

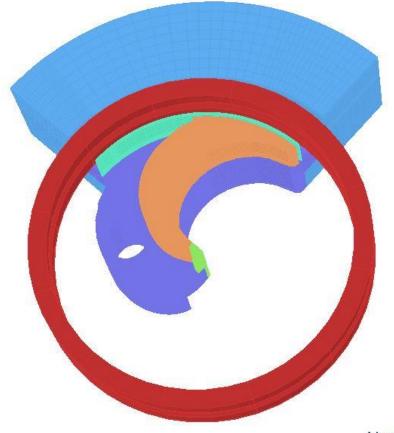
Design study of the 250 MeV isochronous superconducting cyclotron magnet

Chen Wei

Huazhong University of Science and Technology

Outline

- 1 Overall design of the magnet
- 2 Magnet optimization process
- 3 Design result



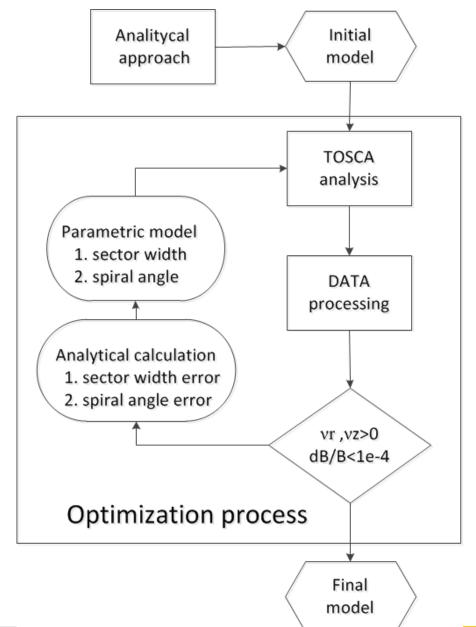
Overall design of the magnet

Table 1. Main parameters of the magnet

Design parameter	Value
Extraction energy	250 MeV
Ion source	Internal P.I.G. source
Injection / extraction field	2.4 / 3.1 T
Spiral angle (maximum)	66 degrees
Pole gap at hill	$5~\mathrm{cm}$
Valley gap	$64~\mathrm{cm}$
Pole radius	$85~\mathrm{cm}$
Yoke radius	$160 \mathrm{\ cm}$
RF frequency	74.5 MHz (harmonic mode=2)
Extraction method	Precessional extraction

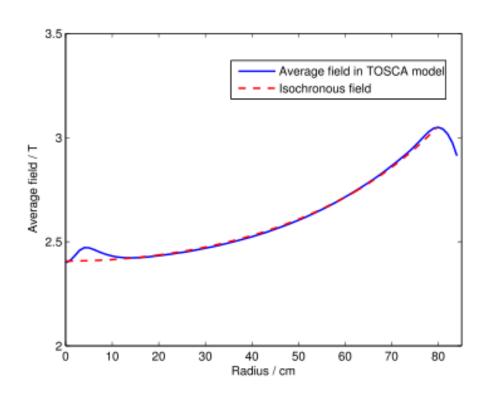
Magnet optimization process

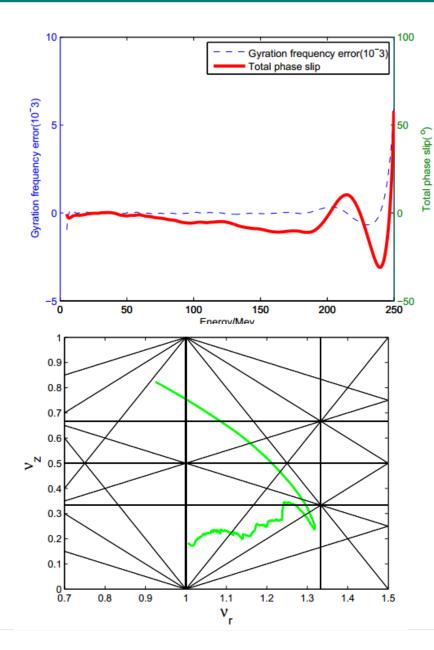
$$\Delta B(r) \equiv B(r) - B_{\rm iso}(r) = B(r) \cdot \frac{\gamma^2(r) \cdot \Delta f(r)}{1 + \gamma^2(r) \cdot \Delta f(r)}$$


Field isochronism

Hard edge approximation
$$\Delta\theta(r) \approx \frac{\Delta B(r)(2\pi/N)}{B_H(r) - B_V(r)}$$

$$\nu_r^2 = 1 + k + \frac{3N^2}{(N^2 - 1)(N^2 - 4)}F(1 + \tan^2 \xi)$$


Tune optimization


$$\nu_z^2 = -k + \frac{N^2}{(N^2 - 1)}F(1 + 2\tan^2 \xi)$$

Design result

±15∘ total phase slip

This work is based on the proton therapy project, which is proposed in Huazhong University of Science and Technology (HUST).

Thank you

