KURRI FFAG's Future Project as ADSR Proton Driver

Y. Ishi, M. Sakamoto, Y. Kuriyama, Tom Uesugi, Y. Mori CYCLOTRONS 2016 at ETH, Zurich, 15 Sep. 2016

Kyoto University Research Reactor Institute

OUTLINE

- 1.Brief explanation about ADSR
- 2.FFAG accelerator complex at KURRI
- 3.ADSR and other experiments using the proton beams from the complex.
- 4. Future projects
 - 1.Intensity upgrade
 - 2.Energy upgrade

5.Summary

Brief explanation about ADSR

- ADS : Accelerator Driven System
- ADSR: Accelerator Driven Sub-critical Reactor

Accelerator Driven Subcritical Reactor

ADSR is a system which realises sustainable nuclear fission chain reaction induced by a large amount of spallation neutron obtained by irradiation of a heavy metal target using high energy proton beams generated by accelerators. In this system the nuclear reactor plays a role of neutron booster which amplifies the neutron flux from the target.

The output of the nuclear reactor can be controlled by changing the beam power from the accelerator. Output from the sub-critical reactor is expressed as P: thermal power of the reactor

- P: thermal power of the reactor
- S: power from the neutron source beam power of the accelerator
- k_{eff} : effective multiplication factor of subcritical fuel system controlled by rods

5

Not only energy production but the transmutation of the nuclear waste

Requirement for the Proton Driver of ADSR

- 1. High Energy (1.5 GeV)
- 2. High Intensity (20 mA)
- 3. Low power consumption (100 MW)
- 4. CW or High rep. rate (1 kHz)
- 5. Trip free ← heat stress of the reactor
 - 1. < 2,000 20,000 tripps / Y (0 10sec)
 - 2. < 20,000 2,000 tripps / Y (10 sec 5 min)
 - 3. < 42 tripps / Y (to keep 70% duty factor of the plant)

ADSR facilities in the world

	Project	accel.	spectrum	output	status	
	KUCA (Japan)	100 MeV FFAG	thermal	zero	ongoing	
	TEF (JAEA,Japan)	400MeV LINAC	fast	500 Wt	planning	
	MYRRHA (Belgium)	600MeV LINAC	fast	100 MWt	planning	

FFAG – KUCA ADS system schematic diagram (original) 2008 - 2010

FFAG – KUCA ADS system schematic diagram (upgraded) from 2011

FFAG – KUCA ADS system schematic diagram (upgraded) from 2012

FFAG – KUCA ADS system schematic diagram (2011 -)

KURRI-FFAG complex (original)

The Injector (Ion beta) World's first trials in proton FFAG:

- •Spiral sector magnet
- Induction acceleration
- •Variable energy by using multi-pole face winding coils

Independent 32 pole face winding coils

Booster

Main Ring

Beam characteristics of FFAGs in March 2010

Ion beta peak current 25µA

spiral sector, induction acceleration, variable energy by using multi coil : first trail for the proton FFAG

induction scheme : energy fluctuation is large \rightarrow poor stability of the injection to the booster

Booster average current 1.5nA (duration 7µs i.e. 14-turn injection)

Highly completed machine : It took only a few hours to reach final energy once we got rf capture.

It realized designed characteristics \rightarrow no beam loss

But we need to optimise the injection angle by adjusting the injection septum magnet once a day.

Main ring average current 0.1nA

Return-yoke free magnets make beam injection/extraction possible even in arc section, but they make leakage field larger.

Beam intensity can be improved by cure of beam loss.→but at most a few nA→change the injection scheme

Charge exchange injection system in FFAG main ring

the main ring ~1µA

- charge exchange by using carbon foil 10/20 μg/cm²
- FFAG-ERIT H⁻Linac(11MeV) can be used !
- space charge limit

Tune shift due to space charge effects

$$\begin{aligned} \Delta \nu_{y,\text{inc}} &= -\frac{Nr_0 R}{\pi \nu_y \beta^2 \gamma} \left(\beta^2 \frac{\epsilon_1}{h^2} + \beta^2 \frac{\epsilon_2}{g^2} + \frac{F/B}{\gamma^2 b(a+b)} \right) \\ &= -2.25 \times 10^{-5} \text{ m}^{-2} \times \left(4. \text{ m}^2 + 3. \text{ m}^2 + 14004. \text{ m}^2 \right) \\ &= -0.315 \end{aligned}$$

N	3.12×10^{11}	
r_0	1.53×10^{-18}	proton
R_0	4.54 m	average radius of injection orbit
eta,γ	0.147, 1.011	$11 \mathrm{MeV}$
$ u_x, u_y$	(3.7, 1.4)	
(a,b)	$(20, 15) \mathrm{mm}$	Rep_rate : 100 ~ 200 Hz
B_f	1/5	
F	1.5	Average current : 5uA
h	32.5 mm	half gap of the vacuum chamber
g	$37.9 \mathrm{mm}$	half gap of the magnet

Layout of accelerator complex in the Innovation Research Lab.

Beam Line from Linac to MR

* added one QM inMay 2011

Beta functions and B field in the main ring

E inj	11MeV
E ext	100/150MeV
$f_{ m rf}$	1.6 - 5.2MHz
< <i>R</i> >	4.57 - 5.4 m
B max	1.6 T

Beam injection to the main

The stripping efficiency of the foil

brand-new foil 20 ug/cm2

after 1.5 years...

History of beam intensity and energy upgrade in recent years

	Energy	y		rep.rate	inin atau		
year	(MeV)	extraction	@CA target	(Hz)	Injector	notes	
March 2009	100	50pA	~3 pA	30	ion beta booster	-	
March 2010	100	100pA	30pA	30	ion beta booster	transport efficiency up cavity voltage 2.5 ->4kV	
March 2011	100	1nA	100pA	20	H-	H- injection kicker system upgrade	
March 2012	100	10nA	100pA	20	H-	bad focusing on CA target	
March 2013	150	10 nA	1nA	20	H-	energy up (150 MeV for irr. exp.) still 100 MeV for ADS exp. beam tripped often due to rf trouble (in both linac and main ring)	
March 2014	150	10 nA	1 nA	20	H-	reliable supply based on stable rf	

Beam Users

- ADS experiment
- Irradiation for materials
- Medical experiment (irradiation to living rats)

ADSR experiments at KURRI

KUCA

Output power ~10W

KUCA Configurations 3 critical assemblies : i. A & B cores Polyethylene Mod./Ref. ii. C core H₂O Mod./Ref.

2 accelerators :

i. Cockcroft-walton type
(D,T) reaction
14 MeV neutrons
ii. FFAG type
100 MeV protons
from KUCA Outside

ADSR Experiment Setup

Reactor core

Beam transport line

Subcritical fuel system

- 100 MeV Protons
- 20, 30 Hz repetition rate
- 1nA intensity
- W and Pb-Bi target
- KUCA A-Core :

W or Pb-Bi target w/ read out as FC

Basic beam parameters for ADS experiments at KURRI

KUCA	Output power	~ 10 W	
	Neutron multiplication	$\alpha = 1 / (1 - k_{\text{eff}})$	
		$k_{\rm eff}$ = 0.99, α = 100	
	Beam power requirement	< 0.1W	
	cf. For 100MeV proton beam,	<i>I</i> < 1 nA	

FFAG Beam energy of FFAG Beam current of FFAG Pulse width Repetition rate Energy spread

$$T = 100 \text{ MeV}$$

 $I < 1 \text{ nA}$
 $\sim 20 \text{ ns}$
 $20 - 100 \text{ Hz}$
 $< +/- 1\%$

1.0E-08 within 20 ns can be measured with 1.0E-10 1.0E-08 1.0E-02 1.0E-06 1.0E+00 1.0E-04 Neutron energy (MeV)

> The neutron energy spectrum in the core as a function of time measured from the beam hitting the target

1.0E+02

extremely high peak power beam

World's First ADSR Experiment (March 4, 2009)

Two components in the neutron counting rate:

1. The fast component decaying exponentially

2. the slow component caused by delayed neutrons almost constant in time.

The presence of the delayed neutrons indicates that neutrons generated through nuclear fission chain reaction inside the fuel system.

Thorium-loaded ADSR Experiment (March 3, 2010)

Proton Injection in Thorium Core

FFAG Accelerator : 100 MeV Protons

30 Hz repetition rate

~30 pA intensity

Tungsten target

(80mm diameter, 10mm thick)

KUCA A-Core with Th : Natural thorium metal fuel

No moderator or Graphite moderator

Related papers

- C. H. Pyeon, et al., J. Nucl. Sci. Technol., 44, 1368 (2007).
- C. H. Pyeon, et al., J. Nucl. Sci. Technol., 45, 1171 (2008).
- C. H. Pyeon, et al., J. Nucl. Sci. Technol., 46, 965 (2009).
- H. Shahbunder, et al., Ann. Nucl. Energy, 37, 592 (2010).
- H. Taninaka, et al., J. Nucl. Sci. Technol., 47, 376 (2010).
- H. Shahbunder, et al., Ann. Nucl. Energy, 37, 1214 (2010).
- H. Taninaka, et al., J. Nucl. Sci. Technol., 48, 873 (2011).
- H. Taninaka, et al., J. Nucl. Sci. Technol., 48, 1272 (2011).
- C. H. Pyeon, et al., Ann. Nucl. Energy, 40, 229 (2012).
- C. H. Pyeon, et al., Ann. Nucl. Energy, 38, 2298 (2011).
 C. H. Pyeon, et al., Nucl. Sci. Eng., 177, 156 (2014).
 M. Yamanaka, et al., PHYSOR 2014, (2014).

J. Y. Lim, et al., Sci. Technol. Nucl. Install., 2012, ID: 395878, 9 pages, (2012).
C. H. Pyeon, et al., Nucl. Eng. Technol., 45, 81 (2013).
A. Sakon, et al., J. Nucl. Sci. Technol., 50, 481 (2013).
A. Sakon, et al., J. Nucl. Sci. Technol., 51, 116 (2014).
C. H. Pyeon, et al., PHYSOR 2014, (2014).

C. H. Pyeon, et al., Prog. Nucl. Energy, (2014). [in print]

most cited award

"First Injection of Spallation Neutrons Generated by High-Energy Protons into the Kyoto University Critical Assembly "

Other experiments using 150MeV proton beams from the complex

Beam Line and Chamber for Irradiation Experiments

The experiments measure the effect of the irradiation of the proton beams to the material of the pressure vessel used in ADSR reactor.

The irradiation port connected to the 150 MeV proton beam line. It has cryogenics and traction control machine inside which realize measurements under irradiation of the proton beam.

Biological experiment of irradiation to living rats

ALTA CALL TO SALE

14

Basic study for BNCT. It investigate the effect of irradiation of the proton to the normal cells.

a narcotised rat

Future Projects

In order to make the facility multi-capable, we are investigating two upgrade possibilities:

- 1. Increasing the beam current up to the order of μ A by increasing the repetition rate at the order of 100 Hz.
 - e.g. spallation neutron source
- 2. Energy upgrade by adding a new ring outside the main ring.
 - further study of ADSR,
 - secondary particle production (pion, muon) using extended ERIT mechanism

Intensity upgrade

- 1. One of the aims of the intensity upgrade is that FFAG beams can be used for high intensity pulse neutron source.
- Neutron radiography users desire low spill rate (~10 Hz) for the experiments e.g. neutron radiography using TOF which needs to get rid of contamination from the pulse of different timing.
- 3. FFAG can increase the beam intensity by raising up a repetition rate at 100 1000 Hz.
- 4. But it is not allowed for the TOF measurements.

Use RF stacking at the extraction orbit!

RF stacking at the extraction energy

FFAG rings can provide long interval pulse for users, while the machine operation itself is kept at high repetition rate by using rf stacking after acceleration[1].

This scheme reduces space charge effects.

[1] S.Machida, "RFStackingatExtractionMomentum", FFAG Workshop 2003, October 13-17, 2003 at BNL, http://www.cap.bnl.gov/mumu/conf/ffag- 031013/Machida2.pdf.

RF Scenario

φ_s

In the real machine operation, we use similar scenarios in which synchronous phase ϕ s and rf voltage are fixed at 30 degree and 4 kV respectively during all the acceleration period. On the other hand, in the scenario used in this simulation study, φs is dropped off linearly from 30 to zero degree when the energy of the beam is between 145 and 150 MeV for softlanding. The rf voltage is also reduced in this region so that the bucket area is constant in order to make momentum spread small at the end of acceleration.

field index k	7.7
kinetic energy T	11 - 150 [MeV]
momentum p	144 - 551 [MeV/c]
circumference C	28.8 - 33.6 [m]
momentum compaction factor α	0.115
rf voltage $V_{\rm rf}$	8 [MV]
rf frequency $f_{\rm rf}$	1.6 - 4.4 [MHz]
harmonic number h	1

Stacking processes are simulated using 1 000 test particles for each acceleration batch.After first ac- celeration, full width of momentum spread is about 0.5%, the final momentum spread after 10 stacks is 2.5% of full width.

w/ adiabatic landing

Sign of RF stacking

flat top

Preliminary Experiment of RF stacking

Energy upgrade

Number of neutrons produced through the nuclear spallation process strongly depends on the beam energy of the primary protons. The energy upgrade of the accelerator facility is desired by neutron users and the reactor physicists for further experiments of ADSR.

Fortunately, there is an enough space to build an additional higher energy ring outside the main ring. 700 MeV spiral FFAG ring was designed 6 years ago.

Now we are interested in secondary particle production e.g. pions and their decay muons using extended ERIT mechanism.

ERIT: Energy Recovery Internal Target

FFAG-ERIT RING_demonstration(2010@KURRI)

16年9月8日木曜日

Newly designed 400 MeV FFAG ring.

Basic parameters of the 400 MeV FFAG ring.

Lattice	FDF triplet
# of cells	16
k value	0.672
Energy	150 - 400 MeV
< R >	6.6 - 9.3 m
V rf / turn	5 MV
Tune	(1.356, 2.248)

The k is set to a rather small value of 0.672. This value of k makes a serpentine acceleration possible. Generally, the profits of this scheme are follows

- Since a fixed frequency is used, high electric field of the acceleration cavity is easily obtained.
- This makes a fast and continuous acceleration possible.
- The ERIT mechanism can be applied to make secondary particles such as pions and their decay muons.

RF voltage condition for the serpentine channel

Extended ERIT mechanism

In the ordinary ERIT system, the ring is operated in a storage mode. However, in the extended ERIT system, the ring is in an acceleration mode. In this operation mode, since the beam hits the target at the maximum energy, the production efficiency of the secondary particles becomes high compared with the case of the storage mode.

Summary

- An FFAG accelerator complex has been constructed for ADSR experiments.
- These experiments has been ongoing since 2009, using 100 MeV proton beams from the complex. Fruitful results have been obtained from these experiments.
- Irradiation experiments using 150 MeV proton beam for material science and biological science have been performed as well as for ADSR.
- 4. Intensity upgrade project is ongoing using RF beam stacking at the high energy orbit.
- 5. Energy upgrade is under consideration with an additional 400-MeV FFAG ring not only for further ADSR study but for the secondary particle production, adopting a serpentine acceleration, which realises extended ERIT mechanism.