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Outline

• Introduction

• Accumulator ring design summary
– Favorable design decisions
– Debatable design decisions

• Engineering status, issues & solutions
– Magnet post-vendor iterations (shimming, sorting …)
– Injection trail assembly (mechanical interferences, 
– Collimation and remote handling, target back-shine
– Extraction, kicker impedance, RF
– Vacuum, chamber coating, electron cloud mitigation
– Diagnostics and instrumentation, infra-structure matching

• Summary
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Accelerators at the Power frontier
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Spallation Neutron Source complex

• Under construction at Oak Ridge, Tennessee, U.S. 

• Collaborated by 6 labs (LBNL, LANL, JLab, BNL, ORNL, ANL) 

• Brookhaven National Laboratory is responsible for the design & 
construction of Ring & Transports
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SNS commissioning at ORNL
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Drift-tube-linac 1-3 results

• Reached design peak current 38 mA

• Routinely transported 100% beam

• Emittance at DTL-1 ~ 0.3 πµm
(Aleksandrov, Henderson, Holtkamp …)
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Ring’s intensity goal
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Achromat RTBT
RF

Arc, extraction

Collimation

Injection

Linac dumpHEBT



EPAC’04, Jie Wei

Low-loss design philosophy
• Localize beam loss to specific area for remote handling 

– 2-stage collimation: HEBT, Ring, (RTBT)
– 3-step beam-gap chopping/cleaning: LEBT, MEBT, Ring

• A low-loss design
– Space charge effects & resonance minimization
– Magnet field compensation & correction
– Proper lattice design with adequate aperture & acceptance
– Injection painting; Injection & space-charge optimization
– Impedance (extraction kicker) & instability control (e-p)

• Flexibility: 
– Adjustable in energy (+/- 5%), tunes (H 1 unit, V 3 units), 

injection painting, collimation; interchange RF cavities

• Accident prevention:
– Design redundancy: immune to accidental linac & kicker errors
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Beam-loss localization Ring primary scraper

• “Sacrifice” collimation region for the rest

• Two-stage system, efficiency above 90%

• Utilize large vacuum chamber aperture 
and long straight sections

collimator in HEBT

(Catalan-Lasheras, Ludewig, Simos, 
Tuozzolo, McGahern, Tuozzolo, 
Cousineau, Davino…)
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Secondary collimator construction
• Length enough to stop primary protons (~ 1 m for 1 GeV beam)

• Layered structure (stainless steel particle bed in borated water, 
stainless steel blocks) to shield the secondary (neutron, γ)

• Fixed, enclosing elliptical-shaped wall for operational reliability

• Double-wall Inconel filled with He gas for leak detection
(Ludewig, Simos, et al)
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Remote handling

Remote vacuum clamp

• Overhead, around-the-ring crane
• Quick handling fixtures incorporated 

into shielding/absorber design
• Remote vacuum clamps;  remote 

water fittings
• Passive dump window & change 

mechanism
• Rad. hardened magnets

Collimator remote water 
fitting RTBT radiation hardened quad

(Murdoch, Pearson, Plum, et al)

Overhead crane
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Favorable design decisions

• Choose accumulator, not rapid-cycling synchrotron
– Years of non-trivial battle to achieve good field with the Ring
– Avoid potentially costly R&D needed for low-loss design

• Choose 4-fold lattice symmetry, not 3-fold
– Collimator back-shine along vacuum pipe a serious concern
– Avoid sharing injection with collimation for maintenance

• Choosing doublet straight/FODO arc lattice, not all FODO
– Allow a robust, symmetric injection layout
– Allow ideal collimator placement for high efficiency (>90%)

• Reserve upgrade potential for beam energy and power
– Most magnet/power supply capable for 30% higher energy, 

matching future superconducting RF linac potential
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Ring Lattice
FODO arcs & doublet straights

• Matched, hybrid lattice
– FODO arc:

easy-to-implement 
correction system, 
moderate magnet 
strength

– Doublet straight:
long, uninterrupted 
straight

» Improved 
collimation efficiency

» Robust injection

• Zero-dispersion injection
– Independent painting in 

the transverse & 
longitudinal directions
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Debatable design decisions
• Solid-steel core for all ring dc magnets

– Instead of laminated steel, solid steel was chosen to save cost,
leading to large magnet-to-magnet field variations. 

– A big effort in measurement and shimming

• In-situ baking not allowed for vacuum chambers
– Tight mechanical clearance between magnet pole & chamber
– Chamber presently coated with TiN; material of lower SEY 

may be available although maintenance is non-trivial

• Field optimization of narrow-body quads
– Large 20th pole remains although impact is negligible for a     

1 ms accumulation

• Adequacy of spare components
– Limited by budget availability
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Summary of Field Quality in SD17 Dipoles
Harmonics in "Units" at a reference radius of 80 mm

(10 Magnets; Center Position)

Mean Std.Dev. Mean Std.Dev.
I.T.F. (T.m/kA) 0.25241 0.100% 0.24597 0.074%
Fld Angle (mr) -0.81 1.06 -0.84 1.06

b 0 10000.0 0.00 10000.0 0.0
b 1 -105.16 0.14 -103.79 0.17
b 2 0.30 0.43 -6.13 0.44
b 3 2.11 0.16 2.54 0.17
b 4 1.15 0.24 -0.45 0.23
b 5 0.06 0.10 0.07 0.10
b 6 -0.32 0.17 -0.51 0.17
b 7 0.15 0.07 0.14 0.07
b 8 -0.06 0.17 -0.05 0.17
b 9 -0.05 0.07 -0.05 0.07
b 10 -0.19 0.20 -0.19 0.20
b 11 0.01 0.08 0.01 0.08
b 12 0.12 0.22 0.12 0.22
b 13 0.01 0.06 0.01 0.06
b 14 -0.09 0.23 -0.09 0.23
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Dipole field variation & shimming

(P. Wanderer, A. Jain, J. Jackson, 
W. Meng, N. Tsoupas …)

Integral Transfer Function at 1.0 GeV in SD17 Dipoles
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(Wanderer, Jain, 
…)
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Magnetic field iterations

(Fedotov, 
Parzen, 
Raparia, et 
al)

tune (6.36,6.22), N=1014

– measured error, 3Qx=19 & 
2Qx+2Qy=25 resonances

– correction with sextupole 
(0.09 T/m) & octupole (0.7 T/m2)

• Field quality goal at full 
480πµm acceptance (rms)
– 10-4 main magnets
– 10-3 sextupole, chicane
– 10-2 correctors

• Design iterations
– chamfer & cross-section

• Post-vendor re-iterations
– pole alignment, iron 

shimming, coil shimming, 
coil flipping

• Sorting
– ITF and sextupoles

• Resonance correction under 
space charge

– Multipoles up to octupole 
components

(Jackson, Jain, Lee, Meng, 
Papaphilippou, Raparia, Tepikian, 
Tsoupas, Tuozzolo, Wanderer…)
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Arc quad

21-cm ID quads: iron shimmed, sorted
• Initial field variation rms ~3x10-4;           

final 0.8 ~ 1.4 x 10-4 (rms)
• Sorted in 3 power-supply families
• Trim quad coil available for back-up

26-cm ID quads iron shimmed, re-aligned
• ~1mm re-alignment to reduce sext. b3

Ring quadrupole measurement
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QV_19 475A (Std. = 0.008%)
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Grp_3 715A (Std. = 0.014%)

±0.01%

(Jackson, Jain, Lee, Meng, Raparia, 
Tepikian, Tsoupas, Tuozzolo, 
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Narrow-body quad

• Design
– Narrow body to clear 

injection and extraction
– Pole tip shape iterated for 

12-pole 
– Large (2x10-3) 20-pole from 

narrow geometry; no 
noticeable effect during 1 
ms accumulation

– Correctable with pole shape 
scalloping if needed

• Post-vendor
– ~ 10 unit skew sext a3measured 
– Coil shimming applied

(Jackson, Jain, Lee, Meng, Raparia, 
Tepikian, Tsoupas, Tuozzolo, 
Wanderer…)
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Field comparison

Regular quad             
(ring arc)

Narrow-body quad 
(ring straight)
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Injection region mechanical clearance

• Injection region trail-assembly
– Mechanical interference found 
– Quad edge trimmed & re-welded 

to minimize ITF variation for all 
beam energy
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Stripped electron collection

injection chicane #2 • Tapered magnet to guide stripped 
electrons (~ 2 kW), compensated 
for the circulating beam

• Carbon-carbon collector on 
water-cooled copper plate

• Clearing electrode (~ 10 kV) to 
reduce scattered electrons

• Video monitors on foil & collector

PSR stripped electron burn

(Meng, Brodowski, 
Lee, Abell, Macek et 
al)

Injection vacuum chamber
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Injection chicane measurements
(Meng, Jackson, Jain, 
Wanderer, Hoey, Lee 
…)

• Integral 
measurement 
confirmed field 
compensation 
(10-3)

Integral measurement of chicane #2, #3

Angle  measurement of chicane #2

Chicane B z /B y  Vs. y  at x =4cm; z =30.7cm
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• Point-coil 
measurement 
confirmed field 
angle for 
electron 
collection
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Extraction kicker
(Hahn, Davino, Danilov, Kurennoy, 
Danilov, Lambiase, Lee, Mi, Sandberg 
Zhang …)

Time (200 ns per box)

K
ic

ke
r w

av
ef

or
m 200 ns

• Ferrite kicker inside vacuum pipe
• Optimize saturable inductor to 

effectively “shorten” rise time (200ns)
• Improved flat-top flatness (~0.5%)
• PFN termination: lower impedance
• Increase magnet height to halve 

coupling impedance (same drive)
• Shield the terminating resistance, 

reducing cable reflection



EPAC’04, Jie Wei

Injection kicker ceramic chamber double coating
• Cu (~ 0.7 µm) for image current passage
• TiN (~ 0.1 µm) for electron cloud suppression
• Thickness uniformity < ± 30%

Extraction kicker ferrite patterned TiN coating
• ~ 0.1 µm TiN on ≥ 90% ferrite inner surface
• Masked for eddy-current heating control
• Masked near HV conductor to prevent circuit shorts

Vacuum chamber coating
(Hseuh, He, Blaskiewicz, 
Mapes, Todd, Aleksandrov, 
Davino, Henderson, …)

Injection kicker

Ceramic tube and anode screen

Extraction kicker
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Electron-cloud mitigation
• Inner surface coated with TiN

SEY ~ 1.6, no baking/activation

• Solenoids applied in 
collimation region

• Clearing electrode (10 kV) near 
injection foil

• Beam-position-monitors act as 
clearing electrodes (+/- 1 kV)

• Beam-in-gap kicker to clear 
residuals

• Extra ports for beam scrubbing

SEY of BNL TiN samples
CERN LHC/VAC B. HENRIST 12/7/2002
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electron cloud under 
a solenoid
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Instrumentation
Detectors         Number     Comments
Beam Position M   44    dual plane

( includes  2 RF radial loop)
Beam Loss M      75        ion chamber
Fast BLM             12        photomultip.
Beam-In-Gap        1         kicker+PMT
Ion. Profile M       2         H+V
Wire scanner        2         H+V
Coherent Tune     1         kick/PU
Incoherent Tune  2         PLL & QMM
Beam Current M  1         FCT
Wall Current M    2         including RF
e-detector              5
Wide-band damper 2
High moment      1
Luminescence profile study

• Part of machine protection; fast 
response

• Wide dynamic range
• Intensity three order-of-

magnitude; amplitude 30 times

• Turn-by-turn capability

• Presence of electron cloud

(Russo, Dawson, Sandberg, Shea …)
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Tune diagnostics, halo scraper, dampers

• Added new beamline 
components for full-
power & beyond 
operations
– Dipole / quadrupole 

mode incoherent tune 
measurement pick-ups 
and kickers (4 units)

– Diagnostics halo 
scraper 

» In addition to 
collimation scraper

– Wide-band dampers
» Possible e-p instability 

damping
» Possible resistive 

instability damping

(Cameron, Fedotov, Raparia, Russo, Henderson, Danilov …)
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Infrastructure matching & installation

• Ring crane capacity iteration
– Increased assembly weight with 

increased ring capacity to 1.3 GeV 
and added chromatic sextupoles

– Minimum crane capacity restored 
to 20 tons;  design modified to 
match reduced crane height

• Magnet/cable resistance, water 
capacity, power supply ratings
– Power supply ratings to match 

actual magnet/cable resistance, 
operating temperature, and water 
volume & pressure

• Global coordinates & database

Installation at ORNL

(McGahern, Tuozzolo, Sandberg, Lambiase, Tepikian, Hemmer … 
Hechler, Galambos, Murdoch, Error, Cutler, Hunter…)
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Ring hardware

Winding of radiation resistant 
coil on RTBT doublet magnet 

Extraction kicker chamber 

Ring RF cavities

Diagnostics resonance 
pick-up 

(Zaltsman, Smith, Pai, Pearson, Seaberg, et 
al)
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Handling & shipping

Ring injection kickers in ORNL tunnel

Ring injection kicker shipped to ORNL

Ring injection septum at BNL during 
trial assembly
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Summary

• SNS has been a test bed of multi-laboratory collaboration

• Brookhaven is on its way to deliver promised fine 
products on time and on budget

• We are looking forward to ring commissioning in 2005
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SNS Main Parameters
Kinetic energy, Ek [MeV] 1000

Beam power on target, Pmax [MW] 1.4
Pulse length on target [ns] 695

Chopper beam-on duty factor [%] 68

Linac average beam current [mA] 1.6
Ring rf frequency [MHz] 1.058

Linac beam macro pulse duty factor [%] 6.0

Ring bunch intensity [1014] 1.6

Average macropulse H- current, [mA] 26

Ring injection time [ms] / turns 1.0 / 1060

Uncertainty, ∆Ek (95% probability) [MeV] +/- 15

SRF cryo-module number 11+12
SRF cavity number 33+48

Peak gradient, Ep (β=0.61 cavity) [MV/m] 27.5 (+/- 2.5)

Peak gradient, Ep (β=0.81 cavity) [MV/m] 35 (+2.5/-7.5)

Ring space-charge tune spread, ∆Qsc 0.15

assuming 4% injection loss to dump; 4% target window loss; linac max. -20o phase


