

Space-charge Simulation of TRIUMF 500 MeV Cyclotron

Yuri Bylinskii

On behalf of Yi-Nong Rao, T. Planche, and R. Baartman

September 14, 2016

Motivation: reach $> 400 \mu A$ routine delivery.

- Horizontal/longitudinal space charge forces: NOT a concern since turn separation is not needed for extraction*.
- But vertical space charge forces limit us:

*TRIUMF cyclotron accelerates H^- ions and uses charge charge-exchange extraction.

Space Charge Limit: Vertical

Space charge \implies vertical defocusing \implies reduce phase acceptance.

From: J. R. Richardson, Proc. of Cyclotron Conf. 1972, p. 138.

	D		
Y	Βv	lins	kп
	~,		

- "Pre-existing" simulation tools (TRANSOPTR & SPUNCH).
- **2** PIC^{\dagger} simulation: challenges specific to H⁻ cyclotrons.
- Simulation results.

Envelope Matching to Cyclotron with TRANSOPTR:

From: R. Baartman, TRIUMF design note TRI-DN-09-11, 2009.

Y. Bylinskii

CYC16

First order envelope code; includes all relevant physics:

- + 3-D space charge,
- + stray field, spiral inflector, bunching...

...to first order only:

- "sees" no detail beyond second moments;
- does not account for the non-linearity of rf sine wave.

Our two-buncher system:

- 1^{st} harmonic (~23 MHz) buncher 21 m upstream of the inflector,
- 2^{nd} harmonic (~46 MHz) buncher 16.5 m upstream of the inflector.

After the 1^{st} buncher.

After some drift.

× /	D		
Y	Βv	lins	kп
	-		

After the 2^{nd} buncher.

× /			
Y	ви	inc	кп
	ر y ا		

After some more drift.

	-		
Y	Βv	lins	kп
	-		

At injection (exit of inflector/deflector).

	-		
Y	BW	line	кп
	Dy	11115	<u>n II</u>
	-		

Bunching with SPUNCH

Bunching without:

And with space charge:

- Space charge reduces energy spread at injection.
- The larger the beam current, the smaller the ideal distance between bunchers and injection.

Challenges of Particle-In-Cell Simulation in H⁻ Cyclotrons

Large phase acceptance $\sim 60^{\circ}$:

- particles at extreme phases take ~ 150 more turns,
- many turns overlap.
- \implies "Brute force" PIC simulation would require:
 - very large PIC grids,
 - simultaneous tracking of many bunches (neighbours).

E. Pozdeyev's Trick

Instead we used symmetry. Lets look at turn #100:

E. Pozdeyev's Trick

Beam is folded onto itself; width = turn separation:

E. Pozdeyev's Trick

Symmetric boundary condition are used by the Poisson solver.

Poisson Solver Test: Uniform Sphere of Charge

Electrostatic potential:

Electric field:

Dots are from our Poisson solver $(32 \times 32 \times 32 \text{ grid}, 10^6 \text{ particles})$; solid lines are from theory. Note the three different boundary conditions in x, y, and z: periodic, open, and metallic.

Code testing: vs CYCLOPS

RF acceleration

Acceleration by "thin" rf gaps, focusing included:

$$\delta E_k = qV_{\rm rf} \sin \phi$$

$$\delta z' = K \frac{1-a}{2} z$$

$$\delta r' = K \frac{1+a}{2} (r-r_0)$$
(1)

where the focal power K is given by Reiser's formula:

$$K = \frac{V_{\rm rf}}{V_c} \frac{\pi}{\beta \lambda_{\rm rf}} \cos(\phi) + \frac{F}{2b\pi} \left(\frac{V_{\rm rf}}{V_c}\right)^2 \sin^2(\phi) \tag{2}$$

See the proceeding for more details.

Code testing: vs CYCLONE

Note: CYCLONE uses a 3-D electric field map instead of rf kicks.

Code testing: vs measurements

No space-charge, bunched beam:

Simulation:

Measurement (pepper-pot in):

TRANSOPTR is used to generate initial particle distribution: 6D Gaussian, **fully correlated**.

× /			
Y	ĸи	line	k 11
	<u> </u>		

Sep. 2016 23 / 30

Code testing: vs measurements

r [m]

With pace charge:

Simulation (500μ A injected): Radial Beam Density 1000 800 radial beam density [arb. unit] 0.1 Relative Density o 600 400 200 0.05 0 0.2 0.4 0.6 1.2 0.00 0 0.8 1.4 0.2 0.4 1.0

Measurement ($\sim 410 \mu A$ injected):

0.6

Probe Position /m LE2130806.007

Code testing: vs measurements

With pace charge:

Simulation (500μ A injected):

Measurement ($\sim 410 \mu \text{A}$ injected):

$500 \mu \rm A$ injected Turn #30

Beam breakup (vortex motion):

$500\mu A$ injected Turn #300

Beam breakup (vortex motion):

$500 \mu \mathrm{A}$ injected Turn #300

Beam breakup (vortex motion):

Work in progress...

- Working intensively with CIAE to simulate long bunches using OPAL.
- Working on starting simulation from the injection line (bunching).

Goals:

- Study longitudinal matching: design 3rd buncher.
- Study transverse matching: re-design inflector, guide operators to tune matching quads, etc.
- Determine accurately the ultimate current limit of our cyclotron.

Thank you for your attention.