Keyword: proton
Paper Title Other Keywords Page
MOBS02 In Memorium: Mike Craddock cyclotron, TRIUMF, kaon, factory 11
 
  • E.W. Blackmore
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
 
  Michael K. Craddock, TRIUMF accelerator physicist and UBC professor, died on 11 November, 2015 after a brief illness. Michael left the UK to join the UBC Nuclear Physics group in 1966, just at the time a new accelerator to replace the aging Van de Graaff was under consideration. He was a leading member of the founding team that decided on a 500 MeV H¯ cyclotron and directed the beam dynamics design of the cyclotron to first beam in December 1974. With the cyclotron running at full intensity he moved his interest to higher energies and led the accelerator physics team in the design of the 30 GeV KAON Factory (1982-1994). After retirement from UBC in 2001 he moved his research interest to FFAGs.  
slides icon Slides MOBS02 [2.576 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOC01 Radiation Damage of Components in the Environment of High-Power Proton Accelerators lattice, radiation, target, simulation 24
 
  • D.C. Kiselev, R.M. Bergmann, R. Sobbia, V. Talanov, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  At high power accelerators, radiation damage becomes an issue particularly for components which are hit directly by the beam, like targets and collimators. Protons and secondary particles change the microscopic (lattice) structure of the materials, which macroscopically affects physical and mechanical properties. Examples are the decrease of thermal conductivity and ductility as well as dimensional changes. However, the prediction of these damage effects and their evolution in this harsh environment is highly complex as they strongly depend on parameters such as the irradiation temperature of the material, and the energy and type of particle inducing the damage. The so-called term "displacements per atom" (DPA) is an attempt to quantify the amount of radiation induced damage and to compare the micro- and macroscopic effects of radiation damage caused by different particles at different energies. In this talk, the basics for understanding of the mechanisms of radiation damage will be explained. The definition and determination of DPA and its limitations will be discussed. Measurements and examples of the impact of radiation damage on accelerator components will be presented.  
slides icon Slides MOC01 [8.493 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOD01 Design of the Energy Selection System for Proton Therapy Based on GEANT4 emittance, simulation, cyclotron, scattering 30
 
  • Z.K. Liang, W. Chen, X. Liu, J. Zha
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
  • K.F. Liu, B. Qin
    HUST, Wuhan, People's Republic of China
 
  Huazhong University of Science and Technology (HUST) has planned to build a proton therapy facility based on an isochronous superconducting cyclotron. The 250 MeV/500 nA proton beam is extracted from a super-conducting cyclotron. To modulate beam energy, an en-ergy selection system is essential in the beam-line. The simulation based on Geant4 has been performed for the energy selection system and its result will be discussed in this paper. This paper introduces the variation rules of the beam parameters including the beam energy, beam emit-tance, energy spread and transmission. The degrader's gap and the twiss parameter are proven to be effective ways to reduce the emittance after degrader.  
slides icon Slides MOD01 [2.331 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MODM01 Design Study of the 250 MeV Isochronous Superconducting Cyclotron Magnet cyclotron, extraction, magnet-design, acceleration 33
 
  • W. Chen, Z.K. Liang, X. Liu
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
  • K. Fan, K.F. Liu, B. Qin
    HUST, Wuhan, People's Republic of China
 
  Superconducting cyclotron is an optimum choice to deliver high quality continuous wave (CW) proton beams for proton therapy with its compactness and power saving. Field isochronism and tune optimization are the two crucial factors of cyclotrons during the magnet design. This paper is concentrated on the superconducting magnet design, mainly including the spiral magnet, isochronous field and the tune optimization. The main parameters and some features of the machine will be presented.  
slides icon Slides MODM01 [0.623 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MODM04 Design of the Fast Scanning Magnets for HUST Proton Therapy Facility simulation, cyclotron, dipole, target 42
 
  • X. Liu, W. Chen, Z.K. Liang
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
  • Q.S. Chen, K.F. Liu, B. Qin
    HUST, Wuhan, People's Republic of China
 
  Funding: Work supported by Major State Research & Development Program, with grant No. 2016YFC0105305
For implementation of proton therapy, Huazhong University of Science and Technology has planned to construct a 250 MeV/500 nA superconducting cyclotron for proton therapy. In the beam-line, the scanning system spreads out the proton beam on the target according to the complex tumor shape by two magnets for horizontal and vertical scanning independently. As dipole magnets are excited by alternating currents and the maximum repetition rate is up to 100 Hz, the eddy currents are expected to be large. This paper introduces the design of these two scanning magnets and analyzes the eddy current effect. Slits in the end pole are proven to be an effective way to reduce the eddy current. Different directions, distributions and width sizes of slits are simulated and compared to determine the slits arrangement. At last, the maximum temperature of the optimized scanning magnets reaches the temperature requirements.
 
slides icon Slides MODM04 [2.092 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP04 SPES Cyclotron Beamlines cyclotron, neutron, quadrupole, beam-losses 53
 
  • D. Campo, P. Antonini, A. Calore, A. Lombardi, M. Maggiore, L. Pranovi
    INFN/LNL, Legnaro (PD), Italy
 
  The SPES (Selective Production of Exotic Species) facility purposes are the production of radioactive beams (RIBs) by ISOL technique, the production and the research on innovative radioisotopes and experiments with high intensity neutron beams. For these reasons the 70p cyclotron, designed by BEST Cyclotron Systems Ins., has been installed at Laboratori Nazionali di Legnaro: it is a machine able to produce a beam current up to 700 μA shared into two extraction channels. Beams at the energy values of 35 MeV, 50 MeV and 70 MeV have to be transported to the experimental areas with specific properties and minimizing the beam losses. Here, the main features of the needed beamlines are described.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP06 Physical Design of the Extraction Trim-Rods in a 230 MeV Superconducting Cyclotron extraction, cyclotron, acceleration, feedback 61
 
  • D.S. Zhang, M. Li, C. Wang, J.J. Yang, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  Two electrostatic deflectors are used for beam extraction of the 230 MeV superconducting cyclotron CYCIAE-230, which is under development at CIAE. Resonance crossing and processional motion are introduced by a first harmonic bump of main field during the beam dynamics design to increase the turn separation and accordingly the extraction efficiency. Four trim-rods of variable depth are employed to generate the desirable field bump for their stability, the amplitude and azimuth of first harmonic bump can be adjusted with different size and depth of trim-rods. However, effect on isochronous field in acceleration region is followed by trim-rods in practice, therefore the base depth of trim-rods need to be designed and re-shimming procedure of main magnet model need to be implemented interactively. The effect of trim-rods and isochronous field production by a new model will be presented in this paper.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP12 Fast Scanning Beamline Design Applied to Proton Therapy System Based on Superconducting Cyclotrons cyclotron, dipole, emittance, radiation 79
 
  • B. Qin, Q.S. Chen, K. Fan, M. Fan, K.F. Liu, P. Tan
    HUST, Wuhan, People's Republic of China
  • W. Chen, Z.K. Liang, X. Liu, T. Yu
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
 
  Funding: Work supported by The National Key Research and Development Pro-gram of China, with grant No. 2016YFC0105305
Proton therapy is recognized as one of the most effec-tive radiation therapy method for cancers. The super-conducting cyclotron becomes an optimum choice for delivering high quality CW proton beam with features including compactness, low power consuming and higher extraction efficiency. This paper introduces de-sign considerations of the beamline with fast scanning features for proton therapy system based on supercon-ducting cyclotrons. The beam optics, the energy selec-tion system (ESS) and the gantry beamline will be de-scribed.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP13 Production of F-18 and Tc-99m Radionuclides using an 11 MeV Proton Accelerating Cyclotron target, cyclotron, positron, radioactivity 83
 
  • I. Kambali, M. Marlina, P. Parwanto, R. Rajiman, H. Suryanto
    BATAN, South Tangerang, Indonesia
  • H. Astarina, N. Huda, R.R. Ismuha, K. Kardinah, F.D. Listiawadi
    Dharmais Cancer Hospital, Jakarta, Indonesia
 
  Funding: The World Academy of Sciences (TWAS) and National Nuclear Energy Agency of Indonesia (BATAN)
An 11-MeV proton-accelerating cyclotron has been employed to produce F-18 and Tc-99m radionuclides. In this report, F-18 radionuclide was produced from enriched-water target whereas Tc-99m was generated from natural molybdenum trioxide (MoO3) target. Two recoiled radioactive impurities such as Co-56 and Ag-110m are identified in the F-18 solution whereas N-13 was recognized as an impurity in the Tc-99m production. The Co-56 radionuclidic impurity is presumably sputtered off the havar window in the target system whereas Ag-110m is originally from a silver body housing the enriched water target which is generated by secondary neutron irradiated Ag-109. In addition, N-13 impurity found in the post-irradiated MoO3 target occurs presumably via (p,He-4) nuclear reaction.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP14 Study of the Beam Extraction from Superconducting Cyclotron SC200 extraction, cyclotron, septum, resonance 87
 
  • K.Z. Ding, Y.F. Bi, G. Chen, Y. Chen, Sh. Du, H. Feng, J. Ge, J. Li, Y. Song, Y.H. Xie, J. Zheng
    ASIPP, Hefei, People's Republic of China
  • O. Karamyshev, G.A. Karamysheva, N.A. Morozov, E.V. Samsonov, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  According to the agreement between the Institute of Plasma Physics (ASIPP) of the Chinese Academy of Sciences in Hefei, China, and Joint Institute for Nuclear Research (JINR), Dubna, Russia, the project of superconducting isochronous cyclotron for proton therapy SC200 is under development at JINR. The cyclotron will provide acceleration of protons up to 200 MeV with maximum beam current ~1 μA. Extraction system of the beam consists of electrostatic deflector and two passive magnetic channels. Electric field strength in deflector does not exceed 170 kV/cm, gradients of magnetic field in channels are in range 2-4 kG/cm.The first of the channels focusing the beam in horizontal plane is subdivided into four parts. Geometry and magnetic field of two and three bars sub channelsare described. Results of the beam tracking inside extraction system are presented. Efficiency of the beam extraction was estimated for different amplitudes of the betatron oscillations in accelerated beam.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP15 The ISOLPHARM Project for the Production of High Specific Activity Radionuclides for Medical Applications target, ion, ISOL, simulation 91
 
  • M. Ballan, A. Andrighetto, F. Borgna, S. Corradetti
    INFN/LNL, Legnaro (PD), Italy
  • M. Ballan
    UNIFE, Ferrara, Italy
  • F. Borgna, N. Realdon
    Università degli Studi di Padova, Padova, Italy
  • A. Duatti
    Università degli Studi di Ferrara, Ferrara, Italy
 
  ISOLPHARM is a branch of the INFN-LNL SPES project*, aimed at the production of radioisotopes for medical applications according to the ISOL technique. Such an innovative method will allow to obtain radiopharmaceuticals with very high specific activity. In this context a primary proton beam, extracted from a cyclotron will directly impinge a target, where the produced isotopes are extracted and accelerated, and finally, after mass separation, only the desired nuclei are deposed on a secondary target. This work is focused in the design and study of the aforementioned production targets for a selected set of isotopes, in particular for 64Cu, 89Sr, 90Y, 125I and 131I. 64Cu will be produced impinging Ni targets, otherwise the SPES UCx target is planned to be used. Different target configurations are being studied by means of the Monte Carlo based code FLUKA for the isotope production calculation and the Finite Element Method based software ANSYS ® for the temperature level evaluation. An appropriate secondary target substrate for implanting the produced isotopes is under study alongside with a system for its dissolution and repartition into radiopharmaceutical doses.
* A. Monetti et al., The RIB production target for the SPES project, Eur. Phys. J. A (2015) 51:128
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP18 Activities for Isotope Sample Production and Radiation Effect Tests at JULIC/COSY Jülich cyclotron, target, experiment, radiation 98
 
  • O. Felden, M. Bai, R. Gebel, R. Hecker
    FZJ, Jülich, Germany
 
  At the Forschungszentrum Jülich (FZJ) the intermediate energy cyclotron JULIC, used as injector of the Cooler Synchrotron (COSY) and COSY itself, have been enabled to perform low to medium current irradiations. Main task is to support the FZJ radionuclide research programme of INM-5. Target holders of the INM-5 were implemented to the external target station of JULIC to obtain reliable irradiations with 45 MeV protons and 76 MeV deuterons for nuclear reaction cross section measurements and medical radionuclide production. For testing of radiation effects, displacement damage DD and single event effects SEE, with energetic protons for electronics used in space and accelerators the beam can be extracted to a dedicated test stand, e.g. used by Fraunhofer INT. To provide these possibilities up to 2.5 GeV as well one external beamline of the cooler synchrotron COSY will be equipped with a new irradiation station and adaption for the dosimetry systems are done. Different dosimetry systems (PTW Farmer® chambers, Bragg Peak chambers, Gafchromic® dosimetry films) are available to monitor and control the ongoing irradiation. This report briefly summarizes the relevant technical activities.  
poster icon Poster MOP18 [4.196 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP19 A Diamond Detector Test Bench to Assess the S2C2 Beam Characteristics detector, extraction, emittance, timing 102
 
  • J. van de Walle, S. Henrotin, Y. Paradis, I.C. Tkint
    IBA, Louvain-la-Neuve, Belgium
 
  The fast timing capabilities, compactness, high sensitivity and radiation hardness of diamond detectors make them ideally suited for measurements in the pulsed beam from the S2C2. In this communicaiton, we will present first results obtained on the S2C2 with such a diamond probe and the mechanical design of a dedicated test bench to be used for factory tests. The test bench is able to measure the beam direction, the intensity distribution in the beam, the emittance (with an emittance slit) and the exact moment when the beam is extracted from the S2C2. We are able to measure the frequency at which the protons are extracted from the S2C2 and to observe small (<100 keV) mean energy fluctuations in the extracted beam. All these measurements can be done with extreme low beam intensities so that activation of the S2C2 is highly reduced.  
poster icon Poster MOP19 [1.320 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP20 Study of Geant4 Simulation for Cyclotron Radioisotope Production in Various Target Size target, simulation, cyclotron, toolkit 105
 
  • S.C. Mun, J.-S. Chai, M. Ghergherehchi, D.H. Ha, H.S. Kim, J.C. Lee, H. Namgoong
    SKKU, Suwon, Republic of Korea
 
  Funding: NRF-2015M2B2A8A10058096
The application of radioisotopes in medical radiology is essential for diagnosis and treatment of cancer. The fabrication of radioisotopes has main factors that maximize the fabrication yield and minimize the costs. An effective method to solve this problem is that the usage of Monte Carlo simulations before experimental procedure [1]. This paper studies the simulation and presents cyclotron models for the energy 13 MeV with moderate beam intensity are used for production of 11C, 13N, 15O, and 18F isotopes widely applied in positron emission tomography [1]. SKKUCY-13 cyclotrons with high beam intensity are available on the market for production of most medical and industrial isotopes. In this work, the physical and technical parameters of different models are compared. Overall, this confirms the applicability of Monte-Carlo to simulate radionuclide production at 13 MeV proton beam energy.
 
poster icon Poster MOP20 [1.905 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP21 Test Production of Ti-44 using RFT-30 Cyclotron target, cyclotron, positron, radiation 108
 
  • E.J. Lee, M.G. Hur, Y.B. Kong
    KAERI, Daejon, Republic of Korea
 
  RFT-30 30 MeV cyclotron has been developed for the production of radioisotopes and their applications. Fluorine-18, which is a widely-used positron emitter, has been produced regularly since 2015. In addition, research on the production of generator radioisotopes has been performed using this cyclotron. A generator means a device used to extract the positron-emitting daughter radioisotope from a source of the decaying parent radioisotope such as Ti-44 and Ge-68. In this research, gold-coated and natural Sc targets were proton-irradiated in order to produce Ti-44. Gamma spectra of irradiated targets were measured to confirm the production of Ti-44.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOE01 Coupling of Cyclotrons to Linacs for Medical Applications linac, cyclotron, ion, hadrontherapy 114
 
  • A. Garonna, U. Amaldi, V. Bencini, D. Bergesio, C. Cuccagna, E. Felcini, M. Varasteh Anvar, M. R. Vaziri Sereshk
    TERA, Novara, Italy
 
  Cyclotron and Linac technologies cover the vast majority of accelerator solutions applied to medicine. Cyclotrons with beams of H+/H around 20 MeV are found for radioisotope production and cyclotrons with beams up to 250 MeV are widely used for protontherapy. Linacs are present in every medium-sized hospital with electron beams up to 20 MeV for radiotherapy and radioimaging. They have also recently become available as commercial products for protontherapy. The coupling of these two strong technologies enables to expand the capabilities of cyclotrons by using linacs as boosters. This opens the way to innovative accelerator systems allowing both radioisotope production and ion beam therapy (cyclinacs), new treatment techniques (high energy proton therapy) and new imaging techniques (proton radiography). This paper provides an overview of the technical challenges linked to coupling cyclotrons to linacs and the various solutions at hand.  
slides icon Slides MOE01 [13.900 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOE02 A Multi-leaf Faraday Cup Especially for Proton Therapy of Ocular Tumors radiation, ion, cyclotron, target 118
 
  • S. Seidel, J. Bundesmann, T. Damerow, A. Denker, C.S.G. Kunert
    HZB, Berlin, Germany
  • A. Weber
    Charite, Berlin, Germany
 
  In cooperation with the university hospital Charité – Universitätsmedizin Berlin the Helmholtz-Zentrum Berlin (HZB) provides a proton beam used for radiation therapy of intraocular tumors. The protons are accelerated to 68 MeV by an isochronous cyclotron as the main accelerator. The human eye is a very small and complex organ with several critical structures which must be spared from irradiation as much as possible. Hence radiation therapy with protons is especially convenient due to their well-defined Bragg peak. At the HZB the distal fall off (the distance between 90% and 10% of the dose level) is less than 1 mm in water. Therefore it is crucial to measure the energy and maximum range of the beam with the corresponding high accuracy. A Multi-Leaf Faraday Cup (MLFC) allows a quick and precise range-measurement of proton beams. We present a MLFC which meets those special requirements of the eye tumor therapy. Results of range-measurements in different energy regions revealing the achievable submillimeter precession are shown; and examples for applications in radiation hardness testing are given.  
slides icon Slides MOE02 [2.082 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA02 Challenges in Fast Beam Current Control Inside the Cyclotron for Fast Beam Delivery in Proton Therapy cyclotron, controls, power-supply, target 126
 
  • S. Psoroulas, C. Bula, P. Fernandez Carmona, G. Klimpki, D. Meer, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • D.C. Weber
    University of Zurich, University Hospital, Zurich, Switzerland
 
  Funding: G. Klimpki's work is supported by the "Giuliana and Giorgio Stefanini Foundation"
The COMET cyclotron* at PSI has been successfully used to treat patients with static tumors using the spot scanning technique, i.e. sequentially irradiating different positions inside the tumor volume. Irradiation time for each position ranges from micro- to milliseconds, with total treatment duration of about a minute. For some tumors (e.g. lung) physiological motion (e.g. respiration) interferes with the scanning motion of the beam, lowering treatment quality**. For such mobile tumors, we are developing a new technique called continuous line scanning (CLS), aiming at reducing treatment time by more than 50%. In CLS, dose rate should stabilize (within few percent) within tenths of a millisecond. We thus implemented a first prototype for fast, real-time beam control: a PID controller sets the internal electrostatic vertical deflector of the accelerator, regulating the beam current output based on the instantaneous current measured just before the patient and the knowledge of the transmission from the accelerator to the patient. In pre-clinical experiments, we achieved good control of the global dose delivered; open issues will be tackled in the next version of the controller.
*Schippers, J. M., et al (2007). NUCL INSTRUM METH B, 261(1-2), 773–776.
**Phillips, M. H., et al (1992). PMB 37(1), 223–233.
 
slides icon Slides TUA02 [1.790 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA03 New Time Structures Available at the HZB Cyclotron cyclotron, pick-up, extraction, ion 130
 
  • A. Denker, J. Bundesmann, T. Damerow, T. Fanselow, D. Hildebrand, U. Hiller, C. Rethfeldt, J. Röhrich
    HZB, Berlin, Germany
 
  While most of the beam time of the cyclotron is used for proton therapy of ocular melanomas, an increasing amount of beam time is used for experiments. In response to a growing demand on time structures a new pulse suppressor was developed. This was necessary as our cyclotron was originally designed for heavy ions, thus limiting us to repetition rates of 75 kHz for light ions. The pulse suppression is now accomplished completely on the low-energy side, making the pulse suppressor on the high energy side, which was needed for single pulses, superfluous. With this new pulse suppressor the repetition rate of the pulse may be varied from 2 MHz down to 1 Hz or less. The pulse length can be freely chosen from a quasi-continuous beam to single pulses with a pulse width less than 1 ns. The pulses are measured either with a specially developed Faraday cup or non-destructively with a pick-up. The extraction of single pulses surveys very precisely if single turn extraction is achieved. The set-up of the pulse suppressor, measurements on the time structures for various beams and examples of their experimental use will be presented.  
slides icon Slides TUA03 [3.956 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC01 100 MeV H Cyclotron Development and 800 MeV Proton Cyclotron Proposal cyclotron, ion, target, ion-source 149
 
  • T.J. Zhang, J.J. Yang
    CIAE, Beijing, People's Republic of China
 
  Since the last cyclotron conference in Vancouver, significant milestones have been achieved on the BRIF (Beijing Radioactive-Ion Beam Facility) project. On July 4, 2014 the first 100MeV proton beam was extracted from the H compact cyclotron. The cyclotron passed beam stability test with beam current of 25 μA for about 9 hours operation. In the year of 2015, the first radioactive ion beam of K-38 was produced by the ISOL system, and the beam current on the internal target of the 100 MeV cyclotron was increased to 720 μA. In the year of 2016, the cyclotron was scheduled to provide 1000 hours beam time for proton irradiation experiment, single-particle effects study and proof-of-principle trial on the proton radiography technology. It is also planed to build a specific beam line for proton therapy demonstration on the 100 MeV machine. In this talk, I will also introduce our new proposal of an 800 MeV, room temperature separate-sector proton cyclotron, which is proposed to provide 3~4 MW proton beam for versatile applications, such as neutron and neutrino physics, proton radiography and nuclear waste treatment.  
slides icon Slides TUC01 [19.352 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP04 Magnet Design of the New IBA Cyclotron for PET Radio-isotope Production cyclotron, extraction, ion, magnet-design 170
 
  • S. Zaremba, S. De Neuter, W.J.G.M. Kleeven, B. Nactergal, V. Nuttens, J. van de Walle
    IBA, Louvain-la-Neuve, Belgium
 
  An innovative isochronous cyclotron for PET radioisotope production has been designed, constructed, tested and industrialized at Ion Beam Applications (IBA) [1]. This cyclotron (patent application pending) produces 18MeV proton beam and is called the Cyclone® KIUBE. The design has been optimized for cost-effectiveness, compactness, ease of maintenance and high performance, which are key elements considering its application in the dedicated market. Compared to the previous 18 MeV protons and 9 MeV deuteron machine from IBA, Cyclone® 18/9, the gap between the poles has been reduced from 30 to 24 mm and the method of shimming to obtain isochronous magnetic field has been reviewed thoroughly. In early 2016, the prototype Cyclone® KIUBE was successfully commissioned at the IBA factory and the observed proton beam intensity outperformed Cyclone® 18/9.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP05 Installation and Commissioning of the First Cyclone®70p cyclotron, target, ion, beam-transport 173
 
  • B. Nactergal, J.L. Delvaux, J.-M. Geets, W.J.G.M. Kleeven, T. Vanderlinden, R. Vigneron, S. Zaremba
    IBA, Louvain-la-Neuve, Belgium
 
  In October 2013, IBA sold its first Cyclone®70p, ex-tracted 70 MeV proton machine to Zevacor Pharma, Indianapolis, IN, USA. This brand new machine combine the advantages of the design of the Cyclone®30 HC (1,5mA extracted beam) and the Cyclone®70 XP (multi-particle). Moreover, this high energy cyclotron has been optimized for H ions acceleration, activation reduction and long term beam production. The installation will be used for high power and long term irradiations of rubidium Rb targets to produce stron-tium 82Sr generator applied in the field of cardiac imaging. From cyclotron to beam lines and up to the target sta-tion, all subsystems have been reviewed to reach highest level of quality, reduce the activation (by the use of low activation material and reduction of beam losses) and finally optimized the maintenance. For that delivery, the machine will be equipped with 6 beam transport lines and 2 solid target station units. In June 2015, about 21 months after contract signature, the IBA Factory Acceptance Tests have been successfully performed in Belgium and the machine was shipped to Indianapolis, IN, USA to be installed in Customer factory cyclotron vault.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP06 Design of the Cyclone®70p cyclotron, vacuum, cavity, acceleration 175
 
  • S. Zaremba, M. Abs, J.L. Delvaux, W.J.G.M. Kleeven, B. Nactergal, V. Nuttens, J. van de Walle
    IBA, Louvain-la-Neuve, Belgium
 
  The IBA CYCLONE®70p is a high intensity 70 MeV proton-only cyclotron dedicated to the production of radioisotopes for PET generators and SPECT. The nominal power of the extracted beam goes above 50kW (750μA@70MeV). The proton-only cyclotron was developed based on the previous experience of the multi-particle Cyclone® 70XP running in Nantes, France. Numerical tools have been extensively used to optimize the magnetic field, to avoid potentially harmful resonances during acceleration and improve the acceleration efficiency of the cyclotron. In addition, electromagnetic and mechanical calculations permitted to obtain a low dissipated power and electromechanically robust design of the RF system. The vacuum computations have permitted to optimize the beam transmission, the placement and type of cryopumps. This new development of CYCLONE®70p was the initial part of the successfully finished IBA project also presented during this conference [1].  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP07 Commissioning and Testing of the First IBA S2C2 emittance, acceleration, timing, cyclotron 178
 
  • S. Henrotin, M. Abs, E. Forton, Y. Jongen, W.J.G.M. Kleeven, P. Verbruggen, J. van de Walle
    IBA, Louvain-la-Neuve, Belgium
 
  The first unit of the IBA superconducting synchrocyclotron (S2C2) has been installed in Nice, France, and is currently being commissioned. In this communication, we will present some issues encountered during the commissioning of our first synchrocyclotron for protontherapy. We will mainly focus on beam aspects, showing the influence of several machine parameters on beam properties like stability, energy and intensity.  
poster icon Poster TUP07 [1.403 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP09 Diagnostic Tool and Instrumentation for Handling 50 kW Beam Power cyclotron, diagnostics, instrumentation, shielding 184
 
  • P. Antonini, E. Boratto, A. Calore, D. Campo, J. Esposito, A. Lombardi, M. Maggiore, M. Poggi, L. Pranovi
    INFN/LNL, Legnaro (PD), Italy
 
  The SPES facility is entered the commissioning phase and the 70 MeV cyclotron is delivering the proton beams at the maximum power permitted. The INFN team has developed additional beam instrumentation in order to stop the particles at different power allowing the tuning of the beamline and to check the particles losses during the transport. In particular, a beam dumper able to stop up to 55kW beam power has been constructed and tested as well as the beam loss monitor system by INFN team. Here we present the status of the beam instrumentations supplied by INFN and the results achieved during the test with the beam.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP12 High Accuracy Cyclotron Beam Energy Measurement using Cross-correlation Method cyclotron, pick-up, experiment, real-time 193
 
  • A.M. Hendy, F.M. Alrumayan
    King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
  • H.A. Kassim, K. Kezzar
    KSU, Riyadh, Kingdom of Saudi Arabia
 
  Funding: This project was supported by the NSTIP strategic technologies program in the kingdom. Award No. (14-MAT-1233-20)
This work discusses a method to measure the protons energy from the CS 30 Cyclotron at KFSHRC. Using two Fast Current Transformers (FCT), particles' Time of Flight (ToF) can be accurately determined by using windowed cross-correlation method. Existing techniques use pulse width or edge delay measurement to get the ToF. The accuracy of these methods, however, is limited by sampling rate, signal level, noise, and distortion. By using Cross-Correlation and interpolation, on the other hand, a fractional delay measurement can be obtained, and the system works with low level signals, i.e. high S/N ratio. During experiments, time delay measured between the two signals was 9.4023 ns. By using relativistic equations cyclotron energy was calculated and found to be 25.99 MeV, bearing in mind that cyclotron energy (mentioned in the CS30 manual) is 26.5 MeV for protons. The difference between actual and calculated energy was <2%. Results will be further discussed and analyzed.
S. Varnasseri et al., "Test Bench Experiments for Energy Measurement and Beam Loss of ESS-BILBAO", Proceedings of IBIC2013, Oxford, UK, 2013.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP14 The Assembly and Adjustment of the Second Stripping Probe System for CYCIAE-100 controls, cyclotron, extraction, PLC 199
 
  • Shizhong. An, L.C. Cao, X.L. Fu, Z.G. Li, G.S. Liu, Y.L. Lv, G.F. Pan, Y. Wang, L.P. Wen, J.S. Xing, T.J. Zhang, Y.W. Zhang
    CIAE, Beijing, People's Republic of China
 
  A 100 MeV H compact cyclotron is under construction at China Institute of Atomic Energy (CYCIAE-100). The proton beams ranging from 75 MeV - 100 MeV with 200 μA beam intensity will be extracted in dual opposite direction by charge exchange stripping devices. The stripping probe system is the key part of extraction system for CYCIAE-100. The first stripping extraction system was installed in 2014 and it has satisfied all kinds of requirements for the proton beam extraction. The first 100 MeV proton beam was got on July 4, 2014 and the beam current was stably maintained at above 25 μA for about 9 hours on July 25, 2014. The first RIB with ISOL system driven by 100 MeV proton beam was generated in 2015. The second stripping system was installed in 2015 after the assembly and adjustment. The beam commissioning based on the second stripping system will be finished and the extracted proton beam parameters will be measured in detail in this year.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP15 Control System Dedicated for Beam Line of Proton Radiography on 100 MeV Cyclotron CYCIAE-100 controls, PLC, EPICS, interface 202
 
  • Y.W. Zhang, H.R. Cai, L.C. Cao, T. Ge, S.M. Wei, J.J. Yang, Z.G. Yin, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  After the first beam on July 4 2014, CYCIAE-100's performance have been improved gradually and is ready for routine operation. There are 7 beam lines in total in the design stage, i.e. N1:ISOL, N2:isotope production, N3:beam dump, S1: single energy neutron, S2:white light neutron source, S3: radiobiological effect, S4:single event effect. The beam lines N2 and N3 were combined into one line during the construction. In the last two years, we propose to build to two new lines, one for principle verification of Proton Radiography, the other one for demonstration of proton therapy. Both of them are quite special. In this paper, a control system for the operation of the beam line of proton radiography, including the magnets, vacuum and water cooling, the beam intensity & profile diagnostics, and the imaging etc, will be presented.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP17 Preliminary Design of RF System for SC200 Superconducting Cyclotron cavity, coupling, cyclotron, simulation 208
 
  • G. Chen, Y.F. Bi, C. Chao, Y. Chen, K.Z. Ding, H. Feng, Y. Song, S.Y. Wang, M. Xu, Q. Yang, X. Zhang, J. Zheng, J. Zhou
    ASIPP, Hefei, People's Republic of China
  • O. Karamyshev, G.A. Karamysheva, N.A. Morozov, E.V. Samsonov, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  The SC200 is a compact superconducting cyclotron, which is designed under the collaboration of ASIPP (Hefei, China)-JINR (Dubna, Russia), for proton therapy. The protons are accelerated to 200 Mev with maximum beam current of 500 nA. The very high mean magnetic field of 2.9T-3.5T (center-extraction) challenges the design of radio frequency (RF) system because of the restricted space. The orbital frequency of the protons is ~45 MHz according to the magnetic field and beam dynamics. The RF system is supposed to operate on 2rd harmonic of ~90 MHz. Two Dee cavities located at the valley of the magnet have been adopted. The preliminary design of RF system, which consists of active tuning, coupling and so on, is presented. The computation and simulation showed good results to ensure the Dee cavities operating at the 2rd harmonic and the proper variation of acceleration voltage versus radius.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP23 Development of Magnetic Field Measurement Instrumentation for 10 MeV Cyclotron cyclotron, instrumentation, positron, LabView 218
 
  • H. Namgoong, J.-S. Chai, H.J. Choi, M. Ghergherehchi, D.H. Ha, W.J. Jun, H.S. Kim, J.C. Lee, S.C. Mun
    SKKU, Suwon, Republic of Korea
 
  To produce a radio isotope for Positron Emission To-mography (PET), 10 MeV compact Cyclotron was in-stalled at Sungkyunkwan University. This cyclotron had been produced 10 MeV proton beam. For this cyclotron magnet, the magnetic field measurement instrumentation was being developed. The hall probe sensor was used for field measurement. This hall probe sensor moves radial direction and angular direction by mechanically. The Magnetic field measurement instrumentation measures the field in the range of 5 mm for radial direction and 1 degree for angular direction. Magnetic field was measured with and without cooling. Magnetic field was carried with 4 Gauss without cooling and 0.1 Gauss with cooling. Our developed magnetic field measurement instrumentation has 0.1 Gauss of an error and 0.01 Gauss of resolution over 9 hours.  
poster icon Poster TUP23 [14.585 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THB01 The S2C2: From Source to Extraction extraction, cyclotron, injection, resonance 285
 
  • J. van de Walle, M. Abs, E. Forton, S. Henrotin, Y. Jongen, W.J.G.M. Kleeven, P. Verbruggen
    IBA, Louvain-la-Neuve, Belgium
  • M. Conjat, J. Mandrillon, P. Mandrillon
    AIMA, Nice, France
 
  Apart from being the first constructed superconducting accelerator, the S2C2 is also the first synchro-cyclotron at IBA. To study the beam dynamics, new computational tools had to be developed dealing with much larger number of turns, the longitudinal capture in the central region and the regenerative extraction. The S2C2 is a medical accelerator requiring a precise control of the beam characteristics so a deep understanding of beam dynamics is mandatory. Our simulation strategy allows to gain important insight in the acceleration process and beam characteristics: the beam emittance and energy spread, beam losses, effects of coil misalignments, median plane errors, resonances, etc. The simulation tools are split in three parts. At first, protons are tracked from the source up to about 3 MeV with the in-house tracking code AOC. In a second part, only the energy, RF phase and orbit centers are tracked as a function of time. Finally, a detailed tracking from 225 MeV up to extraction is performed with AOC. Simulations are compared to experimental observations during in-factory testing and commissioning of the first S2C2 installed in Nice, France.  
slides icon Slides THB01 [2.574 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THB04 Status of Hydrogen Ion Sources at PKU ion, ion-source, cyclotron, operation 297
 
  • S.X. Peng, J.E. Chen, Z.Y. Guo, H.T. Ren, J.M. Wen, W.B. Wu, Y. Xu, A.L. Zhang, J.F. Zhang, T. Zhang
    PKU, Beijing, People's Republic of China
  • A.L. Zhang
    University of Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Funding: This work is supported by the National Basic Research Program of China No. 2014CB845502 and the National Science Foundation of China No. 91126004, 11175009 and 11305004.
Cyclotrons are quite often to be used to accelerate different hydrogen ion beams with high intensity for different purposes around the World. At Peking University (PKU), special efforts were made on developing compact 2.45 GHz microwave driven ion sources with permanent magnets to generate high intensity H+, H2+, H3+ and H ion beams as well as other ion beams. For the positive ion beam, we can easily produce a 120 mA hydrogen ion beam with H+ fraction higher than 92% with a PKU standard 2.45 GHz ECR ion source. Its diameter is about 100 mm, its hight is about 100 mm. Also we have got 40 mA H2+ beam and 20 mA H3+ beam with a specific designed 2.45 GHz ECR ion source under different operation condition. The fractions of H2+ and H3+ are higher than 50% within the mixed hydrogen ion beams for each case. Recently, a Cs-free volume H source based on 2.45 GHz microwave was developed successfully in our lab. It can generate 45 mA H beam with duty factor of 10% and a 29 mA beam at DC mode at 35 keV. Its operation duty factor can vary from 1% to 100% and its power efficiency is about 20 mA/kW. Details of these sources will be presented in the paper.
 
slides icon Slides THB04 [4.466 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP05 Beam Intensity Modulation Capabilities for Varian's ProBeam® Isochronous Cyclotron operation, cyclotron, ion, ion-source 313
 
  • S. Busold, H. Röcken
    VMS-PT, Troisdorf, Germany
 
  Varian's ProBeam 250 MeV superconducting proton cyclotron is an isochronous cyclotron for radiological applications using pencil beam scanning mode and thus provides continuous beam (at its fundamental frequency of 72 MHz). In its clinical operation mode up to 800 nA of proton beam are specified and routinely extracted. Even more can be extracted in technical mode. The cold cathode Penning ion source provides enough protons to reach this current, and a layer-to-layer intensity modulation of the scanned beam is realized with an internal electrostatic deflector, which is used to vary the extracted beam current between maximum and zero. However, for research applications there is sometimes the request for higher flexibility, in particular for higher possible beam intensities and faster beam intensity modulation. In order to explore possibilities of the machine for such research modes, experimental investigations have been performed: Pulsed beams with repetition rates of up to 2 kHz and variable pulse lengths down to 4 μs as well as peak currents during pulse of up to 30 μA are in the accessible range with only changes at power supply level.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP13 Study on Energy Upgrade and Beam Transmission Efficiencies for RIKEN K-70 AVF Cyclotron acceleration, cyclotron, operation, ion 332
 
  • J. Ohnishi, A. Goto, M. Kase
    RIKEN Nishina Center, Wako, Japan
  • Y. Kotaka
    CNS, Saitama, Japan
 
  The RIKEN K-70 AVF cyclotron has been operated since 1989 and is used as a stand-alone machine and an injector to the RI-beam factory (RIBF). It is operated only in the RF harmonics (H) equal to 2 presently, and the maximum beam energies are restricted to be within 14 MeV for protons and 12.5 MeV/u for M/Q = 2 ions. In order to meet the usersÂ’ requests of beam energy upgrade, the beam simulation studies on the H=1 operation were made, and the central region was modified; these results were already reported in this conference of 2010. In this paper, we will analyze the difference in the transmission efficiency between the beam simulation and measured data in the H=2 operation after the modification of the central region. Moreover, we will also mention the result on the acceleration test of protons at higher energies in the H=1 operation.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP16 Beam Based Calibration Measurements at the PSI Cyclotron Facility extraction, cyclotron, survey, space-charge 342
 
  • C. Baumgarten
    PSI, Villigen PSI, Switzerland
 
  The PSI cyclotron facility is in operation since four decades. Even though the design details of the original machine are well documented, doubts may remain, if all changes of the most relevant devices during 40 years of operation are known with certainty. Furthermore some measurements like magnetic field mappings and central region alignment measurements can be done only during the construction and assembly phase either for mechanical reasons, due to limited shutdown or maintenance periods or because of the activation of components. Therefore it is important to develop methods that allow to check important parameters during beam operation without a disassembling of components. An effective method to test the consistency of the data is based on the combination of beam tracking simulations and beam based measurements. We present some beam based alignment and calibration measurements concerning collimator positions, Dee voltage distributions, turn patterns, beam energy and trim coil field profiles using measurements of radial probes, phase pickups and profile monitors.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP17 Automated Documentation of Tunes in the Beam Lines of the COMET Cyclotron software, cyclotron, diagnostics, beam-diagnostic 345
 
  • R. Dölling
    PSI, Villigen PSI, Switzerland
 
  The proton beam from the COMET cyclotron can be transported to three gantries and two horizontal lines. The beam energy is adjusted by a variable degrader. For each branch several "tunes" are defined, each listing the previously evaluated magnet, degrader and collimator settings for a certain beam energy. The beam quality at the end stations is routinely checked meticulously in the frame of treatment quality assurance. Independently of this, software has been developed (in the frame of the machine control system) to collect, for series of tunes, all available information on the beam and on the machine settings in the active beam line. Routinely used, this allows a close observation of the stability and reproducibility of the machine and keeps ready consistent data sets for detailed studies. This tool can also be used to collect, in a short space of time, extensive data for beam dynamics simulations with OPAL or optimisation procedures based thereon, to verify the beam line performance after changes to hardware or software, or to check the functionality of the beam diagnostics. The data set characterising a single tune is organised systematically, allowing to share data viewers with standard beam diagnostics.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP19 Operational Status of the University of Washington Medical Cyclotron Facility neutron, controls, radiation, cyclotron 351
 
  • R.C. Emery, E.F. Dorman
    University of Washington Medical Center, Seattle, Washington, USA
 
  The University of Washington Medical Cyclotron Facility (UWMCF) is built around a Scanditronix MC-50 compact cyclotron that was commissioned 1983 and that has been in continual use since. Its primary purpose is the production of 50.5 MeV protons for fast neutron therapy. While this proton energy is too low for proton therapy, it is ideal for research in small animal models. In addition to the protons used for fast neutron therapy and proton therapy research, UWMCF is able to accelerate other particles at variable energies. This makes it ideal for medical isotope research, including isotopes such as 211At, 186Re, and 117mSn that are being developed to target and treat metastatic disease at the cellular level. Most recent upgrades to the facility have been to the control systems. The original accelerator and therapy control systems were run on a DEC PDP-11 with a custom centralized i/o system built around the Z80 processor and chipset. Over the last 10 years we have continually been upgrading the controls while remaining operational, moving to a distributed system developed with the open source Experimental Physics and Industrial Control System (EPICS) toolkit.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP20 Magnetic System for SC200 Superconducting Cyclotron for Proton Therapy cyclotron, extraction, simulation, plasma 353
 
  • N.A. Morozov, O. Karamyshev, G.A. Karamysheva, E.V. Samsonov, G. Shirkov
    JINR, Dubna, Moscow Region, Russia
  • Y.F. Bi, G. Chen, Y. Chen, K.Z. Ding, Sh. Du, H. Feng, J. Ge, J. Li, Y. Song, J. Zheng, J. Zhou
    ASIPP, Hefei, People's Republic of China
 
  The superconducting cyclotron SC200 for proton therapy is designing by ASIPP (Hefei, China) and JINR (Dubna, Russia) will be able to accelerate protons to the energy 200 MeV with the maximum beam current of 1 μA. A conceptual design study with 3D codes for the superconducting cyclotron magnet has been carried out during 2015-16 at ASIPP and JINR. The main design considerations are reviewed. The results obtained by numerical field computation for a suitable choice of design parameters are presented. Results of numerical calculations are the basis for technical design of SC200 cyclotron.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP22 Status of the ISOL Cyclotron System in RISP cyclotron, ISOL, target, controls 356
 
  • J. Kang, H.M. Jang, B. Kang, J.-W. Kim, J.H. Lee
    IBS, Daejeon, Republic of Korea
 
  An ISOL system has been developed for providing neutron-rich RI beam to multi-disciplinary users by Rare Isotope Science Project (RISP) of the Institute for Basic Science (IBS) in Korea. The ISOL system is composed of proton driver, target/ion source station, mass separator, charge breeder, and A/q separator. A selected beam of interest is then injected into re-accelerator, which is a superconducting linac. A 70-MeV proton cyclotron was chosen as the proton driver to induce direct fission of UCx target. The final goal of beam power on target is 70 kW, which will be achieved gradually from 10 kW during post-RISP. Commercial H compact cyclotrons and high-intensity separated cyclotrons have been considered for its extension of multi-purpose uses. In this paper, the specifications of the cyclotrons along with concerned issues and the status of our procurement plan will be presented.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP24 Design of a Beamline from CYRCé for Radiobiological Experiments cyclotron, emittance, quadrupole, dipole 359
 
  • E. Bouquerel, T. Adams, G. Heitz, C. Maazouzi, C. Matthieu, F.R. Osswald, M. Pellicioli, M. Rousseau, C. Ruescas, J. Schuler, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  Funding: The project is supported by the Contrat de Projet Etat-Région (CPER) Alsace Champagne-Ardenne Lorraine 2015-2020.
The PRECy project (Platform for Radiobiological Experiments from CYRCé) foresees the use of a 16-25 MeV energy proton beam produced by the recently installed TR24 cyclotron at the Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg for biological tissues irradiation. The second exit port of the cyclotron will be used for this application along with a combination magnet. The platform will consist of up to 3 or 5 experimental stations linked to beamlines in a dedicated 15x13m area next to the cyclotron vault. One of the beamlines will receive proton beams of a few cm diameter at intensities up to 100 nA. The status of the design of the first beam line is presented. The characterization of the proton beam parameters has been performed using the quad scan method. TraceWin and COSY Infinity codes allowed simulating the beam envelopes and defining the electromagnetic equipment that will compose the beamline.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC01 KURRI FFAG's Future Project as ADSR Proton Driver neutron, experiment, acceleration, simulation 366
 
  • Y. Ishi, Y. Kuriyama, Y. Mori, M. Sakamoto, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The accelerator complex using FFAG synchrotrons at KURRI* has been operated for the ADSR** experiments connecting the 100 MeV proton beam line with the research reactor facility so called KUCA*** since 2009. Fruitful results have been produced for the reactor physics using various configurations of the nuclear fuel core and variations of the neutron production target. Since higher energy beams such as 300 - 500 MeV are desired for the further study of the ADSR system, we are investigating the energy upgrade possibility of the accelerator complex. One of the candidates is to construct a new FFAG ring which adopts continuous acceleration with fixed frequency (serpentine acceleration) outside of the existing. These higher energy beams can be used for neutron or muon production experiments as well as ADSR study.
KURRI* Kyoto University Research Reactor Institute
ADSR** Accelerator Driven Subcritical Reactor
KUCA*** Kyoto University Critical Assembly
 
slides icon Slides THC01 [11.777 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC03 Compact Superconducting Cyclotron SC200 for Proton Therapy cyclotron, extraction, simulation, acceleration 371
 
  • G.A. Karamysheva, S. Gurskiy, O. Karamyshev, N.A. Morozov, E.V. Samsonov, G. Shirkov, S.G. Shirkov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • Y.F. Bi, G. Chen, Y. Chen, K.Z. Ding, H. Feng, J. Li, Y. Song, Y.H. Xie, Q. Yang, J. Zheng
    ASIPP, Hefei, People's Republic of China
  • D.V. Popov
    JINR/DLNP, Dubna, Moscow region, Russia
 
  Superconducting cyclotron SC200 will provide acceleration of protons up to 200 MeV with maximum beam current of 1 μA. We plan to manufacture in China two cyclotrons: one will operate in Hefei cyclotron medical center the other will replace Phasotron in Medico-technical Center JINR Dubna and will be used for cancer therapy by protons. Now we present results of simulation of magnetic, acceleratiion and extraction systems.  
slides icon Slides THC03 [2.798 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD01 High Intensity and Other World Wide Developments in FFAG cyclotron, injection, simulation, space-charge 374
 
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  Here I present an overview of developments in Fixed Field Alternating Gradient accelerators, focusing on high intensity hadron accelerator designs. The talk will detail progress in studies of space charge effects and simulation, experimental characterisation of a 150 MeV proton FFAG at KURRI in Japan, experimental optimisation of FFAGs and novel FFAG developments for future applications.  
slides icon Slides THD01 [12.473 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA01 Single Stage Cyclotron for an ADS Demonstrator cyclotron, extraction, acceleration, injection 387
 
  • P. Mandrillon, M. Conjat
    AIMA, Nice, France
 
  In order to cope with the challenge of an industrial ADS driver demonstrator in the range of 3 to 4 MWatt nominal driving power, it is mandatory to propose an accelerator design able to address highly demanding criteria which are a challenge for high power accelerator designers: the number of beam trips per year and the mean down-time per beam interruption should be drastically reduced. Taking into account the outstanding performances of the PSI ring cyclotrons, it is clear that cyclotrons are competitive challengers to high power linacs. The preliminary design studies of the Single Stage Cyclotron Driver of the AIMA Company could be an attractive solution in terms of cost effectiveness, reliability and power efficiency. Some critical aspects of this design will be presented in this paper.  
slides icon Slides FRA01 [5.907 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA03 Status of the High Intensity Proton Beam Facility at LNL cyclotron, target, neutron, ISOL 394
 
  • M. Maggiore, P. Antonini, D. Benini, G. Bisoffi, E. Boratto, M. Calderolla, A. Calore, D. Campo, N. Ciatara, J. Esposito, P. Favaron, A. Lombardi, L. Pranovi, G.P. Prete, L. Sarchiapone, D. Scarpa, D. Zafiropoulos, L. de Ruvo
    INFN/LNL, Legnaro (PD), Italy
 
  In 2013 the SPES (Selective Production of Exotic Species) project has entered in the construction phase at Laboratori Nazionali di Legnaro (LNL). The project, whose main goal is the research in nuclear physics with Radioactive Beams, has foreseen the construction of a new building hosting the accelerator able to deliver protons up the energy of 70 MeV and 50kW of beam power to be used as a primary beam for the ISOL source and for a production beam for other applications. The new facility design has been expanded and upgraded for taking advantage of the dual simultaneous extraction of beams from the Cyclotron in order to provide a multipurpose high intensity irradiation facility. Today the new facility is partially installed and the Cyclotron supplied by BEST Theratronics company (CANADA) with the related beam transport lines are under commissioning. The status of the commissioning of the high power accelerator and the capabilities of the facility as multipurpose high intensity proton beam laboratory will be presented.  
slides icon Slides FRA03 [18.295 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB03 Proton Radiography Experiment Based on a 100 MeV Proton Cyclotron cyclotron, experiment, controls, vacuum 401
 
  • J.J. Yang, H.R. Cai, L.C. Cao, T. Ge, Z.G. Li, Y.L. Lv, F. Wang, S.M. Wei, L.P. Wen, S.P. Zhang, T.J. Zhang, Y.W. Zhang, X. Zhen
    CIAE, Beijing, People's Republic of China
 
  A proof-of-principle test-stand for proton radiography is under construction at China Institute of Atomic Energy (CIAE). This test-stand will utilize the 100 MeV proton beam provided by the compact cyclotron CYCIAE-100, which has been built in the year of 2014, to radiograph thin static objects. The assembling of the test-stand components is finished by now. We will carry out the first proton radiography experiment in this July and hopefully we can get the first image before the opening of this conference. In this paper, the designing, constructing and commissioning of the proton radiography system will be described and the experiment result will be presented and discussed.  
slides icon Slides FRB03 [2.764 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)