Paper | Title | Other Keywords | Page |
---|---|---|---|
MOB02 | Simulation and Detection of the Helical Ion-Paths in a Small Cyclotron | ion, acceleration, cyclotron, experiment | 21 |
|
|||
The small cyclotron COLUMBUS, which was developed by Gymnasium Ernestinum in cooperation with the University of Applied Sciences of Coburg, is a particle accelerator for education and teaching purposes. Since its inception, the cyclotron has been under continuous development and is part of the newly established student research center of the University of Applied Sciences of Coburg. This cyclotron accelerates hydrogen ions; the positions of them are registered after a few revolutions by a faraday cup which is moved across their paths by a Linear Translator. This thesis presents a MathLab Simulation of the orbits of the accelerated Hydrogen ions. In contrast to simpler models, which approximate the orbits in the acceleration gap by a straight line, this simulation takes into account the deflection by the magnetic field to get a more realistic result for the initial paths and the positions on which the ions are registered. | |||
![]() |
Slides MOB02 [1.461 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOC01 | Radiation Damage of Components in the Environment of High-Power Proton Accelerators | lattice, radiation, target, proton | 24 |
|
|||
At high power accelerators, radiation damage becomes an issue particularly for components which are hit directly by the beam, like targets and collimators. Protons and secondary particles change the microscopic (lattice) structure of the materials, which macroscopically affects physical and mechanical properties. Examples are the decrease of thermal conductivity and ductility as well as dimensional changes. However, the prediction of these damage effects and their evolution in this harsh environment is highly complex as they strongly depend on parameters such as the irradiation temperature of the material, and the energy and type of particle inducing the damage. The so-called term "displacements per atom" (DPA) is an attempt to quantify the amount of radiation induced damage and to compare the micro- and macroscopic effects of radiation damage caused by different particles at different energies. In this talk, the basics for understanding of the mechanisms of radiation damage will be explained. The definition and determination of DPA and its limitations will be discussed. Measurements and examples of the impact of radiation damage on accelerator components will be presented. | |||
![]() |
Slides MOC01 [8.493 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOD01 | Design of the Energy Selection System for Proton Therapy Based on GEANT4 | emittance, proton, cyclotron, scattering | 30 |
|
|||
Huazhong University of Science and Technology (HUST) has planned to build a proton therapy facility based on an isochronous superconducting cyclotron. The 250 MeV/500 nA proton beam is extracted from a super-conducting cyclotron. To modulate beam energy, an en-ergy selection system is essential in the beam-line. The simulation based on Geant4 has been performed for the energy selection system and its result will be discussed in this paper. This paper introduces the variation rules of the beam parameters including the beam energy, beam emit-tance, energy spread and transmission. The degrader's gap and the twiss parameter are proven to be effective ways to reduce the emittance after degrader. | |||
![]() |
Slides MOD01 [2.331 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MODM02 | Magnet Optimization and Beam Dynamic Calculation of the 18 MeV Cyclotron by TOSCA and CYCLONE Codes | cyclotron, magnet-design, betatron, focusing | 36 |
|
|||
Designing and manufacturing of the 18 MeV cyclotron has been started for producing H− for applications in Posi-tron Emission Tomography (PET) radioisotopes at Amirkabir University Of Technology. Up to this point, there were 2 steps in magnet design: Initial design and optimization processes. The AVF structure with hill and valley was selected for getting strong axial focusing in magnet design and achieving up to 18MeV energy for the particle. After finishing the initial design, optimization process in magnet design was started for achieving the best coincidence in magnetic field. Checking the beam dynamic of the particle is one of the most important and necessary steps after magnet simulation. The phenomenon which confirms simulated magnet validity is obtaining reasonable particle trajectory. This paper focused on the optimization process in magnet design and simulation of the beam dynamic. Some results which ensure a particle can be accelerated up to 18 MeV energy, are presented. All magnetic field calculation in whole magnet was calculated by OPERA-3D(TOSCA) code. Also beam dynamic analysis by applying magnetic field data from the magnet simulation was done in CYCLONE code. | |||
![]() |
Poster MODM02 [1.860 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MODM03 | Equivalent Circuit Model of Cyclotron RF System | cyclotron, resonance, cavity, impedance | 39 |
|
|||
Cyclotron cavity modeled via electromagnetic circuits in the desired frequency. The design performed according to resonator basis and also cyclotron acceleration requirements with ADS software and compared to simulations made by the CST microwave studio. The scattering parameters obtained for main resonators of the cyclotron and Dee parts as a diaphragm for each of cavity sections and also for the whole structure. All the characteristics modeled and calculated by the electromagnetic rules and theory of resonators from circuit model. Then it analysed with numerical methods for bench-marking. Finally, it shows that the circuit model able to modeled accurately the cyclotron cavity and especially it can estimate precisely the structure parameters without any time consuming numerical method simulations. | |||
![]() |
Poster MODM03 [1.475 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MODM04 | Design of the Fast Scanning Magnets for HUST Proton Therapy Facility | proton, cyclotron, dipole, target | 42 |
|
|||
Funding: Work supported by Major State Research & Development Program, with grant No. 2016YFC0105305 For implementation of proton therapy, Huazhong University of Science and Technology has planned to construct a 250 MeV/500 nA superconducting cyclotron for proton therapy. In the beam-line, the scanning system spreads out the proton beam on the target according to the complex tumor shape by two magnets for horizontal and vertical scanning independently. As dipole magnets are excited by alternating currents and the maximum repetition rate is up to 100 Hz, the eddy currents are expected to be large. This paper introduces the design of these two scanning magnets and analyzes the eddy current effect. Slits in the end pole are proven to be an effective way to reduce the eddy current. Different directions, distributions and width sizes of slits are simulated and compared to determine the slits arrangement. At last, the maximum temperature of the optimized scanning magnets reaches the temperature requirements. |
|||
![]() |
Slides MODM04 [2.092 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP02 | Physical Design of External Two-Stage Beam Chopping System on the TR 24 Cyclotron | cyclotron, neutron, emittance, ion | 45 |
|
|||
We briefly introduce a new Cyclotron Laboratory of the Nuclear Physics Institute of the Czech Academy of Sciences with the new cyclotron TR 24 which was commissioned in October 2015. One of the planned utilization of TR 24 beams is a generation of high-intense fast neutrons fluxes with potential implementation of a chopping system for spectrometric measurements of neutron energy by the Time-of-Flight method. For this purpose, physical design of a new ion-optical beam line was completed as well as comprehensive study of an external fast chopping system on this beam line. A set of home-made programs DtofDeflect have been developed for this system consisting of the first chopper powered by sinusoidal voltage and the second chopper powered by pulse voltage. The programs allow to find the optimum geometric and voltage parameters of the system by the means of mathematical simulations. The chopping system can provide the external 24 MeV proton beam with 2.3 ns pulse length at a repetition period of 236 ns in order to comply with the required pulse length to the repetition period ratio of 1:100. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP05 | An Air Ionization Chamber Simulation using Monte Carlo Method | detector, cathode, radiation, photon | 57 |
|
|||
The CYCIAE-100 cyclotron has been built at CIAE, designed to achieve 200 μA protons at 100 MeV and deliver them to several experimental targets. To achieve this goal and protect the machine from excessive radiation activation, an uncontrolled loss criteria of 1uA has been specified. Previous calculation for radiation shielding showed that high neutron and gamma were produced under this condition. To measure the high energy gamma ray(about 2 MeV ) at machine running and void damage by the prompt radiation, an air ionization chamber was designed to fulfill this goal. A Geant4 program was developed to simulate the energy response of detectors, the EM filed data was also taken into consideration in the programl. The simulation results indicate that the energy response linearity satisfies the requirement of the project specification. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP09 | Simulation Code Development for High-Power Cyclotron | cyclotron, betatron, resonance, closed-orbit | 68 |
|
|||
A high power cyclotron is a good candidate as a driver of the accelerator driven system for the transmutation of long lived nuclear wastes. In this work, a simulation code has been developed for describing the beam dynamics in the high power cyclotron. By including higher order terms in transverse transfer matrix and space charge effects, we expect to describe the beam motion more accurately. The present code can describe equivalent orbit at each energy, calculate the tunes, and also perform multi-particle tracking. We report the initial results of the code for the simulation of a 13 MeV cyclotron. Lastly, an upgrade plan is discussed to add more features and to increase calculating efficiency. | |||
![]() |
Poster MOP09 [1.630 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP11 | Injection Line Studies for the SPC2 Cyclotron at iThemba LABS | ion, cyclotron, bunching, space-charge | 75 |
|
|||
The transmission efficiency of some ion beams through the second solid-pole injector cyclotron (SPC2) at iThemba LABS requires improvement. In order to understand the beam optics in the injection line, and match the beam to the acceptance of the cyclotron, the beam envelope behaviour from the beginning of injection-line to the inside of the SPC2 cyclotron was investigated with different simulation programs. The transverse effects were taken into account by the beam transport codes TRANSOPTR and TRANSPORT, while the multi particle simulation code OPAL was used to include space-charge effects. Simulations of the effect of an additional buncher, operating at the second harmonic, on the transmission of the beam of charged particles through the cyclotron were made. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP15 | The ISOLPHARM Project for the Production of High Specific Activity Radionuclides for Medical Applications | target, proton, ion, ISOL | 91 |
|
|||
ISOLPHARM is a branch of the INFN-LNL SPES project*, aimed at the production of radioisotopes for medical applications according to the ISOL technique. Such an innovative method will allow to obtain radiopharmaceuticals with very high specific activity. In this context a primary proton beam, extracted from a cyclotron will directly impinge a target, where the produced isotopes are extracted and accelerated, and finally, after mass separation, only the desired nuclei are deposed on a secondary target. This work is focused in the design and study of the aforementioned production targets for a selected set of isotopes, in particular for 64Cu, 89Sr, 90Y, 125I and 131I. 64Cu will be produced impinging Ni targets, otherwise the SPES UCx target is planned to be used. Different target configurations are being studied by means of the Monte Carlo based code FLUKA for the isotope production calculation and the Finite Element Method based software ANSYS ® for the temperature level evaluation. An appropriate secondary target substrate for implanting the produced isotopes is under study alongside with a system for its dissolution and repartition into radiopharmaceutical doses.
* A. Monetti et al., The RIB production target for the SPES project, Eur. Phys. J. A (2015) 51:128 |
|||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP20 | Study of Geant4 Simulation for Cyclotron Radioisotope Production in Various Target Size | target, cyclotron, proton, toolkit | 105 |
|
|||
Funding: NRF-2015M2B2A8A10058096 The application of radioisotopes in medical radiology is essential for diagnosis and treatment of cancer. The fabrication of radioisotopes has main factors that maximize the fabrication yield and minimize the costs. An effective method to solve this problem is that the usage of Monte Carlo simulations before experimental procedure [1]. This paper studies the simulation and presents cyclotron models for the energy 13 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography [1]. SKKUCY-13 cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Overall, this confirms the applicability of Monte-Carlo to simulate radionuclide production at 13 MeV proton beam energy. |
|||
![]() |
Poster MOP20 [1.905 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP22 | Simulation of Optimum Thickness and Configuration of 10 MeV Cyclotron Shield | neutron, cyclotron, shielding, radiation | 110 |
|
|||
Baby Cyclotrons that made in Self-shield type have been employed for use in Medical center for the diagnosis of cancer diseases by positron emission tomography (PET) system. Here in we have done a discussion on gamma and neutron dose rates at a distance of one meter outside of the cyclotron shielding. This shield consist of Lead, polyethylene borated (10% Boron) layers from inside to outside respectively. With increasing the thickness of lead and polyethylene we will see a decrease in the gamma and neutron dose which received by the water phantom at a distance of one meter outside from the surface of the shield of the cyclotron. Note that the gamma and neutron dose at the beginning (without any shielding) was on the order of several thousand μSv per hour that by achieve to a certain amount of thickness of the shield, the dose was reduced to below of the limited level. In this study, the MCNPX Code has been used. In MCNPX Code that used the variance reduction techniques for decreasing relative errors of calculation which was a good method for this case study. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUB02 | Updated Physics Design of the DAEδALUS and IsoDAR Coupled Cyclotrons for High Intensity H2+ Beam Production | cyclotron, ion, injection, ion-source | 137 |
|
|||
The Decay-At-rest Experiment for deltaCP violation At a Laboratory for Underground Science (DAEδALUS)* and the Isotope Decay-At-Rest experiment (IsoDAR)** are proposed experiments to search for CP violation in the neutrino sector, and 'sterile' neutrinos, respectively. In order to be decisive within 5 years, the neutrino flux and, consequently, the driver beam current (produced by chained cyclotrons) must be high. H2+ was chosen as primary beam ion in order to reduce the electrical current and thus space charge. This has the added advantage of allowing for stripping extraction at the exit of the DAEδALUS Superconducting Ring Cyclotron (DSRC). The primary beam current is higher than current cyclotrons have demonstrated which has led to a substantial R&D effort of our collaboration in the last years. I will present the results of this research, including tests of prototypes and highly realistic beam simulations***, which led to the latest physics-based design. The presented results suggest that it is feasible, albeit challenging, to accelerate 5 mA of H2+ to 60 MeV/amu in a compact cyclotron and boost it to 800 MeV/amu in the DSRC with clean extraction in both cases.
*The DAEδALUS collaboration, arXiv:1307.2949, 2013 **A. Bungau, et al., Phys. Rev. Lett., Bd. 109, Nr. 14, p. 141802, 2012 ***J. Yang, et al., NIM-A 704 (11), 84-91 , 2013 |
|||
![]() |
Slides TUB02 [3.248 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUC03 | Extraction by Stripping in the IFNS-LNS Superconducting Cyclotron: Study of the Extraction Trajectories | extraction, ion, cyclotron, quadrupole | 160 |
|
|||
The INFN-LNS Superconducting Cyclotron will be upgraded to allow for the extraction by stripping for ion beams with masses below 40 amu. By choosing properly the position of the stripper, it is possible to convoy the trajectories of the selected representative ion beams across a new extraction channel (E.C.). Here we report the design study for the new E.C. and the simulations of the beam envelopes for a set of ions to find out the parameters of the magnetic channels necessary to focus and to steer the beams through the new extraction line. Two new compensation bars have been designed to compensate the first harmonic contribution of the new magnetic channels. The results of these simulations will be also presented. | |||
![]() |
Slides TUC03 [2.909 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP17 | Preliminary Design of RF System for SC200 Superconducting Cyclotron | cavity, coupling, proton, cyclotron | 208 |
|
|||
The SC200 is a compact superconducting cyclotron, which is designed under the collaboration of ASIPP (Hefei, China)-JINR (Dubna, Russia), for proton therapy. The protons are accelerated to 200 Mev with maximum beam current of 500 nA. The very high mean magnetic field of 2.9T-3.5T (center-extraction) challenges the design of radio frequency (RF) system because of the restricted space. The orbital frequency of the protons is ~45 MHz according to the magnetic field and beam dynamics. The RF system is supposed to operate on 2rd harmonic of ~90 MHz. Two Dee cavities located at the valley of the magnet have been adopted. The preliminary design of RF system, which consists of active tuning, coupling and so on, is presented. The computation and simulation showed good results to ensure the Dee cavities operating at the 2rd harmonic and the proper variation of acceleration voltage versus radius. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP19 | Neural Network Based Generalized Predictive Control for RFT-30 Cyclotron System | controls, cyclotron, network, target | 212 |
|
|||
Beamline tuning is time consuming and difficult work in accelerator system. In this work, we propose a neural generalized predictive control (NGPC) approach for the RFT-30 cyclotron beamline. The proposed approach performs system identification with the NN model and finds the control parameters for the beamline. Performance results show that the proposed approach helps to predict optimal parameters without real experiments with the accelerator. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP26 | Axial Injection Channel of IPHC Cyclotron TR24 and Possibility of Ion Beam Bunching | ion, cyclotron, bunching, injection | 224 |
|
|||
The CYRCé cyclotron (CYclotron pour la ReCherche et l'Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics and medical treatments. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 microA. The bunching of the H− ion beam by means of multi harmonic buncher is considered in this report. The buncher may be installed in the axial injection beam line of the cyclotron. The using of the greed-less multi harmonic buncher will give opportunity to new proton beam applications and to increase the accelerated beam current. The main parameters of the sinusoidal (one-harmonic) and multi harmonic bunchers are evaluated. | |||
![]() |
Poster TUP26 [0.210 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP27 | The Design of the Medical Cyclotron RF Cavity | cavity, cyclotron, extraction, ion | 227 |
|
|||
In the cyclotron, RF system as an essential component provides energy for the ions is accelerated. However, the RF cavity is the most important equipment which produced the accelerating field. According to the physical requirements, RF cavity, the resonant frequency of that is 31.02 MHz, was designed in the paper. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEA01 | Some Examples of Recent Progress of Beam-Dynamics Studies for Cyclotrons | cyclotron, space-charge, injection, extraction | 244 |
|
|||
Two subjects are highlighted. The first is the problem of high space charge effects in cyclotrons. The second is the the progress in development of tools and simulations for industrial and medical cyclotrons at IBA. | |||
![]() |
Slides WEA01 [2.060 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEA03 | Space-charge Simulation of TRIUMF 500 MeV Cyclotron | space-charge, cyclotron, TRIUMF, focusing | 254 |
|
|||
Funding: TRIUMF also receives federal funding via a contribution agreement through the National Research Council of Canada. We present a method to improve computation efficiency of space charge simulations in cyclotrons. This method is particularly efficient for simulating long bunches where length is large compared to both transverse size and turn separation. We show results of application to space charge effects in the TRIUMF 500 MeV cyclotron. |
|||
![]() |
Slides WEA03 [3.145 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEB03 | Design and Simulation of Cavity for 18 MeV Cyclotron | cavity, coupling, cyclotron, impedance | 267 |
|
|||
RF system is the key part of cyclotron and cavity is the key part of RF system. The basic parameters of cavity design are the resonant frequency , dee voltage , RF phase and RF power. Proper operation of cavity depends on the suitable voltage distribution in accelerating gap, phase stability in cavity and as well as optimal scattering parameters. In this simulation by using CST MWS, different parts of cavity such as stam and dee are optimized to achieved optimum dimesnsions for desired resonant freq, dee voltage and RF power. Properties of designed cavity including: resonant frequency at 64.3 MHz, dee voltage is 45 kV and RF power is 11 kW. | |||
![]() |
Slides WEB03 [3.767 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP03 | Operation and Maintenance of RF System of 520 MeV TRIUMF Cyclotron | operation, cyclotron, TRIUMF, vacuum | 307 |
|
|||
1 MW CW 23 MHz RF system of the TRIUMF 520 MeV Cyclotron has been in operation for over 40 years. Continuous development of the RF power amplifiers, the waveguide system and of the measurement and protection devices provides reliable operation and improves the performance of the RF System. In this article, operation and maintenance procedure of this RF system are analyzed and recent as well as future upgrades are being analyzed and discussed. In particular, we discuss the improvements of the transmission line's VSWR monitor and their effect on the protection of the RF system against RF breakdowns and sparks. We discuss the new version of input circuit that was installed, tested and is currently used in the final stage of RF power amplifier. We analyze various schematics and configurations of the Intermediate Power Amplifier (IPA) to be used in the future. The thermo-condition improvements of the Dee voltage probe's rectifiers are described. | |||
![]() |
Poster THP03 [2.215 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP09 | Mechanical Aspects of the LNS Superconducting Cyclotron Upgrade | extraction, ion, cyclotron, light-ion | 322 |
|
|||
The Superconducting Cyclotron (CS) is a three sectors compact accelerator with a wide operating diagram, capable of accelerating heavy ions with q/A from 0.1 to 0.5 up to energies from 2 to 100 MeV/u. The proposed upgrade to increase the light ion beam intensity by means of extraction by stripping implies many modifications of the median plane. The main activities of the mechanical upgrade are: the actuation of the new magnetic channels for the extraction by stripping and the realization of the two extraction modes, by stripping and by electrostatic deflection. For the magnetic channels and compensating iron bars, we are studying the problems of mechanical handling. To obtain the two extraction modes, we are trying to design a new set that allows for the exhange of two devices: electrostatic deflectors and and stripper with its magnetic channels for stripping extraction. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP14 | Design of RF Pick-up for the Cyclotron | pick-up, cavity, cyclotron, resonance | 336 |
|
|||
The radio-frequency (RF) pick-up for RFT-30 cyclotron which was located in the Korea Atomic Energy Research Institute (KAERI) was designed by Sungkyunkwan University in Korea. This paper covers proper position of RF pick-up and things to consider when designing. Our RF pick-up antenna is designed for RFT-30, but approach to design process can be used any RF pick-up antenna design. This paper provide some tendency graph according to position of RF pick-up. | |||
![]() |
Poster THP14 [2.010 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP20 | Magnetic System for SC200 Superconducting Cyclotron for Proton Therapy | cyclotron, proton, extraction, plasma | 353 |
|
|||
The superconducting cyclotron SC200 for proton therapy is designing by ASIPP (Hefei, China) and JINR (Dubna, Russia) will be able to accelerate protons to the energy 200 MeV with the maximum beam current of 1 μA. A conceptual design study with 3D codes for the superconducting cyclotron magnet has been carried out during 2015-16 at ASIPP and JINR. The main design considerations are reviewed. The results obtained by numerical field computation for a suitable choice of design parameters are presented. Results of numerical calculations are the basis for technical design of SC200 cyclotron. | |||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THC01 | KURRI FFAG's Future Project as ADSR Proton Driver | neutron, experiment, acceleration, proton | 366 |
|
|||
The accelerator complex using FFAG synchrotrons at KURRI* has been operated for the ADSR** experiments connecting the 100 MeV proton beam line with the research reactor facility so called KUCA*** since 2009. Fruitful results have been produced for the reactor physics using various configurations of the nuclear fuel core and variations of the neutron production target. Since higher energy beams such as 300 - 500 MeV are desired for the further study of the ADSR system, we are investigating the energy upgrade possibility of the accelerator complex. One of the candidates is to construct a new FFAG ring which adopts continuous acceleration with fixed frequency (serpentine acceleration) outside of the existing. These higher energy beams can be used for neutron or muon production experiments as well as ADSR study.
KURRI* Kyoto University Research Reactor Institute ADSR** Accelerator Driven Subcritical Reactor KUCA*** Kyoto University Critical Assembly |
|||
![]() |
Slides THC01 [11.777 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THC03 | Compact Superconducting Cyclotron SC200 for Proton Therapy | cyclotron, extraction, proton, acceleration | 371 |
|
|||
Superconducting cyclotron SC200 will provide acceleration of protons up to 200 MeV with maximum beam current of 1 μA. We plan to manufacture in China two cyclotrons: one will operate in Hefei cyclotron medical center the other will replace Phasotron in Medico-technical Center JINR Dubna and will be used for cancer therapy by protons. Now we present results of simulation of magnetic, acceleratiion and extraction systems. | |||
![]() |
Slides THC03 [2.798 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THD01 | High Intensity and Other World Wide Developments in FFAG | proton, cyclotron, injection, space-charge | 374 |
|
|||
Here I present an overview of developments in Fixed Field Alternating Gradient accelerators, focusing on high intensity hadron accelerator designs. The talk will detail progress in studies of space charge effects and simulation, experimental characterisation of a 150 MeV proton FFAG at KURRI in Japan, experimental optimisation of FFAGs and novel FFAG developments for future applications. | |||
![]() |
Slides THD01 [12.473 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THD02 | Heat Transfer Studies of the IRANCYC-10 Magnet and its Effects on the Isochronous Magnetic Field | cyclotron, ion, operation, ion-source | 380 |
|
|||
In magnets for cyclotron, one of the prominent problems is difference between simulation and feasible operations. By considering more factors in simulation these differ-ence can be reduced. Thermal effect and heat transfer is one phenomenon which can change favourite features of the magnets. IRANCYC-10 is a compact AVF cyclotron which is in manufacturing phase at AmirKabir University of Technology. In IRANCYC-10 heat transfer studies have been done for RF cavity, RF transmission line and PIG ion source. In this paper, accurate simulation of heat transfer and magnetic field have been done. Also thermal effects on isochronous magnetic field for IRAN-CYC-10 is investigated. For heat transfer and CFD simu-lations, Ansys CFX and for magnetic simulation Opera 3D Tosca have been used. The initiate magnet ampere-turn in simulation is 45201 and water mass flow rate for magnet system is considered 53 lit/min. | |||
![]() |
Slides THD02 [6.831 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THD03 | Recirculating Electron Beam Photo-converter for Rare Isotope Production | target, electron, photon, TRIUMF | 383 |
|
|||
Funding: TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. ARIEL & e-linac construction are funded by BCKDF and CFI. The TRIUMF 50 MeV electron linac has the potential to drive cw beams of up to 0.5 MW to the ARIEL photo-fission facility for rare isotope science. Due to the cooling requirements, the use of a thick Bremsstrahlung target for electron to photon conversion is a difficult technical challenge in this intensity regime. Here we present a different concept in which electrons are injected into a small storage ring where they make multiple passes through a thin internal photo-conversion target, eventually depositing their remaining energy in a central core absorber which can be independently cooled. We discuss design requirements and propose a set of design parameters for the Fixed Field Alternating Gradient (FFAG) ring. Using particle simulation models, we estimate various beam properties, and electron loss control. |
|||
![]() |
Slides THD03 [6.773 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||