Keyword: magnet-design
Paper Title Other Keywords Page
MODM01 Design Study of the 250 MeV Isochronous Superconducting Cyclotron Magnet proton, cyclotron, extraction, acceleration 33
 
  • W. Chen, Z.K. Liang, X. Liu
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
  • K. Fan, K.F. Liu, B. Qin
    HUST, Wuhan, People's Republic of China
 
  Superconducting cyclotron is an optimum choice to deliver high quality continuous wave (CW) proton beams for proton therapy with its compactness and power saving. Field isochronism and tune optimization are the two crucial factors of cyclotrons during the magnet design. This paper is concentrated on the superconducting magnet design, mainly including the spiral magnet, isochronous field and the tune optimization. The main parameters and some features of the machine will be presented.  
slides icon Slides MODM01 [0.623 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MODM02 Magnet Optimization and Beam Dynamic Calculation of the 18 MeV Cyclotron by TOSCA and CYCLONE Codes cyclotron, betatron, simulation, focusing 36
 
  • N. Rahimpour Kalkhoran, H. Afarideh, M. Afkhami Karaei, S. Sabounchi
    AUT, Tehran, Iran
  • M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Designing and manufacturing of the 18 MeV cyclotron has been started for producing H for applications in Posi-tron Emission Tomography (PET) radioisotopes at Amirkabir University Of Technology. Up to this point, there were 2 steps in magnet design: Initial design and optimization processes. The AVF structure with hill and valley was selected for getting strong axial focusing in magnet design and achieving up to 18MeV energy for the particle. After finishing the initial design, optimization process in magnet design was started for achieving the best coincidence in magnetic field. Checking the beam dynamic of the particle is one of the most important and necessary steps after magnet simulation. The phenomenon which confirms simulated magnet validity is obtaining reasonable particle trajectory. This paper focused on the optimization process in magnet design and simulation of the beam dynamic. Some results which ensure a particle can be accelerated up to 18 MeV energy, are presented. All magnetic field calculation in whole magnet was calculated by OPERA-3D(TOSCA) code. Also beam dynamic analysis by applying magnetic field data from the magnet simulation was done in CYCLONE code.  
poster icon Poster MODM02 [1.860 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP04 Magnet Design of the New IBA Cyclotron for PET Radio-isotope Production cyclotron, extraction, ion, proton 170
 
  • S. Zaremba, S. De Neuter, W.J.G.M. Kleeven, B. Nactergal, V. Nuttens, J. van de Walle
    IBA, Louvain-la-Neuve, Belgium
 
  An innovative isochronous cyclotron for PET radioisotope production has been designed, constructed, tested and industrialized at Ion Beam Applications (IBA) [1]. This cyclotron (patent application pending) produces 18MeV proton beam and is called the Cyclone® KIUBE. The design has been optimized for cost-effectiveness, compactness, ease of maintenance and high performance, which are key elements considering its application in the dedicated market. Compared to the previous 18 MeV protons and 9 MeV deuteron machine from IBA, Cyclone® 18/9, the gap between the poles has been reduced from 30 to 24 mm and the method of shimming to obtain isochronous magnetic field has been reviewed thoroughly. In early 2016, the prototype Cyclone® KIUBE was successfully commissioned at the IBA factory and the observed proton beam intensity outperformed Cyclone® 18/9.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)