 1% can be achieved in beam bore only by employing the 4-loop antenna configuration providing the same power for each quadrants.  
TPPT005 Dual Harmonic Operation with Broadband MA Cavities in J-PARC RCS 931
  • M. Yamamoto, M. Nomura, A. Schnase, F. Tamura
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Anami, E. Ezura, K. Hara, Y. Hashimoto, C. Ohmori, A. Takagi, M. Yoshii
    KEK, Ibaraki
  In the J-PARC RCS RF system, the fundamental rf acceleration voltage and the 2nd higher harmonic one are applied to each cavity. This is possible, because the magnetic alloy loaded cavities have a broadband characteristic and require no resonant frequency tuning. The tube amplifier provides both rf components. We calculate the operation of the tube under the condition of the dual harmonic, the non-pure resistive load and the class AB push-pull mode.  
TPPT006 Development of RF Input Coupler with a Coaxial Line TiN-Coated Against Multipactoring 1006
  • T. Abe, T. Kageyama, H. Sakai, Y. Takeuchi
    KEK, Ibaraki
  In one of the normal-conducting RF cavities used in the KEKB operation, we observed an unexpected rise of the vacuum pressure at certain input-power levels with and without a beam current. From the simulation study, we identify the pressure rises as an effect of the multipactoring discharge in the coaxial line of the input coupler. According to the simulation results, we have decided to make TiN coating on the inner surface of the outer conductor to suppress the multipactoring. In this paper, the status of the development of the TiN-coated input coupler is reported including the recent results of the high-power tests.  
TPPT007 Application of Highly-Pure Copper Lining to Normal-Conducting RF Cavities for an Electron-Positron Super B Factory 1051
  • T. Abe, T. Kageyama
    KEK, Ibaraki
  • Z. Kabeya, T. Kawasumi
    MHI, Nagoya
  • T. Nakamura, K. Tsujimoto
    Asahi Kinzoku Co., Ltd., Gifu
  • K. Tajiri
    Churyo Engineering Co., Ltd., Nagoya
  We apply a new copper lining with a high purity and a high electric conductivity to normal-conducting RF cavities for an electron-positron super B factory, in which four-times more beam current is required to be stored than in the present KEK B factory (KEKB). The lining is produced first by electroplating in an acid copper sulfate bath without brightener nor other organic additives, where the current is periodically reversed (‘‘PR process''). Its electric conductivity is so high as to be comparable to that of the highest-class oxygen-free copper. Then the copper surface is electropolished to make it smoother. There are two differences between our application and the previous one to the accelerator components for J-Parc. The first one is the lining thickness; our target of 120um is much thinner. The second one is that we have no mechanical polishing on the electroplated surface before electropolishing. In this paper, results of the quantitative estimations of the quality factor on the electroplated pillbox test cavity are reported together with microscale investigations of the copper surfaces.  
TPPT008 New Design of Crab Cavity for SuperKEKB 1129
  • K. Akai, Y. Morita
    KEK, Ibaraki
  Crab-crossing scheme has been adopted as a baseline design for SuperKEKB, which is planned as an upgrade of KEKB. For the design of crab cavities for SuperKEKB, a very high beam current of 10A with a short bunch length of 3mm must be taken into account. Much heavier damping of any parasitic mode as well as smaller loss factor are required, compared with those of KEKB crab cavities. We propose new design of crab cavities for SuperKEKB. It has a high kick voltage, sufficiently low coupling impedance to any parasitic modes including the fundamental mode, and a considerably low loss factor. The new crab cavity meets the requirements for SuperKEKB.  
TPPT009 High Gradient Study at KEK on X-Band Accelerator Structure for Linear Collider 1162
  • T. Higo, M. Akemoto, A. Enomoto, S. Fukuda, H. Hayano, N.K. Kudo, S.M. Matsumoto, T. Saeki, N. Terunuma, N. Toge, K.W. Watanabe
    KEK, Ibaraki
  • T.S. Suehara
    University of Tokyo, Tokyo
  We have fabricated accelerator structures for linear collider of the warm X-band design. These were composed of high-precision-machined parts for reliable wake-field suppression and possible cheap mass production. The structure design is mostly based on GLC/NLC design in collaboration with SLAC but the fabrication and the high-power test are being performed at KEK to conclude the feasibility, though the application to the present linear collider project was terminated. In this paper are presented the high gradient performance of these structures, such as the initial conditioning characteristics, the stability under high-field operation and various characteristics at high-gradient operation. We conclude that the stability requirement for the linear collider of the warm X-band design is barely satisfied but the preservation of the stability over very long period of more than several years is to be further studied.  
TPPT010 HOM Damping of ARES Cavity System for SuperKEKB 1186
  • T. Kageyama, T. Abe, H. Sakai, Y. Takeuchi
    KEK, Ibaraki
  The ARES cavity scheme is a decisive edge for KEKB to stably accelerate high-current electron and positron beams. The RF structure is a coupled-cavity system where a HOM-damped accelerating cavity is coupled with a large cylindrical energy storage cavity via a coupling cavity between. The HOM-damped structure is designed to be smoothly embedded into the whole coupled-cavity scheme without any structural or electromagnetic incompatibility. Currently, the total HOM power dissipated in the RF absorbers per cavity is about 5 kW according to calorimetric measurements in the KEKB LER with a beam current of 1.6 A. On the other hand, for SuperKEKB aiming at luminosity frontiers over 1035 cm-2 s-1, the total HOM power per cavity is estimated about 100 kW for the LER with the design beam current of 9.4 A. In this article, a new HOM-damped structure of the ARES cavity system designed for the SuperKEKB LER is reported together with the recent activities and future plans for upgrading the HOM absorbers.  
TPPT011 R&D Status of C-Band Accelerating Section for SuperKEKB 1233
  • T. Kamitani, N. Delerue, M. Ikeda, K. Kakihara, S. Ohsawa, T. Oogoe, T. Sugimura, T. T. Takatomi, S. Yamaguchi, K. Yokoyama
    KEK, Ibaraki
  • Y. Hozumi
    GUAS/AS, Ibaraki
  For future energy upgrade of the KEKB injector linac, C-band accelerating section has been developed. First prototype 1-m long section has been installed in the linac and has achieved the accelerating field gradient of 42 MV/m. Developments of second prototype which has thicker coupler iris and third prototype which has smooth surface of the iris are in progress for less frequent breakdown. This paper reports on the recent R and D status of these C-band accelerating sections.  
TPPT012 High Power Testing of Input Couplers for SuperKEKB 1294
  • H. Sakai, T. Abe, T. Kageyama, Y. Takeuchi
    KEK, Ibaraki
  In KEKB, 32 ARES cavities have been successfully operated to stably accelerate high-current electron and positron beams. Currently, each ARES cavity is fed with RF power (frequency = 509 MHz) of about 300 kW through an input coupler, which has a ceramic disk window at the coaxial line section following the doorknob transformer section with a capacitive iris at the rectangular waveguide entrance. For SuperKEKB, which is a challenging project to boost the luminosity frontier beyond 1035 cm-2 s-1, the power capability of the input coupler needs to be upgraded to more than 900 kW, while the design power capability for KEKB is 400 kW. Recently, we have constructed a new test stand in order to simulate the actual operating condition for the input coupler to drive the ARES cavity with the maximum beam loading of 9.4 A expected for the SuperKEKB LER. In this article, the key features of the new test stand are described together with the recent results of high-power tests.  
TPPT013 Effect of HOM Couplers on the Accelerating Mode in the Damped Cavity at the Photon Factory Storage Ring 1339
  • T. Takahashi, M. Izawa, S. Sakanaka, K. Umemori
    KEK, Ibaraki
  • T. Koseki
    RIKEN/RARF/CC, Saitama
  Four damped cavities have been working very stably in the Photon Factory storage ring since 1997. The damped cavity has several trapped higher order modes (HOMs) with high Q values. Each frequency of these HOMs is detuned so as not to induce coupled-bunch instabilities. However, the frequency detuning method becomes less effective for a ring with a lower revolution frequency. Therefore, we have developed a HOM coupler that can reduce Q values of these trapped HOMs. The HOM coupler is a rod antenna type and located in the cylindrical wall of the cavity. Two or Three HOM couplers will be used for the cavity. The affect of these HOM couplers on the accelerating mode is investigated using MAFIA and the result is presented in this paper.  
TPPT014 Induction System for a Proton Bunch Acceleration in Synchrotron 1398
  • K. Torikai, Y.A. Arakida, J. Kishiro, T. Kono, E. Nakamura, Y. Shimosaki, K. Takayama, T. Toyama, M. Wake
    KEK, Ibaraki
  Funding: The project is officially supported by Grant-In-Aid for Creative Scientific Research (KAKENHI 15GS0217, 5 years term).

An induction cavity capable of operating at a repetition rate of 1MHz with a 50% duty has been built and employed for the first induction acceleration of a proton bunch from 500MeV to 8GeV in the KEK-PS.* In this experiment, an acceleration voltage of 4.7kV and an repetition frequency of 667kHz-882kHz were required. The installed induction device consists of three induction cells, each of which can generate a bipolar induction voltage of a maximum output voltage of 2 kV with a flat-top of 300ns and a 25ns rising/falling time. Electrical characteristics of the cavity itself, such as inductance, capacitance, and resistance, have been evaluated in three independent ways: (1) excitation due to a small signal from a network analyzer, (2) excitation by a proton beam as a primary driver, (3) excitation with a actual pulse modulator in an entire system. This paper will compare these results as well as theoretical design values. A general design procedure for an induction acceleration cavity will be given.

*K.Takayama et al., submitted to Phys. Rev. Lett.

TPPT015 Coupler Matching Techniques for C-Band Accelerating Section 1431
  • K. Yokoyama, M. Ikeda, K. Kakihara, T. Kamitani, S. Ohsawa, T. Sugimura, T. T. Takatomi
    KEK, Ibaraki
  Research and development of the c-band accelerating section has proceeded since 2002. This paper reports the development of the second prototype accelerating section. The coupler iris with a 4 mm thick is thicker than the first prototype because of preventing the rf breakdown at the iris edge. The coupler has a single port and the coupler cell is the same length as the waveguide(WR-187). The coupler cavity diameter and the coupling iris were optimized by using the iteration of the rf measurement which is the nordal shift method.  
TPPT016 Development of Co-Based Amorphous Core for Untuned Broadband RF Cavity 1511
  • T. Misu, M. Kanazawa, A. Sugiura, S. Yamada
    NIRS, Chiba-shi
  • K. Katsuki, K. S. Sato
    Toshiba, Yokohama
  We have developed a co-based amorphous core as a new magnetic-alloy (MA) core for the loaded RF cavity. Because of its permeability found to be approximately twice as high as that of FINEMET, this MA core is an excellent candidate for constructing a compact broadband RF cavity with less power consumption. In this report, we present our recent studies of the co-based amorphous core’s physical properties, performance, and development.  
TPPT017 Fabrication and Test of the Drift Tubes for PEFP 20 MeV DTL 1552
  • Y.-H. Kim, Y.-S. Cho, H.-J. Kwon, M.-Y. Park
    KAERI, Daejon
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

Drift tubes of PEFP (Proton Engineering Frontier Project) 20MeV DTL contain electro-quadrupole magnet composed of commercial enamel wire cooled with water coolant. Those were fabricated through the process of brazing, assembling, electron-beam welding, and post-machining. During the e-beam welding, temperature increase was kept under 50 degree to protect the EQM wire from thermal damage. We performed several tests such as vacuum leak test, hydraulic test, and electrical test. EQM properties such as effective length, magnetic saturation, and offset between magnetic center and geometric center of DT were measured and recorded also.

TPPT018 Tuning of 20MeV PEFP DTL 1598
  • M.-Y. Park, Y.-S. Cho, H.-S. Kim, H.-J. Kwon, K.T. Seol, Y.G. Song
    KAERI, Daejon
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

The PEFP (Proton Engineering Frontier Project) 20 MeV DTL have been constructing in KAERI site. The tuning goals for PEFP DTL are achieving the tank frequency as ± 5 kHz of designed resonant frequency and 1% of field profile through a tank. To tune the tank frequency 8 low power slug tuners per tank are fabricated and the tuning range is ±125 kHz per a tuner. Post couplers with tap to stabilize the field against the perturbation also are fabricated and will be installed every 3rd (1st tank) and 2nd (2,3,4th tank) drift tubes. We set up the bead perturbation measurement equipment as measuring the phase shift of a tank using network analyzer and LabView program. We are finalizing the tuning procedures and also the data calculation program. In this presentation we will show the overall features of the PEFP DTL tuning and discuss the measurement results.

TPPT019 Numerical Study of Coupling Slot Effects on Beam Dynamics in Industrial Accelerator Prototype 1622
  • V.V. Tarnetsky, V. Auslender, I. Makarov, M.A. Tiunov
    BINP SB RAS, Novosibirsk
  Funding: The work is supported by ISTC grant #2550.

At Budker INP, the work is in progress on development of high-efficiency, high-power electron accelerator named ILU-12. The accelerator has a modular structure and consists of a chain of accelerating cavities connected by on-axis coupling cavities with coupling slots in the common walls (the coupling constant is about 0.08). Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The paper presents results of 3D electromagnetic field numerical simulations for ILU-12 accelerating structure with recovery of quadrupole filed disturbance because of large coupling holes. The results show that accelerating cell geometry chosen eliminates coupling slot influence on the beam dynamics.

TPPT020 30 GHz Power Production in CTF3 1695
  • W. Wuensch, C. Achard, H.-H. Braun, G. Carron, R. Corsini, A. Grudiev, S.T. Heikkinen, D. Schulte, J.P.H. Sladen, I. Syratchev, F. Tecker, I. Wilson
    CERN, Geneva
  One of the major objectives of CTF3 (CLIC Test Facility) is the production of 30 GHz power for the high-gradient testing of CLIC accelerating structures. To this end a dedicated beam line, power generating structure and power transfer line have been designed, installed and commissioned. 52 MW of 30 GHz power with a pulse length of 74 ns and a repetition rate of 16 Hz were delivered to the high-gradient test area. This will allow operation of test accelerating structures in the coming run of CTF3 up to the nominal CLIC accelerating gradient of 150 MV/m and beyond the nominal pulse length. The system is described and the performances of the CTF3 linac, beam line and the rf components are reviewed.  
TPPT021 Characterization and Tuning of a Microwave Gun Cavity 1748
  • W.K. Lau, J. Chan, L.-H. Chang, C.W. Chen, H.Y. Chen, K.-T. Hsu, S.Y. Hsu, J.-Y. Hwang, Y.C. Wang, T.-T. Yang
    NSRRC, Hsinchu
  The SSRL rf gun cavity is electromagnetic structure with a half-cell at the cathode end and a full cell at the other end. Instead of coupling through beam pipe to produce the desired pi-mode for beam acceleration, these two cells are coupled through a frequency tunable side-coupled cell. Therefore, the strucuture is actually 3-cell cavity and the pi/2-mode will be used. This paper reports the characterization of these resonant modes at various side-coupled cell tuning conditions. And the behavior of this cavity will also be analytically examined.  
TPPT022 The Structure of the High Frequency Focusing Cells in Linear Ion Accelerators 1796
  • V.A. Bomko, O.F. Dyachenko, A.P. Kobets, E.D. Marynina, Z.O. Ptukhina, S.S. Tishkin, B.V. Zajtsev
    NSC/KIPT, Kharkov
  The versions of the high frequency quadrupole doublets (RFQD) for proton and heavy ion linear accelerators are discussed. Advantages of focusing of this type over magnetic quadrupoles lie in the simplicity of the structure and high efficiency and reliability of focusing. In the multi-gap structures, focusing periods contain a sequence of focusing and accelerating cells. The elaborated technique of the local cell adjustment provides the high acceleration rate. Various RFQD versions for the specific peculiarities of accelerating structures are discussed. Application of the RF-quadrupole doublets in the spoke cavity, CCDTL and Crossbar structures will allow the application of superconductive cavities for proton acceleration in the range of intermediate energies of 5-100 MeV. In the interdigital H-structures, the application of RFQDs will allow to increase the efficiency of ion beam focusing and to expand the energy range of the ions being accelerated over 10 MeV/u.  
TPPT025 Breakdown in RF Cavities 1886
  • J. Norem, A. Hassanein, Z. Insepov, I. Konkashbaev
    ANL, Argonne, Illinois
  Funding: DOE

We present a simple model of breakdown in rf cavities. For most events this involves tensile stress and tensile strength, however other effects can also contribute. We discuss the effects of different materials, fatigue, high pressure gas, primary and secondary emission sites, local field enhancements, dark currents, secondary emission, work functions, magnetic fields, macro and microscopic fracture mechanisms high current densities, surface and subsurface defects, and astronomical power densities. While primarily devoted to normal conductors, this work also has consequences for superconducting rf surfaces.

TPPT027 53 MHz Beam Loading Compensation for Slip Stacking in the Fermilab Main Injector 1958
  • J.E. Dey, I. Kourbanis
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U.S. Department of Energy under contract DE-AC02-76CH03000.

Recently In-Phase and Quadrature (I&Q) was added to both the 53 MHz Feedback and Feedforward Beam Loading Compensation for Slip Stacking in the Fermilab Main Injector. With 53 MHz Feedback, we can now turn the 18 Radio Frequency (RF) Stations off down to below 100 V. In using I&Q on Feedforward, beam loading compensation to the beam on both the upper and lower frequencies of Slip Stacking can be applied as we slip the beam. I&Q theory will be discussed.

TPPT028 Design of a New Main Injector Cavity for the Fermilab Proton Driver Era 2015
  • V. Wu, A.Z. Chen, Z. Qian, D. Wildman
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U.S. Department of Energy under contract DE-AC02-76CH03000.

In the design report of the Fermilab Proton Driver [1],* the Main Injector (MI) needs to be upgraded to a 2 MW machine. For the Main Injector radiofrequency (rf) upgrade, R&D efforts are launched to design and build a new rf system. This paper presents the new cavity design study for the rf system. The cavity is simulated with the design code Mafia [2].**

**Proton Driver Study II, FERMILAB-TM-2169, May 2002, edited by G.W. Foster, W. Chou and E. Malamud. **Computer Simulation Technology, MAFIA 4, December 1996.

TPPT029 Fabrication of the Prototype 201.25 MHz Cavity for a Muon Ionization Cooling Experiment 2080
  • R.A. Rimmer, S. Manning, R. Manus, H.L. Phillips, M. Stirbet, K. Worland, G. Wu
    Jefferson Lab, Newport News, Virginia
  • R.A. Hafley, R.E. Martin, K.M. Taminger
    NASA Langley, Hampton, Virginia
  • D. Li, R.A. MacGill, J.W.  Staples, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • M. Reep, D.J. Summers
    UMiss, University, Mississippi
  Funding: This manuscript has been authored by SURA, Inc. under DoE Contract No. DE-AC05-84ER-40150, LBNL contract No. DE-AC03-76SF00098 and NASA contract IA1-533 subagreement #2

We describe the fabrication and assembly of the first prototype 201.25 MHz copper cavity for the muon ionization cooling experiment (MICE). This cavity was developed by the US MUCOOL collaboration and will be tested in the new Muon Test Area at Fermilab. We outline the component and subassembly fabrication steps and the various metal forming and joining methods used to produce the final cavity shape. These include spinning, brazing, TIG welding, electron beam welding, electron beam annealing and deep drawing. Assembly of the loop power coupler will also be described. Final acceptance test results are included. Some of the methods developed for this cavity are novel and offer significant cost savings compared to conventional construction methods.

TPPT030 RF, Thermal and Structural Analysis of the 201.25 MHz Muon Ionization Cooling Cavity 2119
  • S.P. Virostek, D. Li
    LBNL, Berkeley, California
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC03-76SF00098.

A finite element analysis has been carried out to characterize the RF, thermal and structural behavior of the prototype 201.25 MHz cavity for a muon ionization cooling channel. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. The high-gradient closed-cell cavity is being designed and fabricated for the MUCOOL and MICE (international Muon Ionization Cooling Experiment) experiments. The 1200 mm diameter cavity is constructed of 6 mm thick copper sheet and incorporates a rounded pillbox-like profile with an open beam iris terminated by 420 mm diameter, 0.38 mm thick curved beryllium foils. Tuning is accomplished through elastic deformation of the cavity, and cooling is provided by external water passages. Details of the analysis methodology will be presented including a description of the ANSYS macro that computes the heat loads from the RF solution and applies them directly to the thermal model. The process and results of a calculation to determine the resulting frequency shift due to thermal and structural distortion of the cavity will be presented as well.

TPPT031 Coupler Design for the LCLS Injector S-Band Structures 2176
  • Z. Li, L.D. Bentson, J. Chan, D. Dowell, C. Limborg-Deprey, J.F. Schmerge, D.C. Schultz, L. Xiao
    SLAC, Menlo Park, California
  Funding: Work supported by the U.S. DOE Contract No. DE-AC03-76SF00515.

The LCLS injector is required to provide a 1-nC, 10-ps bunch with a normalized rms transverse projected emittance of less than 1.0-μm. The LCLS beam is generated and accelerated in a 1.6-cell S-band RF gun to 6-MeV followed by two SLAC 3-m S-band accelerator structures to further accelerate the beam to 135 MeV to move it out of the space-charge dominated regime. In the SLAC S-band structures, the RF power feed is through a single coupling-hole (single-feed coupler) which results in a field asymmetry. The time dependent multipole fields in the coupler induce a transverse kick along the bunch and cause the emittance to increase above the LCLS specification. To meet the stringent emittance requirements for the injector, the single-feed couplers will be replaced by a dual-feed racetrack design to minimize the multipole field effects. We will present detailed studies of the multipole fields in the S-band coupler and the improvements with the dual-feed racktrack design using the parallel finite element eigenmode solver Omega3P.

TPPT032 Modifications on RF Components in the LCLS Injector 2233
  • C. Limborg-Deprey, D. Dowell, Z. Li, J.F. Schmerge, L. Xiao
    SLAC, Menlo Park, California
  Funding: This work was supported by U.S. Department of Energy, contract No. DE-AC03-76SF00515A06.

Design of the first generation LCLS injector has now been completed. Components are currently under fabrication and their installation is planned for 2006. We discuss the last modifications made on both the 1.6 cell S-Band RF gun and the SLAC S-Band accelerating structures to minimize the beam emittance. We present results from PARMELA computations which justify those modifications, in particular the suppression of the time dependent dipole and quadrupole kicks. Geometry changes to increase the mode separation between the 0 and PI modes are also presented. For the initial geometry with a mode separation of 3.5MHz, the emittance can increase if the appropriate injection time along the klystron pulse is not chosen. For a mode separation of 15MHz, this problem is minimized and the beam dynamics are improved leading to a substantial reduction of total projected emittance.

TPPT033 Simulations Using the VORPAL Code of Electron Impact Ionization Effects in Waveguide Breakdown Processes 2298
  • P. Stoltz, J.R. Cary, P. Messmer, C. Nieter
    Tech-X, Boulder, Colorado
  Funding: Supported by Department of Energy SBIR Grant No. DE-FG03-02ER83554.

We present results of three-dimensional simulations using the VORPAL code of power absorbtion by stray electrons in X-band waveguides. These simulations include field emission from the waveguide surfaces, impact ionization of background gas, and secondary emission from the walls. We discuss the algorithms used for each of these electron effects. We show the power abosrbed as a function of background gas density. Finally, we present scaling results for running these simulations on Linux Clusters.

TPPT035 High-Power RF Testing of a 352-MHz Fast-Ferrite RF Cavity Tuner at the Advanced Photon Source 2407
  • D. Horan, E.E. Cherbak
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. W-31-109-ENG-38.

A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8” EIA coaxial line system with directional couplers, and an adjustable 360° mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

TPPT036 Higher-Order-Mode Damper Testing and Installation in the Advanced Photon Source 352-MHz Single-Cell RF Cavities 2443
  • G.J. Waldschmidt, N.P. Di Monte, D. Horan, L.H. Morrison, G. Pile
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Higher-order-mode dampers were recently installed in the storage ring rf cavities at the Advanced Photon Source to eliminate longitudinal coupled-bunch instability. It was discovered that the 540-MHz cavity dipole mode created beam instability at beam currents in excess of 85 mA causing horizontal emittance blowup. Methods of compensating for the instability by detuning the cavities and adjusting the cavity water temperature were becoming more difficult at higher beam currents as tests were performed to prepare for eventual 300-mA beam current operation. Electric field passive dampers located on the median plane of each cavity were determined to be the most promising solution. Simulation models were created and verified with low-power testing of the dampers. High-power testing of the dampers as well as conditioning of the damper ceramic load were also performed at the APS 352-MHz rf test stand and compared with simulation results. Preliminary test results will be discussed.

TPPT037 A Coaxial Subharmonic Cavity Design for Direct Injection at the Advanced Photon Source 2497
  • G.J. Waldschmidt, A. Nassiri
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Coaxial subharmonic cavity designs are being investigated at the Advanced Photon Source to improve injector reliability by injecting beam directly from the linac to the booster in storage ring top-up mode. The subharmonic system must operate jointly with the present 352-MHz booster to accelerate the beam to 7 GeV with minimal beam degradation. Design considerations must be made to ensure that bunch purity is maintained and that a large percentage of the linac macropulse is captured. An analysis of rf cavity designs using electromagnetic simulation software has been conducted at 58 MHz and 117 MHz. The final design evaluates the total power loss, field uniformity, and peak surface fields to achieve the required gap voltage.

TPPT038 Development of C-Band Accelerator Structure with Smooth Shape Couplers 2530
  • T. Sugimura, M. Ikeda, K. Kakihara, T. Kamitani, S. Ohsawa, T. T. Takatomi, K. Yokoyama
    KEK, Ibaraki
  The first C-band accelerator structure for the SuperKEKB injector linac has been operated in the beam line of e+/e- injector linac for KEKB/PF/PF-AR since September, 2003. A new accelerator structure will locate upstream of the first structure. The upstream structure is exposed to higher RF field than that of downstream structure. For the case of first structure, most of an RF breakdown occurs in an input coupler. In order to reduce a frequency of the breakdown, improvement of a coupler is required. In order to suppress a thermionic emission around the coupler iris, thick and smooth iris is adopted for the upstream structure. The development status of this type of upstream structure is described.  
TPPT039 Installation and Testing for Commissioning of Normal Conducting RF Linac Segment in the SNS 2571
  • Y.W. Kang, A.V. Aleksandrov, D.E. Anderson, M.M. Champion, M. Champion, M.T. Crofford, C. Deibele, G.W. Dodson, R.E. Fuja, P.E. Gibson, P.A. Gurd, T.W. Hardek, G.A. Johnson, P. Ladd, H. Ma, M.P. McCarthy, M.F. Piller, J.Y. Tang, A.V. Vassioutchenko, D.C. Williams
    ORNL, Oak Ridge, Tennessee
  • J.A. Billen, J.T. Bradley, D. Rees, W. Roybal, J. Stovall, K.A. Young, L.M. Young
    LANL, Los Alamos, New Mexico
  The Spallation Neutron Source (SNS) linac employs both normal conducting and superconducting linac cavities that will inject a 1.0 GeV proton beam into its accumulator ring. The normal conducting segment of this linac accelerates the beam to 185 MeV and employs one RFQ and six DTL cavities powered by seven 2.5 MW, 402.5 MHz klystrons and four CCL modules powered by four 5.0 MW, 805 MHz klystrons. Installation and RF conditioning of the RF equipment for normal conducting linac segment have been completed at ORNL with the support of LANL experts. After conditioning the accelerating structures, the linac has been successfully commissioned with beam. This paper reviews the experience in installation, RF conditioning, and commissioning of the normal conducting linac accelerating structures and RF subsystems. Checkout and operation of the RF systems and structures including conditioning procedure establishment and test results compared to the RF design specifications will be discussed.

SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

TPPT040 X-Band Dipole Mode Deflecting Cavity for the UCLA Neptune Beamline 2627
  • R.J. England, B. O'Shea, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  Funding: This work was funded by the Department of Energy under Grant No. DE-FG03-92ER40693.

We report progress on the design and construction of a nine-cell dipole (TM 110 mode) cavity for use as a temporal diagnostic of the 14 MeV 300 pC electron bunches generated at the UCLA Neptune Laboratory linear accelerator, with an anticipated temporal resolution of 150 fs at a peak input power of 50 kW. The cavity is a center-fed standing-wave pi-mode structure, operating at 9.6 GHz, and incorporating a knife-edge and gasket assembly which minimizes the need for brazing or welding. Results of initial RF tests are discussed and compared with simulation results obtained using the commercial code HFSS.

TPPT041 RF Tuning and Fabrication Status of the First Module for J-PARC ACS 2684
  • H. Ao, T. Morishita, A. Ueno
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa
    JAERI, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  J-PARC Linac starts with 180-MeV SDTL temporary, and it is upgraded to 400-MeV with 21 ACS (Annular Coupled Structure) modules and two ACS bunchers and two debunchers. First buncher module is under fabrication, and second buncher and a few accelerating modules are also planed until FY2006. The first ACS module consists of two 5-cells ACS tanks and a 5-cells bridge cavity for the buncher module. Three RF tuners are installed to the bridge cavity for fine RF tuning. An operating frequency should be tuned to 972 MHz within the fine-tuning range before a brazing process in a factory. The tuning procedure has been studied with RF simulation analysis and cold-model measurements for ACS and bridge cells. This paper describes RF tuning results, fabrication status and related development items.  
TPPT042 The Simulation Calculations and Dielectric Characteristics Investigation of an X-Band Hybrid Dielectric-Iris-Loaded Traveling Accelerating Structure 2720
  • C.-F. Wu, S. Dong, S. Hongbing, D. Jia, H. Lin, L. Wang
    USTC/NSRL, Hefei, Anhui
  Funding: This work is supported by the National Natural Science Foundation of China(No.10375060,10205014)and the Project of Knowledge Innovation Program of the Chinese Academy of Sciences.

Mafia code has been used to calculate the RF properties versus the geometric parameters and dielectric permittivity for the X-band (f=9.37GHz) hybrid dielectric-iris-loaded traveling accelerating structure. The simulation results show that when the range of the permittivity is about 5-9, the new structure may have lower ratio (about 1) of peak surface electric field at the iris to axial accelerating electric field by optimizing the geometric parameters, while r, Q, r/Q of the new structure being comparable to iris-loaded accelerating structure. The experimental investigations of the permittivity of the ceramics have been made at the X-band by using the cavity perturbation technique. The measured results are in good agreement with the simulation results of Microwave Studio. Furthermore, the stability of the ceramics is examined. A number of experimental results show that the certain ceramic with permittivity of 5.78 is applied to the design of the new accelerating structure.

TPPT043 The Studies of Hybrid Dielectric-Iris-Loaded Accelerating Structure 2747
  • C.-F. Wu, S. Dong, H. Lin
    USTC/NSRL, Hefei, Anhui
  Funding: This work is supported by the National Natural Science Foundation of China(No.10375060,10205014) and the Project of Knowledge Innovation Program of the Chinese Academy of Sciences.

The dispersion property and the propagation characteristics of the accelerating mode (TM01 mode) and higher-order-modes about a new hybrid dielectric-iris-loaded accelerating structure have been analysed and discussed by the field matching method. Mafia code has been used to calculate the RF properties versus the geometric parameters and dielectric permittivity for the X-band (f=9.37GHz) hybrid dielectric-iris-loaded traveling accelerating structure. Some model cavities have been developed, and experimental investigations have been carried on. The above results will provided some beneficial datum for the design and manufacture of X-band hybrid dielectric-iris-loaded traveling-wave accelerating structure.

TPPT044 Beam Position Monitoring Using the HOM-Signals from a Damped and Detuned Accelerating Structure 2804
  • S. Doebert, C. Adolphsen, R.M. Jones, J.R. Lewandowski, Z. Li, M.T.F. Pivi, J.W. Wang
    SLAC, Menlo Park, California
  • T. Higo
    KEK, Ibaraki
  Funding: Work Supported by DOE Contract DE-AC02-76F00515.

The Next Linear Collider (NLC) and Global Linear Collider (GLC) designs require precision beam-to-accelerator-structure alignment to reduce the effect of short range wakefields. For this purpose, the HOM signals from the structure dipole mode damping ports would be used to determine the beam position in the structure, and then the structures would be moved remotely to center them about the beam (a 5 micron rms alignment is required). In 2000, a test of a 1.8 m prototype structure in the ASSET facility at SLAC achieved 11 micron rms centering accuracy, which was limited by systematic effects caused by beam jitter. This year, such measurements were repeated for a pair of shorter structures (60 cm) that were developed to improve high gradient performance. In addition, the beam position resolution was determined by measuring simultaneously three signal frequencies (14.3, 15, 15.7 GHz) corresponding to modes localized at the beginning, the middle and the end of the structures. In this paper, we present results from the beam centering and position resolution measurements.

TPPT049 Design and Cold Model Test of 500MHz Damped Cavity for ASP Storage Ring RF System 3076
  • J. Watanabe, K. Nakayama, K. S. Sato, H. Suzuki
    Toshiba, Yokohama
  • M. Izawa
    KEK, Ibaraki
  • A. Jackson, G. LeBlanc, K. Zingre
    ASP, Clayton, Victoria
  • T. Koseki
    RIKEN/RARF/CC, Saitama
  • N. Nakamura, H. Sakai, H. Takaki
    ISSP/SRL, Chiba
  TOSHIBA is constructing the storage ring RF system for the Australian Synchrotron Project(ASP). Two pairs of the 500MHz Higher Order Mode(HOM) damped cavities will be applied for this system. The cavities are modified KEK-PF type with silicon-carbide(SiC) microwave absorber and added three HOM anttenas for damping the longitudinal HOM impedance less than 20kOhm/GHz to meet requirement of ASP specification. The shunt impedance has been improved more than 5% in comparison with the original design by reducing the beam bore diameter without degrading HOM damping capability. The design of the cavity and the test results of an Al cold model are described.  
TPPT050 Rod-Loaded and PBG Multi-Beam Klystron Cavities 3094
  • A. Smirnov, D. Yu
    DULY Research Inc., Rancho Palos Verdes, California
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-03ER83845.

Performance of PBG-like structures was studied for multi-defect and single-defect metal cavities. Conceptual designs of a 6-beam, X-band, multi-beam klystron (MBK) demonstrate feasibility of high power generation with efficiency ~63% in a compact structure. Sheet-beam and annular-beam rod-loaded configurations were also investigated.

TPPT051 High Power Coupler for the TESLA Superstructure Cavities 3141
  • Q.S. Shu, G. Cheng, J. T. Susta
    AMAC, Newport News, Virginia
  • S.J. Einarson
    CPI/BMD, Beverley, Massachusetts
  • T. Garvey
    LAL, Orsay
  • W.-D. Müller, D. Proch
    DESY, Hamburg
  • T.A. Treado
    CPI, Beverley, Massachusetts
  Funding: U.S. Department of Energy Grant No. DE-FG02-00ER86102.

More and more accelerators are built with superconducting cavities operating at cryogenic temperatures, and the probability of a ceramic window failure presents increasing problems because of the resulting contamination of the cavities surfaces and the resulting accelerating electric field degradation. A cost effective design and fabrication method for the TESLA cavities has been developed in the framework of a DOE STTR grant. This new design replaces the present TESLA cylindrical ceramic windows with two planar disc windows separated by a vacuum space and is optimized for RF input power, vacuum characteristics, and thermal properties. This novel coupler will reduce the costs of fabrication and improve the RF performance of the coupler, the vacuum between the two windows, and the cleaning procedure. Two couplers with this design have been fabricated and are presently being conditioned for testing at DESY, Germany, and LAL, France, on the RF high power testing stand and on a test cryomodule.

TPPT052 Cryogenic, Magnetic and RF Performance of the ISAC-II Medium Beta Cryomodule at TRIUMF 3191
  • R.E. Laxdal, K. Fong, A.K. Mitra, T.C. Ries, I. Sekachev, G. Stanford, V. Zviagintsev
    TRIUMF, Vancouver
  The medium beta section of the ISAC-II Heavy Ion Accelerator consists of five cryomodules each containing four quarter wave resonators and one superconducting solenoid. The first cryomodule has been designed, assembled and cold tested at TRIUMF. The cryomodule vacuum space shares the cavity vacuum and contains a mu-metal shield, an LN2 cooled, copper thermal shield, plus the cold mass and support system. The bulk niobium cavities are fitted with an LN2 cooled coupling loop fed in series from the side thermal shield and a tuner plate coupled to an out-of-vacuum linear servo motor. All cavities have been locked at the ISAC-II frequency and gradient for extended periods. This paper will report the cryogenic and rf test results from the three cold tests. Of note are measurements of the magnetic field in the cryomodule and estimations of changes in the magnetic field during the test due to trapped flux in the solenoid and magnetization of the environment.  
TPPT053 Low-Beta SC Quarter-Wave Resonator and Cryomodule for SPIRAL 2 3238
  • S. Chel, P.-E. Bernaudin, P. Bosland, G. Devanz, P. Hardy, F. Michel, A. Mosnier
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  In the framework of the SPIRAL 2 project to be built in GANIL, we studied a complete cryomodule for the low beta (0.07) superconducting linac. The 88 MHz quarter wave resonators were optimised for RF, mechanical and thermal considerations. A prototype resonator, which differs from the final resonator by the Helium tank and the removable end-plate geometry and material, has been built. We present the equipments developped for the preparation of this prototype as well as the results of the RF tests. We also detail the mechanical calculation and measurements of the tuning system, and the main aspects of the cryomodule designed to save longitudinal space.  
TPPT054 CW Operation of the TTF-III Input Coupler 3292
  • J. Knobloch, W. Anders, M. Martin
    BESSY GmbH, Berlin
  • S. Bauer, M. Pekeler
    ACCEL, Bergisch Gladbach
  • S.A. Belomestnykh
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • A. Buechner, H. Buettig, F.G. Gabriel
    FZR, Dresden
  • D. Kostin, W.-D. Müller
    DESY, Hamburg
  Many newly proposed light sources, operating in the CW regime, are based on superconducting TESLA technology. Since this was originally developed for pulsed, 1-% duty-factor operation, it is important to determine the limitations of the TESLA cryomodule and its components when operated CW. Among the critical components is the RF input coupler. Two tests have been performed to determine the average power limit of the TTF-III system. First, room temperature tests up to 4 kW were performed at the Forschungszentrum Rossendorf. These permitted the calibration of computer codes developed to calculate the temperature distribution in the coupler. The programs then were used to make predictions for the (normal) cold operation of the coupler. At BESSY, the coupler test stand was assembled inside the HoBiCaT horizontal cryostat test facility to operate the coupler in an environment close to that of a real accelerator. The results of the two tests are presented here.  
TPPT055 Electro-Polishing Surface Preparation for High Gradient Cavities at DESY 3304
  • A. Matheisen, h. Morales Zimmermann, B. Petersen, ms. Schmoekel, N. Steinhau-Kuehl
    DESY, Hamburg
  Improvement of acceleration gradients in super conducting accelerator structures was reached by applying electro polishing of the niobium surfaces. This technology is actually foreseen to serve as major surface preparation step for projects like the XFEL at DESY and the proposed ILC linear accelerator. At DESY an electro polishing apparatus was build up in 2003. After commissioning the apparatus operates regular for cavity surface treatment. We report on experiences with the electro-polishing set up, polishing parameters and results on the preparation of S.C. resonators for a high gradient module to be tested in the TTF2 accelerator at DESY.  
TPPT056 Design of a Low Loss SRF Cavity for the ILC 3342
  • J.S. Sekutowicz
    DESY, Hamburg
  • L. Ge, K. Ko, L. Lee, Z. Li, C.-K. Ng, G.L. Schussman, L. Xiao
    SLAC, Menlo Park, California
  • I.G. Gonin, T.K. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • Y. Morozumi, K. Saito
    KEK, Ibaraki
  An international team comprising DESY, KEK, JLAB, FNAL and SLAC is collaborating on the design, fabrication and test of a low loss, 1.3 GHz 9-cell SRF structure as a potential improvement for the ILC main linac. The advantages of this structure over the TTF structure include lower cryogenic loss, shorter rise time, and less stored energy. Among the issues to be addressed in this design are HOM damping, Lorentz force detuning and multipacting. We will report on HOM damping calculations using the parallel finite element eigenmode solver Omega3P and the progress made towards an optimized design. Studies on multipacting and estimates of the Lorentz force detuning will also be presented.  
TPPT057 Quality Control of the Electro Polishing Process at DESY 3369
  • N. Steinhau-Kuehl, A. Matheisen, B. Meyer, B. Petersen, ms. Schmoekel
    DESY, Hamburg
  Funding: Supported by the European Community Research activity Care under the FP 6 program(RII3-CT-2003-506395).

The technology of electro-polishing of super-conducting resonators made from Niobium is foreseen as basic surface preparation technology for the Xfel accelerator project at DESY. Here about 1000 resonators will be build and installed into the accelerator section. For an industrial application of this technique a quality control has to be developed and established.A method to control the acid quality and improve the life time of the acid is under development. We report on the test setup and measurements done on samples and the implementation of this quality control to the DESY electro polishing process.

TPPT058 First Tests of the Superconducting CH-Structure 3414
  • H. Podlech, H. Deitinghoff, H. Klein, H. Liebermann, U. Ratzinger, A.C. Sauer, R. Tiede
    IAP, Frankfurt-am-Main
  Funding: GSI, BMBF contr. No. 06F134I, EU contr. No. EFDA/99-507ERB5005, CT990061 and RII3-CT-2003-506395.

The Crossbar-H-type CH-structure is a new H-mode drift tube-structure operating in the H11-mode. Due to its mechanical rigidity room temperature as well as superconducting cavities can be realized. The superconducting CH-structure has been developed at the IAP in Frankfurt, Germany. To prove the promising results obtained by simulations a 19-cell, 352 MHz (beta=0.1) prototype cavity has been designed and built. This is the first superconducting low energy multi-cell cavity. We present the first cold tests of the cavity which have been performed in the cryogenic laboratory in Frankfurt.

TPPT059 Improvement of the Blade Tuner Design for Superconducting RF Cavities 3456
  • C. Pagani, A. Bosotti, P. Michelato, N. Panzeri, P. Pierini
    INFN/LASA, Segrate (MI)
  Funding: This work is partially supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

As of today, no complete technological solution exists for a cold tuning system fulfilling the requirements envisaged for the International Linear Collider, based on the superconducting RF technology. We present here the design improvements for the blade tuner, a coaxial device, which can provide both the slow structure tuning and the fast tuning capabilities needed for Lorentz Force Detuning (LFD) compensation and microphonics stabilitization (by means of the integration with a piezoelectric system). The system has been originally built by INFN and installed and tested at DESY on the superstructures, since it is located around the cavity helium vessel and does not require longitudinal clearance. Its design here is parametrically reviewed in terms of the requirements for higher accelerating fields and of the mechanical integration with a piezoelectric based system for the LFD and microphonics compensation.

TPPT060 Design of a Multi-Cell, HOM Damped Superconducting Cavity for the Strong RF Focusing Experiment at DAFNE 3505
  • A. Gallo, D. Alesini, C. Biscari, R. Boni, F. Marcellini, M. Zobov
    INFN/LNF, Frascati (Roma)
  • C. Pagani
    DESY, Hamburg
  A strong RF focusing experiment to be performed at the DAFNE Phi-factory has been proposed to create and observe a bunch length modulation along the ring. The very large RF gradient required to reach the strong focusing regime can only be obtained by using a multi-cell superconducting cavity. Moreover, in order to demonstrate the feasibility of a high luminosity collider based on this principle, a total multibunch current of the order of 1A has to be stored under stable conditions in this regime. A 1.3 GHz 7-cells cavity has been designed for this purpose, based on the TESLA geometry with small modifications of the basic cell to comply with the DAFNE revolution frequency. The number of cells has been changed from 9 to 7 to reduce the number of the cavity HOMs, while the beam tubes have been enlarged to let most of the HOMs propagate and be damped by room-temperature ferrite rings. The modes of the first longitudinal band, which include the accelerating TM010_pi, do not propagate in the beam tubes and have been studied with special care to prevent the overlap with the bunch revolution harmonics and to cure the effects of coupling to the synchrotron tune sidebands.  
TPPT061 Prototyping of a 352 MHz, beta=0.17 Superconducting Coaxial Half Wave Resonator 3547
  • A. Facco, F. Scarpa, D. Zenere
    INFN/LNL, Legnaro, Padova
  • V. Zviagintsev
    TRIUMF, Vancouver
  We have designed a 352 MHz superconducting coaxial half wave resonator with beta=0.17. The cavity has a mechanical design similar to the LNL beta=0.31 one developed in 2004. It is very compact (232 mm real-estate length) and it is equipped with a side tuner not exposed to liquid helium, to make it insensitive to pressure fluctuations. Operation is foreseen at 4.2 K. The beta=0.17 cavity fills the gap from 5 to ~25 MeV between the LNL proton RFQ, under construction, and and the existing beta=0.31 half wave resonator. This allows a 5100 MeV proton linac working at 352 MHz with 2 types of coaxial HWR cavities with large velocity acceptance, thus able to accelerate also other ion species (e.g. deuterons). A similar scheme was previously proposed for Spoke resonators; the aim of the HWR choice is compactness and cost reduction. The beta=0.17 cavity is presently under construction in the SPES R&D program at LNL; first test results are expected by the end of 2005.  
TPPT062 High Power Test of the Prototype Cryomodule for ADS Superconducting Linac 3579
  • E. Kako, S. Noguchi, N. Ohuchi, T. Shishido, K. Tsuchiya
    KEK, Ibaraki
  • N. Akaoka, H. Kobayashi, N. Ouchi
    JAERI/LINAC, Ibaraki-ken
  • E. Chishiro, T. Hori, M. Nakata, M. Yamazaki
    JAERI, Ibaraki-ken
  A prototype cryomodule containing two 9-cell superconducting cavities of beta=0.725 and fo=972MHz had been constructed under the collaboration of Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK) on the development of superconducting LINAC for Accelerator Driven System (ADS). Cool-down tests to 2.0K of the cryomodule and high power tests with a 972MHz pulsed klystron have been successfully carried out. Rf power of 350kW in a pulsed operation of 3msec and 25Hz was transferred to the nine-cell cavity through an input coupler. Accelerating gradients of about 14MV/m higher than the specification (10MV/m) were achieved in both cavities. Design and performance of the prototype cryomodule and the test results with high rf power will be reported.  
TPPT063 Higher-Order-Mode Damping of L-Band Superconducting Cavity using a Radial-Line HOM Damper 3606
  • K. Umemori, M. Izawa, K. Saito, S. Sakanaka
    KEK, Ibaraki
  For the energy recovery linacs, strong damping of higher-order-modes (HOMs) is indispensable to avoid beam breakup instabilities. We studied a new HOM damping scheme using a radial-line HOM damper with a choke structure. Both models of the radial-line damper and the TESLA-type 9-cell cavity were prepared and the HOM characteristics of this scheme were experimentally investigated. Measurement results showed a promising performance of the radial-line HOM damper.  
TPPT066 Successful Operation of the 500 MHz SRF Module at TLS 3706
  • C. Wang, L.-H. Chang, S.-S. Chang, C.-T. Chen, F.-T. Chung, F.-Z. Hsiao, G.-Y. Hsiung, K.-T. Hsu, C.-C. Kuo, H.C. Li, M.-C. Lin, R.J. Lin, Y.K. Lin, G.-H. Luo, M.H. Tsai, J.Y. Yang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu
  A superconducting radio frequency (SRF) cavity of CESR-III design was installed sucessfully in the electron storage ring at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The project goals are to double the photon flux by raising the electron beam current and to increase the beam stability by taking advantage of the well-damped high-order modes of SRF cavity. Nowadays, SRF cavity has become the key technology for new synchrotron light sources under construction or planning worldwide. The first operational experience of the SRF cavity at the NSRRC will be presented.  
TPPT067 High Power Coupler Studies for the ERLP 3736
  • J.H.P. Rogers, C.D. Beard, P.A. Corlett
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Funding: ASTeC, CCLRC Daresbury Laboratory.

Two Superconducting RF modules of the ELBE type have been ordered from Accel Instruments GmbH for use on the Energy Recovery Linac Prototype (ERLP) being built at Daresbury Laboratory. One structure is to be used as a booster module, with an energy gain of 8 MeV, and the other is to act as an energy recovery linac operating at electron beam energy of up to 35 MeV. High power couplers capable of handling up to 10 kW CW are required to provide successful operation of the ERLP. Once received from Accel four couplers including RF windows will be conditioned and tested at FZR Dresden; this paper describes the test procedure anticipated.

TPPT068 Optimized Shape of Cavity Cells for Apertures Smaller than in TESLA Geometry 3748
  • V.D. Shemelin
    Cornell University, Ithaca, New York
  The accelerating rate (Eacc) of TESLA cavities can be increased for the same iris aperture if 1) some increase of Epk/Eacc is permitted so that the value of Hpk/Eacc can be lowered in comparison with the original cells (Epk and Hpk are maximal surface electric and magnetic fields); 2) shape of the cells is described by two elliptic arcs; 3) the reentrant cells obtained as a result of consecutive optimization with this geometry are treated as a possible version of cells in spite of some complications for fabrication. Not only the value of Hpk/Eacc can be improved but also values of cell-to-cell coupling and the geometry constants R/Q and G grow with the transition to the reentrant shapes. And these are not all benefits of this shape. The increased coupling prompts that the aperture of the original cell is big enough to be decreased without loss of field flatness in comparison with the original design. This decrease will lead to further increase of the Eacc for the same Hpk also as to improvement of others important parameters. Here, results of calculations for the original and for smaller apertures are presented and proposals for a better choice of TESLA cavity cells are derived.

Cornell University

TPPT069 Design Considerations for the Mechanical Tuner of the RHIC Electron Cooler SRF Cavity 3786
  • J. Rank, I. Ben-Zvi, M. Blaskiewicz, H. Hahn, G.T. McIntyre
    BNL, Upton, Long Island, New York
  Funding: Work is supported by the DOD Joint Technology Office and by the U.S. Department of Energy.

The ECX Project, Brookhaven Lab's predecessor to the RHIC e-Cooler, includes a prototype RF tuner mechanism capable of both coarse and fine tuning of the superconducting RF cavity. This tuner is adapted originally from a DESY design concept but with a longer stroke and significantly higher loads due to our very stiff cavity shape. Structural design, kinematics, controls, thermal and RF issues are discussed and certain improvements are proposed.

TPPT070 Development of the Superconducting 3.9 GHz Accelerating Cavity at Fermilab 3825
  • N. Solyak, T.T. Arkan, P. Bauer, L. Bellantoni, C. Boffo, E. Borissov, H. Carter, H. Edwards, M. Foley, I.G. Gonin, T.K. Khabiboulline, S.C. Mishra, D.V. Mitchell, V. Poloubotko, A.M. Rowe, I. Terechkine
    Fermilab, Batavia, Illinois
  Funding: U.S. Department of Energy.

A superconducting third harmonic accelerating cavity (3.9 GHz) was proposed to improve beam quality in the TTF-like photoinjector. Fermilab has developed, built and tested several prototypes, including two copper 9-cell cavities, and niobium 3-cell and 9-cell cavities. The helium vessel and frequency tuner for the 9-cell cavity was built and tested as well. In cold tests, we achieved a peak surface magnetic field of ~120mT, well above the 70mT specification. The accelerating gradient was limited by thermal breakdown. Studies of the higher order modes in the cavity revealed that the existing cavity design with two HOM couplers will provide sufficient damping of these modes. In this paper we discuss the cavity design, results of the studies and plans for further development.

TPPT071 Preliminary Results on the Simultaneous Excitation of the TM010 and TE011 Modes in a Single Cell Niobium Cavity 3844
  • G. Ciovati, P. Kneisel
    Jefferson Lab, Newport News, Virginia
  Funding: Work supported by the U.S. DOE Contract No DE-AC05-84ER40150.

Simultaneous excitation of both TM010 and TE011 modes has been proposed recently for superconducting photoinjector applications to take advantage of the accelerating field of the TM mode, combined with the focusing magnetic field of the TE mode. Simultaneous excitation of both modes has been carried out on a CEBAF single cell cavity. The cavity has two beam pipe side-ports for each mode for input and pick-up couplers. Coupling to the TE011 mode is done by magnetic loop couplers while for the TM010 mode coaxial antennas are used. The TE011 mode has the property of having zero surface electric field, surface magnetic field orthogonal to the one in the TM010 mode and concentrated in the iris/wall regions of the cavity. The presence of both modes in the cavity at the same time can also be used to investigate the so-called high field Q-drop in the TM010 mode. This paper will present some preliminary result on the test of the single cell cavity at 2K.

TPPT072 Effects of Electric and Magnetic Fields on the Performance of a Superconducting Cavity 3874
  • G. Ciovati, P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • J.S. Sekutowicz, W. Singer
    DESY, Hamburg
  Funding: Work supported by the U.S. DOE Contract No DE-AC05-84ER40150.

A special two-cell cavity was designed to obtain surface field distributions suitable for investigation of electric and magnetic field effects on cavity performance. The cavity design and preliminary results were presented in a previous contribution. The bulk niobium cavity was heat-treated in a vacuum furnace at 1250C to improve the thermal conductivity. Three seamless hydroformed NbCu cavities of the same design were fabricated to investigate the role of the electron beam welds located in high field areas.

TPPT073 Testing of the New Tuner Design for the CEBAF 12 GeV Upgrade SRF Cavities 3910
  • E. Daly, G.K. Davis, W.R. Hicks
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

The new tuner design for the 12 GeV Upgrade SRF cavities consists of a coarse mechanical tuner and a fine piezoelectric tuner. The mechanism provides a 30:1 mechanical advantage, is pre-loaded at room temperature and tunes the cavities in tension only. All of the components are located in the insulating vacuum space and attached to the helium vessel, including the motor, harmonic drive and piezoelectric actuators. The requirements and detailed design are presented. Measurements of range and resolution of the coarse tuner are presented and discussed.

TPPT074 Simulation Study of Electronic Damping of Microphonic Vibrations in Superconducting Cavities 3916
  • A.S. Hofler, J.R. Delayen
    Jefferson Lab, Newport News, Virginia
  Funding: This work was supported by the Department of Energy under contract DE-AC05-84ER-40150.

Electronic damping of microphonic vibrations in superconducting rf cavities involves an active modulation of the cavity field amplitude in order to induce ponderomotive forces that counteract the effect of ambient vibrations on the cavity frequency. In lightly beam loaded cavities, a reduction of the microphonics-induced frequency excursions leads directly to a reduction of the rf power required for phase and amplitude stabilization. Jefferson Lab is investigating such an electronic damping scheme that could be applied to the JLab 12 GeV upgrade, the RIA driver, and possibly to energy-recovering superconducting linacs. This paper discusses a model and presents simulation results for electronic damping of microphonic vibrations.

TPPT075 Influence of Ta Content in High Purity Niobium on Cavity Performance 3955
  • P. Kneisel, G. Ciovati, G. Myneni
    Jefferson Lab, Newport News, Virginia
  • T. Carneiro
    Reference Metals, Bridgeville, Pennsylvania
  • D. Proch, W. Singer, X. Singer
    DESY, Hamburg
  Funding: Work supported by the U.S. DOE Contract No DE-AC05-84ER40150.

In a previous paper* we have reported about initial tests of single cell 1500 MHz cavities made from high purity niobium with three different Ta contents of 160 ppm, ~600 ppm and ~1400 ppm. These cavities had been treated by buffered chemical polishing several times and 100 mm, 200 mm and 300 mm of material had been removed from the surfaces. This contribution reports about subsequent tests following post purification heat treatments with Ti and “in situ” baking. As a result, all cavities exhibited increased quench fields due to the improved thermal conductivity after the heat treatment. After the "in situ" baking at 120C for ~40 hrs the always present Q-drop at high fields disappeared and further improvements in accelerating gradient could be realized. Gradients as high as Eacc = 35 MV/m were achieved and there were no clear indications that the cavity performance was influenced by the Ta content in the material. A multi-cell cavity from the high Ta content material is being fabricated and results will be presented at this conference.

*P. Kneisel et al., Linac 2004.

TPPT076 Preliminary Results from Single Crystal and Very Large Crystal Niobium Cavities 3991
  • P. Kneisel, G. Ciovati, G. Myneni
    Jefferson Lab, Newport News, Virginia
  • T. Carneiro
    Reference Metals, Bridgeville, Pennsylvania
  • J.S. Sekutowicz
    DESY, Hamburg
  Funding: Work supported by the U.S. DOE Contract No DE-AC05-84ER40150.

We have fabricated and tested several single cell cavities using material from very large grain niobium ingots. In one case the central grain exceeded 7" in diameter and this was used for a 2 GHz cavity. This activity had a dual purpose: to investigate the influence of grain boundaries on the often observed Q-drop at gradients Eacc > 20 MV/m in the absence of field emission, and to study the possibility of using ingot material for cavity fabrication without going through the expensive process of sheet fabrication. The sheets for these cavities were cut from the ingot by wire electro-discharge machining (EDM) and subsequently formed into half–cells by deep drawing. The following fabrication steps were standard: machining of weld recesses, electron beam welding of beam pipes onto the half cells and final equator weld to join both half cell/beam pipe subunits.The cavities showed heavy Q–disease caused by the EDM; after hydrogen degassing at 800C for 3 hrs in UHV the cavities showed promising results, however, a Q-drop above Eacc ~ 20 MV/m was still present. Testing of the cavities is still ongoing – so far accelerating gradients of 30 MV/m have been achieved.

TPPT077 Testing of HOM Coupler Designs on a Single Cell Niobium Cavity 4012
  • P. Kneisel, G. Ciovati, G. Myneni, G. Wu
    Jefferson Lab, Newport News, Virginia
  • J.S. Sekutowicz
    DESY, Hamburg
  Funding: Work supported by the U.S. DOE Contract No DE-AC05-84ER40150.

Coaxial higher order mode (HOM) couplers were developed initially for PETRA cavitiesand subsequently for TESLA cavities. They were adopted later for SNS and Jlab upgrade cavities. The principle of operation is the rejection of the fundamental mode by the tunable filter configuration of the coupler and the transmission of the HOMs. It has been recognized recently that, in high average power applications, the pick-up probe of the HOM coupler must be superconducting in order to avoid substantial heat dissipation by the fundamental mode fields and deterioration of the cavity Q. In addition, the thermal conduction of existing rf feedthrough designs is only marginally sufficient to keep even the niobium probe tip superconducting in cw operation. We have equipped a single-cell niobium cavity with different HOM coupler configurations and tested the different designs by measuring Q vs Eacc behavior at 2 K for different feedthroughs and probe tipmaterials

TPPT079 Performance Overview of the Production Superconducting RF Cavities for the Spallation Neutron Source Linac 4048
  • J.P. Ozelis, J.R. Delayen, J. Mammosser
    Jefferson Lab, Newport News, Virginia
  Funding: Work supported by U.S. Department of Energy under contract DE-AC05-84ER40150.

As part of its efforts for the SNS construction project, Jefferson Lab has produced 23 cryomodules for the superconducting linac. These modules contained 81 industrially produced multicell Nb accelerating cavities. Each of these cavities was individually tested before assembly into a cryomodule to verify that they achieved the required performance. This ensemble of cavities represents the 3rd largest set of production superconducting cavities fabricated and tested to date. The timely qualification testing of such a collection of cavities offers both challenges and opportunities. Their performance can be characterized by achieved gradient at the required Qo, achieved peak surface field, onset of field emission, and observations of multipacting. Possible correlations between cavity performance and process parameters, only really meaningful in the framework of a large scale production effort, will also be presented. In light of the potential adoption of these cavities for projects such as the Rare Isotope Accelerator or Fermilab Proton Driver, such an analysis is crucial to their success.

TPPT081 Fabrication and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade Prototype Cryomodule Renascence 4081
  • C.E. Reece, E. Daly, S. Manning, R. Manus, S. Morgan, J.P. Ozelis, L. Turlington
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

Twelve seven-cell niobium cavities for the CEBAF 12 GeV upgrade prototype cryomodule Renascence have been fabricated at JLab and tested individually. This set includes four of the "Low Loss" (LL) design and eight of the "High Gradient" (HG) design. The fabrication strategy was an efficient mix of batch job-shop component machining and in-house EBW, chemistry, and final-step machining to meet mechanical tolerances. Process highlights will be presented. The cavities have been tested at 2.07 K, the intended CEBAF operating temperature. Performance exceeded the tentative design requirement of 19.2 MV/m cw with less than 31 W dynamic heat dissipation. These results, as well as the HOM damping performance will be presented.

TPPT082 High Thermal Conductivity Cryogenic RF Feedthroughs for Higher Order Mode Couplers 4108
  • C.E. Reece, E. Daly, T. Elliott, J.P. Ozelis, H.L. Phillips, T.M. Rothgeb, K. Wilson, G. Wu
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

The use of higher-order-mode (HOM) pickup probes in the presence of significant fundamental rf fields can present a thermal challenge for cw or high average power SRF cavity applications. The electric field probes on the HOM-damping couplers on the JLab "High Gradient" and "Low Loss" seven-cell cavities for the CEBAF upgrade are exposed to approximately 10% of the peak magnetic field in the cavity. To avoid significant dissipative losses, these probes must remain superconducting during operation. Typical cryogenic rf feedthroughs provide a poor thermal conduction path for the probes, and provide inadequate stabilization. We have developed solutions that meet the requirements, providing a direct thermal path from the niobium probe, thorough single-crystal sapphire, to bulk copper which can be thermally stationed (or heat sunk). Designs, electromagnetic and thermal analyses, and performance data will be presented.

TPPT083 RF Conditioning and Testing of Fundamental Power Couplers for SNS Superconducting Cavity Production 4132
  • M. Stirbet, G.K. Davis, M. A. Drury, C. Grenoble, J. Henry, G. Myneni, T. Powers, K. Wilson, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi, Y.W. Kang, D. Stout
    ORNL, Oak Ridge, Tennessee
  Funding: This work was supported by U.S. DOE contract DE-AC0500R22725.

The Spallation Neutron Source (SNS) makes use of 33 medium beta (0.61) and 48 high beta (0.81) superconducting cavities. Each cavity is equipped with a fundamental power coupler, which should withstand the full klystron power of 550 kW in full reflection for the duration of an RF pulse of 1.3 msec at 60 Hz repetition rate. Before assembly to a superconducting cavity, the vacuum components of the coupler are submitted to acceptance procedures consisting of preliminary quality assessments, cleaning and clean room assembly, vacuum leak checks and baking under vacuum, followed by conditioning and RF high power testing. Similar acceptance procedures (except clean room assembly and baking) were applied for the airside components of the coupler. All 81 fundamental power couplers for SNS superconducting cavity production have been RF power tested at JLAB Newport News and, beginning in April 2004 at SNS Oak Ridge. This paper gives details of coupler processing and RF high power-assessed performances.

TPPT084 Surface Study of Nb/Cu Films for Cavity Deposition by ECR Plasma 4153
  • A.T. Wu, R.C. Ike, H.L. Phillips, A-M. Valente, H. Wang, G. Wu
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

Deposition of thin niobium (Nb) films on copper (Cu) cavities, using an electron cyclotron resonance (ECR) plasma appears to be an attractive alternative technique for fabricating superconducting radio frequency cavities to be used in particle accelerators. The performance of these Nb/Cu cavities is expected to depend on the surface characteristics of the Nb films. In this paper, we report on an investigation of the influence of deposition energy on surface morphology, microstructure, and chemical composition of Nb films deposited on small Cu disks employing a metallographic optical microscope, a 3-D profilometer, a scanning electron microscope, and a dynamic secondary ion mass spectrometer. The results will be compared with those obtained on Nb surfaces treated by buffered chemical polishing, electropolishing, and buffered electropolishing. Possible implications from this study for Nb deposition on real Cu cavities will be discussed.

TPPT085 Niobium Thin Film Coating on a 500-MHz Copper Cavity by Plasma Deposition 4167
  • H. Wang, H.L. Phillips, R.A. Rimmer, A-M. Valente, A.T. Wu, G. Wu
    Jefferson Lab, Newport News, Virginia
  Funding: This work was supported by DOE contract DE-AC05-84ER40150 Modification No. M175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility.

A system for the deposition, using an ECR plasma source, of a thin film of niobium inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as the substrate and the vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is biased to realize the energy controlled deposition. This report describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between a working small-sample deposition system and this system. Initial plasma simulation also suggested that plasma ignition in this cavity system is feasible.

TPPT086 Elliptical Cavity Shape Optimization for Acceleration and HOM Damping 4191
  • H. Wang, R.A. Rimmer, G. Wu
    Jefferson Lab, Newport News, Virginia
  Funding: Supported by the Office of Naval Research, the Joint Technology Office, the Commonwealth of Virginia, the Air Force Research Laboratory, and by DOE Contract DE-AC05-84ER40150.

A normal design process for a superconducting cavity shape is to maximize the R/Q (shunt impedance/intrinsic quality factor) and geometry factor G for a given RF field limit of Bpeak/Eacc or Epeak/Eacc. For the application of an Ampere-class, high current energy recovery linac or storage ring, heavy HOM damping is required. This paper reports on a survey of single cell shapes developed for multi-cell cavities for different projects. Using a set of normalized parameters, we compare the designs for different frequencies and ß structures for the fundamental mode. Using dispersion curve (frequency verse phase advance) calculated by MAFIA for a single cell, we explore further how to optimize the cavity shape to avoid a light cone line crossing at the dangerous resonance frequencies determined by the beam bunch structure or the dangerous (trapped or high R/Q) modes with a low group velocity. We expect such a formulation to inform our development of a 5-cell, optimized cavity shape, with good real estate accelerating gradient and strong HOM damping waveguide structure for the JLab 1MW ERL-FEL project.

TPPT088 Power Dependence of the RF Surface Resistance of MgB2 Superconductor 4215
  • T. Tajima, A. Findikoglu, A.J. Jason, F.L. Krawczyk, F. M. Mueller, A. H. Shapiro
    LANL, Los Alamos, New Mexico
  • R.L. Geng, H. Padamsee, A.S. Romanenko
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • B. Moeckly
    STI, Santa Barbara, California
  MgB2 is a superconducting material that has a transition temperature (Tc) of ~40 K. Recently, it has been shown at 4 K, liquid helium temperature, that the surface RF resistance can be lower than Nb that has the Tc of 9.2 K and has been used for most superconducting RF cavities in the past decades. One of the problems with other high-Tc materials such as YBCO was its rapid increase in RF surface resistance with higher surface magnetic fields. Recently, we have shown that MgB2 shows little increase up to about 120 Oe, equivalent of an accelerating field of about 3 MV/m. The highest field tested was limited by available power. This result is encouraging and has made us consider fabricating a cavity coated with MgB2 and test it. Also, there might be a potential that this material has a higher critical magnetic field that enables the cavity to run at a higher gradient than Nb cavities.  
TPPT089 Commissioning and Operations Results of the Industry-Produced CESR-Type SRF Cryomodules 4233
  • S.A. Belomestnykh, R.P.K. Kaplan, H. Padamsee, P. Quigley, J.J.R. Reilly, J. Sears, V. Veshcherevich
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • S. Bauer, M. Pekeler, H. Vogel
    ACCEL, Bergisch Gladbach
  • L.-H. Chang, C.-T. Chen, F.-Z. Hsiao, M.-C. Lin, G.-H. Luo, C. Wang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu
  • E. Matias, J. Stampe, M.S. de Jong
    CLS, Saskatoon, Saskatchewan
  Funding: Work is partially supported by the National Science Foundation.

Upon signing a technology transfer agreement with Cornell University, ACCEL began producing turn-key 500 MHz superconducting cavity systems. Four such cryomodules have been delivered, commissioned and installed in accelerators for operation to date. Two more cryomodules are scheduled for testing in early 2005. One of them will be put in operation at Canadian Light Source (CLS); the other will serve as a spare at Taiwan Light Source (TLS). The commissioning results and operational experience with the cryomodules in CESR, CLS and TLS are presented.

TPPT090 Progress of 2-Cell Cavity Fabrication for Cornell ERL Injector 4248
  • R.L. Geng, P. Barnes, M. Liepe, V. Medjidzade, H. Padamsee, A.K. Seaman, J. Sears, V.D. Shemelin, N. Sherwood
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  Five 1300 MHz superconducting niobium cavities are to be used for the injector of Cornell ERL. The beam power requirement (100 kW each cavity) and the need to minimize emittance dilution due to the cavity structure have important impacts to the design and fabrication of these cavities. We plan to use Conflat stainless-steel flanges brazed to niobium tubes of niobium cavities. The first copper prototy cavity has been built and measured. Most parts for the first niobium cavity have been manufactured also. In this report, we will present the progress of the prototyping copper as well as niobium cavities.  
TPPT094 Design of the CW Cornell ERL Injector Cryomodule 4290
  • M. Liepe, S.A. Belomestnykh, R.L. Geng, V. Medjidzade, H. Padamsee, V.D. Shemelin, V. Veshcherevich
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  Funding: This work is supported by Cornell University.

The Cornell ERL Prototype injector will accelerate bunches from an electron source to an energy of several MeV, while preserving the ultra-low emittance of the beam. The injector linac will be based on superconducting RF technology with five 2-cell RF cavities operated in cw mode. The beam tubes on one side of the cavities have been enlarged to propagate Higher-Order-Mode power from the cavities to broadband RF ring-absorbers located at 80 K between the cavities. The axial symmetry of these ferrite based absorbers, together with two symmetrically placed input couplers per cavity, avoids transverse on-axis fields, which would cause emittance growth. Each cavity is surrounded by a LHe vessel and equipped with a frequency tuner. The cryomodule provides the support and alignment for the cavity string, the LN cooling of the ferrite loads, and the 2K LHe cryogenic system for the high cw heat load of the cavities. In this paper we give an overview of the ERL injector cryomodule design.

TPPT095 Test of a Fast Ferrite Reactive Tuner for Control of Microphonics at the S-Dalinac
  • T. Zwart, dc. Cheever, N.T. Cliffer, M. Farkhondeh, W. Graves, W. North, C. Tschalaer, D. Wang, D. Wang, F. Wang, A. Zolfaghari, J. van der Laan
    MIT, Middleton, Massachusetts
  • H.-D. Gräf
    TU Darmstadt, Darmstadt
  Funding: DOE

A fast ferrite inductive tuner assembly has been constructed for use at the 3 GHz superconducting S-Dalinac accelerator. This device was installed and tested at the S-Dalinac in April 2005. At a fixed accelerating field of 1.4 MV/m using a simple analog control loop the amplitude of the cavity peak-to-peak phase fluctuations with respect to the phase of the incident RF was reduced from 80 degrees to 10 degrees. The 50 Hz noise which dominated the open loop microphonics was reduced by more than 30 dB. The open loop response of the reactive tuner has also been characterized, yielding a tuning range of ?f greater than 300 Hz at a Qext of 1.5e7. The ferrite tuner was then relocated on the waveguide to a distance of (n+1/4)? from the input coupler. This allowed fast control of the coupling with range of Qext from 1.5 - 8e7.

TPPT096 Cryomodule Design for a Superconducting Linac with Quarter-Wave, Half-Wave, and Focusing Elements 4317
  • M. J. Johnson, J. Bierwagen, S. Bricker, C. Compton, P. Glennon, T.L. Grimm, W. Hartung, D. Harvell, A. Moblo, J. Popielarski, L. Saxton, R.C. York, A. Zeller
    NSCL, East Lansing, Michigan
  The low-energy section of the driver linac for the proposed Rare Isotope Accelerator (RIA) incorporates the following superconducting elements: quarter-wave resonators, half-wave resonators, and 9 T solenoids. A prototype cryomodule has been designed to house all of these elements. A 31 T/m superferric quadrupole is also included as an alternative focusing element, since its stray magnetic field is more easily shielded. The cryomodule design is based on the RIA v/c=0.47 prototype cryomodule that was successfully tested in 2004.* The design uses a titanium rail structure to support the beam line elements. The beam line assembly is done in a class 100 clean room to maintain resonator cleanliness for optimal high-field performance. The cavities will be equipped with RF input couplers, tuners, and magnetic shields. High Tc current leads are used for both magnets. The cryomodule design takes into account static heat leak requirements and alignment tolerances for the beam line elements. A heat exchanger and J-T throttle valve will be used to provide a continuous supply of liquid helium for 2 K operation.

*T.L. Grimm et al., "Experimental Study of an 805 MHz Cryomodule for the Rare Isotope Accelerator", in Proceedings of the XXII International Linear Accelerator Conference, Lubeck, Germany (2004).

TPPT098 VORPAL as a Tool for Three-Dimensional Simulations of Multipacting in Superconducting RF Cavities 4332
  • C. Nieter, J.R. Cary, P. Stoltz
    Tech-X, Boulder, Colorado
  • G.R. Werner
    CIPS, Boulder, Colorado
  Considerable resources are required to run three dimensional simulations of multipacting in superconducting rf cavities. Three dimensional simulations are needed to understand the possible roles of non-axisymmetric features such as the power couplers. Such simulations require the ability to run in parallel. We consider the versatile plasma simulation code VORPAL* as a possible platform to study such effects. VORPAL has a general 3D domain decomposition and can run in any physical dimension. VORPAL uses the CMEE library** to model the secondary emission of electrons from metal surfaces. We will present a three dimensional simulation of a simple pillbox rf cavity to demonstrate the potential of VORPAL to be a major simulation tool for superconducting rf cavities.

*C. Nieter and J.R. Cary, J. Comp. Phys. 196 (2004), p. 448. **P.H. Stoltz, ICFA electron cloud work shop, Napa, CA (2004).

TPPT099 Prototype Superconducting Triple-Spoke Cavity for Beta = 0.63 4338
  • K.W. Shepard, Z.A. Conway, J.D. Fuerst, M. Kedzie, M.P. Kelly
    ANL, Argonne, Illinois
  Funding: This work was supported by the U.S. Department of Energy under contract no. W-31109ENG_38.

This paper reports the development status of a 345 MHz, three-spoke-loaded, TEM-class superconducting cavity with a transit-time factor peaked at beta = v/c = 0.62. The cavity has a 4 cm diameter beam aperture, a transverse diameter of 45.8 cm, and an effective (interior) length of 85 cm. The cavity is the second of two three-spoke loaded cavities being developed for the RIA driver linac and other high-intensity ion linac applications. Construction of a prototype niobium cavity has been completed and the cavity has been chemically processed. Results of initial cold tests will be discussed

TPPT100 Superconducting Triple-Spoke Cavity for Beta = 0.5 Ions 4344
  • K.W. Shepard, Z.A. Conway, J.D. Fuerst, M. Kedzie, M.P. Kelly
    ANL, Argonne, Illinois
  Funding: This work was supported by the U.S. Department of Energy under contract no. W-31-109-ENG-38.

This paper reports results of cold tests of a 345 MHz, three-spoke-loaded TEM-class superconducting niobium cavity being developed for the RIA driver linac and for other high-intensity ion linac applications. The cavity has a beam aperture of 4 cm diameter, an interior length of 67 cm, and the transit-time factor peaks at beta = v/c = 0.5. In tests at 4.2 K, the cavity could be operated cw above the nominal design accelerating gradient of 9.3 MV/m, which corresponds to peak surface fields of 27.5 MV/m electric and 826 gauss magnetic. At this gradient the cavity provides more than 6 MV of accelerating potential. The cavity Q at 9.3 MV/m exceeded the nominal performance goal of 7.3E8. Operation at the design gradient at 4.2 K causes substantial boiling and two-phase flow in the liquid helium coolant, with the potential for microphonic-induced fluctuations of the rf frequency. Total microphonic eigenfrequency fluctuations were measured to be less than 1 Hz RMS in cw operation at 9.7 MV/m at 4.2 K.