

Industrial technology for unprecedented energy and luminosity: the Large Hadron Collider

Ph. Lebrun CERN, Geneva, Switzerland

A 27 km circumference collider...

...based on superconducting technology

Luminosity & energy of colliders

Beam momentum & stored energy of colliders

Main parameters of LHC (p-p)

Circumference	26.7	km
 Beam energy at collision 	7	TeV
 Beam energy at injection 	0.45	TeV
 Dipole field at 7 TeV 	8.33	Т
 Luminosity 	10 ³⁴	cm ⁻² .s ⁻¹
Beam current	0.56	Α
 Protons per bunch 	1.1×10^{11}	
 Number of bunches 	2808	
 Nominal bunch spacing 	24.95	ns
 Normalized emittance 	3.75	μm
 Total crossing angle 	300	μ rad
 Energy loss per turn 	6.7	keV
 Critical synchrotron energy 	44.1	eV
 Radiated power per beam 	3.8	kW
• Stored energy per beam	350	MJ
Stored energy in magnetic Science	initiat, Machine protection	issues and
Operating temperature	gies for the LFIC, ruesday	morning

Cost structure of the LHC

Туре	Number	Function
MB	1232	Main dipoles
MQ	392	Arc quadrupoles
MBX/MBR	16	Separation & recombination dipoles
MSCB	376	Combined chromaticity & closed orbit correctors
MCS	2464	Sextupole correctors for persistent currents at injection
MCDO	1232	Octupole/decapole correctors for persistent currents at injection
MO	336	Landau damping octupoles
MQT/MQTL	248	Tuning quadrupoles
MCB	190	Orbit correction dipoles
MQM	86	Dispersion suppressor & matching section quadrupoles
MQY	24	Enlarged-aperture quadrupoles in insertions
MQX	32	Low-beta insertion quadrupoles

LHC components & industrial products

90 main supply contracts worldwide

1954-200

Characteristics of LHC superconducting cables

	Inner Cable	Outer Cable
Number of strands	28	36
Strand diameter	1.065 mm	0.825 mm
Filament diameter	7 µm	6 µm
Number of filaments	~ 8900	~ 6520
Cable width	15.1 mm	15.1 mm
Mid-thickness	1.900 mm	1.480 mm
Keystone angle	1.25 °	0.90 °
Transposition length	115 mm	100 mm
Ratio Cu/Sc	≥ 1.6	≥ 1.9

From billet assembly to finished cable

Superconducting cable 1

Ph. Lebrun

ultimate field, low-field remanence Critical current

Π

=> field quality at injection

Magnetization

Inter-strand resistance => ramping losses, dynamic field quality

Rc measured by CERN on the cables for the inner dipole layer

SPC on magnet yoke laminations

Integrated supply chain management

Benefits

- Technical homogeneity
- Quality assurance
- Economy of scale
- Security of supply
- Balanced industrial return

<u>Risks & drawbacks</u>

- Responsibility interface
- Additional workload
- JIT breakdown
- Transport, storage & logistics

Coil production

Ph. Lebrun

Cold mass assembly

ALSTOM

Dipole cold masses

Ph. Lebrun

Cryogenic magnet test station

Ph. Lebrun

Typical cryogenic test sequence

L. Walckiers

Resistive transitions to 8.33 T

Dipoles: bending strength

E. Todesco

Field quality of dipoles: b3

E. Todesco

Cold/warm correlations for allowed multipoles (b1, b3, b5)

Ph. Lebrun

Correlations to collared coil & cold mass

L. Bottura

- Performance through shared incentives *Cryogenic helium refrigerators*
- From emulation in R&D to competition in market *Power refrigeration at 1.8 K*
- State-of-the-art components for affordable hi-tech *Cryostats*
- Making use of emerging industrial products *Switched-mode power converters High-Tc superconductor current leads*
- Risk of functional vs. build-to-print specifications
 Ring cryogenic line

Four new helium refrigerators

AIR LIQUIDE

LINDE

Eight cryogenic plants in total 140 kW at 4.5 K ~40 000 l/h liquid helium 32 MWe

Ph. Lebrun

Cold compressors for 1.8 K refrigeration units

1st stage

The four stages

Eight 1.8 K refrigeration units

Flow compliance of 1.8 K unit on simulated LHC cycle

Cryostat thermal shield bottom tray

Aluminium alloy extrusion

Al to St. steel transition

A. Poncet

Multilayer insulation

Blanket prefabrication

A. Poncet

Ph. Lebrun

JEHIER

EPAC'04 Lucerne 5-9 July 2004

Installation on cryomagnet

Cryostat vacuum vessels

Cryostat assembly on site

- 1720 power converters
 - high-current (60 A to 12 kA)
 - high-precision (few ppm stability & reproducibility)
 - large dynamic range
 - 1-quadrant, 2-quadrant and 4-quadrant
 - high reliability (MTBF ~ 100 000 h)
 - tracking from sector to sector
- Environmental constraints
 - underground => compactness, efficiency (>80 %)
 - serviceability
 - EMC
 - radiation tolerance (1 Gy/yr for converters in tunnel)

F. Bordry

Switched-mode power converters

Modular 6 kA, 8 V converter

1954-2004 CERN

Current tracking performance

13 kA HTS current leads

Average critical current of BSCCO 2223 spools

First sector of cryogenic line: delayed installation in tunnel

Industrial production in the lab

• Lack of industrial interest or capability

Cryogenic magnet tests NEG coated vacuum chambers

- Transport and handling limitations *Cryostating of main dipoles*
- Complexity & coupling with other systems
 Insertion region quadrupoles
- Re-internalization following insolvency of contractor
 Cryostating of Short Straight Sections
- Special in-kind contributions

Injection lines

Electrons from synchrotron radiation or ionization, can be resonantly accelerated by the potential V. Baglin, "Gas condensates onto a LHC-type secondaries on impact

This can result in exponent electron cloud", Wednesday morning and stimulating gas desorption leading to pressure runaway

Electron bombardment has a « scrubbing » effect , observed in SPS

N. Hilleret 2.5 × As Received II ▲ 80 °C 2.0 × 350°C 300°C II Secondary electron yield • COPPER + A.G.D. • COPPER +Ti ZR V (300 °C-2h) 1.5 1.0 0.5 0.0 1000 1500 0 500 2000 Primary electron energy [eV]

Ph. Lebrun

1954-200

NEG-coated vacuum chambers

P. Chiggiato

NEG-coated vacuum chambers

Insertion region SSS

Insertion magnet assembly facility

Cold mass assembly of insertion quadrupole

R. Ostojic

Finishing of insertion quadrupoles

Inner triplet quadrupole (Fermilab)

Internalization of SSS assembly

Assembled arc SSS

Injection lines 5.6 km, 700 magnets

V. Mertens

Ph. Lebrun

Installed TI8 injection line

- Large scientific projects also constitute major industrial ventures and as such are exposed to constraints of industry
 - Managing the prototype-to-series-production transition
 - Competition with other related products/markets
 - Risks and dangers of the business jungle
- Industrial production of LHC in full swing, with over 3 BCHF (94 %) committed and over 2 BCHF (65 %) value earned
- Most series component production meets quality and delivery rate
- Difficulty in single major contract for cryogenic line, delays magnet installation in tunnel
- CERN's management firmly committed to recover delays and meet summer 2007 deadline for first collisions