

The S2C2 from source to extraction

- Jarno Van de Walle^{1,*}, W. Kleeven¹, S. Henrotin¹, P. Verbruggen¹, E. Forton¹, Y. Jongen¹, M. Abs¹, J. Mandrillon^{1,2}, P. Mandrillon^{,2}, M. Conjat^{,2}
- ¹ Ion Beam Applications, Louvain-la-Neuve, Belgium ² AIMA, Nice, France
- * Jarno.vandewalle@iba-group.com

S2C2 = SuperConducting SynchroCyclotron

General properties

✓ Layout, RF and magnetic properties

Injection

orbit centering and separatrix filling

Acceleration

✓ The "phase motion code" : RF phase, energy and orbit center tracking

✓ Beam losses

Extraction

✓ Coil positioning, energy, emittance, efficiency, lost protons, ...

General properties : layout

General properties : harmonics and frequency sweep

- ✓ Injection frequency 87 MHz
- ✓ Extraction frequency 63 MHz
- ✓ Acceleration time \approx **450** µs
- ✓ Half-integer regenerative extraction $(2v_r=2)$

General properties : horizontal coil position

The horizontal coil position determines :

- proximity of the Walkinshaw resonance
- extraction energy ($v_r \rightarrow 1$)

General properties : half-integer regenerative extraction

Last stable closed orbit in the S2C2 (231.4 MeV) : $v_r \rightarrow 1$

 $2v_r$ =2 resonance : the orbit center becomes unstable ≈ 5 more turns before the proton is extracted

Injection : orbit centering at injection (1)

✓ Orbit center after 30 turns

Injection : orbit centering at injection (2)

Dee voltage setpoint [%]

✓ Jump forward – into the gantry – at the end of the energy selection system

See TUP07 (poster session Tuesday)

✓ Jump forward : at isocenter – range measurements in a water phantom

Injection : separatrix filling

✓ Protons near the border of the separatrix are captured "late"
 ✓ The total injection time is about 5 µs

Acceleration : detailed tracking of protons

iba

- ✓ Simulating ~50.000 turns from source to extraction
- "Advanced Orbit Code" (AOC) by W. Kleeven : full tracking in magnetic and electric field maps (time consuming : ~30' / proton)

Protect,

Enhance

and Save Lives

Acceleration : the « phase motion » code

iba

- ✓ Simulating ~50.000 turns from source to extraction
- ✓ "Advanced Orbit Code" (AOC) by W. Kleeven : full tracking in magnetic and electric field maps (time consuming : ~30' / proton)
- ✓ **ALTERNATIVE** : tracking of <u>main beam properties</u> (phase motion code)

<u>Energy</u>	$\frac{dE}{dt} = e.F_{RF}.V_{RF}.\sin(\varphi)$	E = kinetic energy of the proton F_{RF} = frequency of the RF system F_{p} = revolution frequency of the proton
<u>RF phase</u>	$\frac{d\varphi}{dt} = 2\pi \big(F_{RF} - F_p\big)$	V_{RF} = voltage on the dee φ = RF phase of the proton
<u>Orbit center</u>	$\frac{dx_c}{dt}, \frac{dy_c}{dt}$	Input :1/ AOC beam properties at 3 MeV2/ measured : B(r) and F _{RF} (*)3/ closed orbits : B(r), E, F _p

(*) measured frequency profiles have to be smooth to integrate the phase with high precision !

Acceleration : energy and RF phase tracking

✓ Energy and RF phase tracking : comparison with AOC

Acceleration : orbit center tracking

✓ Equations of motion for the orbit center are derived from the following Hamiltonian [Hagedoorn and Verster, NIM 18,19 (1962) p. 201-228]

✓ Comparison of orbit center motion : AOC vs phase motion

✓ Up to 3rd harmonics included in "phase motion" code

Application of the code :

- $\checkmark\,$ Study of beam losses inside the S2C2
 - How is beam lost (where, when, why)
 - How to avoid beam loss
 - What happens to lost protons
- $\checkmark\,$ Realistic beam properties at 225 MeV as input to AOC for extraction studies :
 - Extracted emittance
 - Extraction efficiency
 - Mean energy and its relation with source positioning precision requirement
 - Energy spread of the beam
 - Temporal profile of the pulse (γ-prompt studies)

Application of the code :

- $\checkmark\,$ Study of beam losses inside the S2C2
 - How is beam lost (where, when, why)
 - How to avoid beam loss
 - What happens to lost protons
- $\checkmark\,$ Realistic beam properties at 225 MeV as input to AOC for extraction studies :
 - Extracted emittance
 - Extraction efficiency
 - Mean energy and its relation with source positioning precision requirement
 - Energy spread of the beam
 - Temporal profile of the pulse (γ-prompt studies)

Acceleration : what happens to « lost » protons (1)

- ✓ Protons at 225 MeV outside the separatrix
- Tracking over <u>20 RF periods</u>
- ✓ Falling RF frequency : 10 kV dee voltage
- Rising RF frequency : 5 kV dee voltage
- resonances appear on the rising and the falling RF frequency flank

Extraction : vertical coil positioning

- ✓ Vertical coil positioning :
 < 0.25 mm precision needed
- ✓ Vertical displacement in the last turn is linear with the coil displacement
 - ✓ Fast, precise and easy on-site coil positioning

<u>What if ...</u> We intentionally loose beam very close to extraction ?

We drop the dee voltage a few μs before extraction \ldots

Observation during 2nd RF frequency sweep :

(1) protons coming out on the rising frequency flank

⇒ Explained from energy resonances (see previous)

 $f_{RF} = f_p$

(2) protons coming out before the extraction frequency

⇒ Explained from emittance blow-up and orbit center instability when off-centering becomes too large.

$$f_{RF} = f_p \pm (v_r - 1) f_p$$

Extraction : what happens to « lost » protons (2)

$$\frac{dx_c}{dt} = (v_r - 1)y_c + (\dots) + \beta_2 x_c + (\dots)$$

 β_2 oscillates with the same frequency as the energy : $(f_{RF} - f_p)$ x_c oscillates with the frequency $(v_r - 1)f_p$

If $f_{RF} = f_p \pm (v_r - 1) f_p$: resonance effect

Extraction : how to avoid unwanted extraction

Bucket area [MeV.ns] =
$$16 \sqrt{\frac{eV}{2\pi\beta^2(T+E_0)|\eta|}} \cdot \alpha_b \cdot \frac{(T+E_0)\beta^2}{2\pi f_p} 10^3$$

- ✓ Important step during commissioning !
- ✓ Iterative, time consuming
- ✓ Optimization by observation of "ghost beam"

Property	Simulated	Measured
Energy spread	150 keV	≈900 keV
$\Delta E / \Delta I_{coil}$	440 keV/A	440 keV/A
ΔE / mm source shift	200 keV/mm	≈ 200 keV/mm
Pulse duration (total)	8 μs	8 μs
1- σ pulse duration	2 μs	2 μs
Extraction efficiency	50%	≈ 35%
Horizontal emittance	24 π .mm.mrad	23.2 π .mm.mrad
Vertical emittance	5 π .mm.mrad	4.0 π.mm.mrad
Max. clinical intensity		134 pC/pulse

The S2C2 from source to extraction

Thank you !

- Jarno Van de Walle^{1,*}, W. Kleeven¹, S. Henrotin¹, P. Verbruggen¹, E. Forton¹, Y. Jongen¹, M. Abs¹,
- J. Mandrillon^{1,2}, P. Mandrillon^{,2}, M. Conjat^{,2}
- ¹ Ion Beam Applications, Louvain-la-Neuve, Belgium ² AIMA, Nice, France
- * Jarno.vandewalle@iba-group.com