it:

 The S2C2 from source to extraction

Jarno Van de Walle ${ }^{1, *}$, W. Kleeven ${ }^{1}$, S. Henrotin ${ }^{1}$, P. Verbruggen ${ }^{1}$, E. Forton ${ }^{1}$, Y. Jongen ${ }^{1}$, M. Abs ${ }^{1}$,
J. Mandrillon ${ }^{1,2}$, P. Mandrillon ${ }^{2}$, M. Conjat ${ }^{2}$
$4{ }^{1}$ Ion Beam Applications, Louvain-la-Neuve, Belgium ${ }^{2}$ AIMA, Nice, France
月 * Jarno.vandewalle@iba-group.com

The S2C2 : from source to extraction

S2C2 = SuperConducting SynchroCyclotron

- General properties
\checkmark Layout, RF and magnetic properties
- Injection
\checkmark orbit centering and separatrix filling
- Acceleration
\checkmark The "phase motion code" : RF phase, energy and orbit center tracking
\checkmark Beam losses
- Extraction
\checkmark Coil positioning, energy, emittance, efficiency, lost protons, ...

General properties

General properties : layout

[^0]
General properties : horizontal coil position

The horizontal coil position determines :

- proximity of the Walkinshaw resonance
- extraction energy $\left(v_{r} \rightarrow 1\right)$

General properties : half-integer regenerative extraction

Injection
$\checkmark 1^{\text {st }}$ turn radius $\approx 3 \mathrm{~mm}$

\checkmark Orbit center after 30 turns

○ ○ ○ Source shifted +1 mm

- - Source centered

Source positioning is very delicate!
Consequences for extraction energy!

Injection : orbit centering at injection (2)

\checkmark Protons near the border of the separatrix are captured "late"
\checkmark The total injection time is about $5 \mu \mathrm{~s}$

Acceleration

Acceleration : detailed tracking of protons

\checkmark Simulating ~ 50.000 turns from source to extraction
\checkmark "Advanced Orbit Code" (AOC) by W. Kleeven : full tracking in magnetic and electric field maps (time consuming : ~30' / proton)

Acceleration : the « phase motion » code

\checkmark Simulating ~ 50.000 turns from source to extraction

\checkmark "Advanced Orbit Code" (AOC) by W. Kleeven : full tracking in magnetic and electric field maps (time consuming : $\sim 30^{\prime} /$ proton)
\checkmark ALTERNATIVE : tracking of main beam properties (phase motion code)

$$
\begin{array}{ll}
\text { Energy } & \frac{d E}{d t}=e \cdot F_{R F} \cdot V_{R F} \cdot \sin (\varphi) \\
\underline{\text { RF phase }} & \frac{d \varphi}{d t}=2 \pi\left(F_{R F}-F_{p}\right) \\
\text { Orbit center } & \frac{d x_{c}}{d t}, \frac{d y_{c}}{d t}
\end{array}
$$

$$
\begin{aligned}
& E=\text { kinetic energy of the proton } \\
& F_{R F}=\text { frequency of the RF system } \\
& F_{p}=\text { revolution frequency of the proton } \\
& V_{R F}=\text { voltage on the dee } \\
& \varphi=R F \text { phase of the proton }
\end{aligned}
$$

```
Input:
1/ AOC beam properties at 3 MeV
2/ measured : B(r) and F FF (*)
3/ closed orbits:B(r), E, Fp
```

${ }^{(*)}$ measured frequency profiles have to be smooth to integrate the phase with high precision !

Acceleration : energy and RF phase tracking

\checkmark Energy and RF phase tracking : comparison with AOC

Energy	$\frac{d E}{d t}=e \cdot F_{R F} \cdot V_{R F} \cdot \sin (\varphi)$
RF phase	$\frac{d \varphi}{d t}=2 \pi\left(F_{R F}-F_{p}\right)$

Acceleration : orbit center tracking

\checkmark Equations of motion for the orbit center are derived from the following Hamiltonian [Hagedoorn and Verster, NIM 18,19 (1962) p. 201-228]

$$
\begin{aligned}
& H\left(x_{c}, y_{c}\right)=\frac{r}{2}\left(\bar{A}_{1} x_{c}+\bar{B}_{1} y_{c}\right)+\frac{1}{2}\left(\nu_{r}-1+\frac{1}{2} A_{0}^{\prime}\right)\left(x_{c}^{2}+y_{c}^{2}\right) \quad \text { Orbit center motion } \\
& +\frac{1}{4}\left(A_{2}+\frac{1}{2} A_{2}^{\prime}\right)\left(x_{c}^{2}-y_{c}^{2}\right)+\frac{1}{2}\left(B_{2}+\frac{1}{2} B_{2}^{\prime}\right) x_{c} y_{c} \\
& +\frac{1}{48 r}\left(D_{1}\left[4 x_{c}^{3}-3 x_{c}\left(x_{c}^{2}+y_{c}^{2}\right)\right]+D_{2}\left[3 y_{c}\left(x_{c}^{2}+y_{c}^{2}\right)-4 y_{c}^{3}\right]\right. \\
& \left.+\left[D_{3} x_{c}+D_{4} y_{c}\right]\left[x_{c}^{2}+y_{c}^{2}\right]\right)+\sigma(4) \\
& \text { Average field } 1^{\text {st }} \text { harmonic } 2^{\text {nd }} \text { harmonic } 3^{\text {rd }} \text { harmonic } \\
& \text { INPUT = detailed and smooth magnetic map }
\end{aligned}
$$

Acceleration : orbit center tracking

\checkmark Comparison of orbit center motion : AOC vs phase motion
\checkmark Up to $3^{\text {rd }}$ harmonics included in "phase motion" code

Acceleration : applications of the «phase-motion» code

Application of the code :
\checkmark Study of beam losses inside the S2C2

- How is beam lost (where, when, why)
- How to avoid beam loss
- What happens to lost protons
\checkmark Realistic beam properties at 225 MeV as input to AOC for extraction studies :
- Extracted emittance
- Extraction efficiency
- Mean energy and its relation with source positioning precision requirement
- Energy spread of the beam
- Temporal profile of the pulse (γ-prompt studies)

Acceleration : applications of the «phase-motion» code

Application of the code :
\checkmark Study of beam losses inside the S2C2

- How is beam lost (where, when, why)
- How to avoid beam loss
- What happens to lost protons
\checkmark Realistic beam properties at 225 MeV as input to AOC for extraction studies :
- Extracted emittance
- Extraction efficiency
- Mean energy and its relation with source positioning precision requirement
- Energy spread of the beam
- Temporal profile of the pulse (γ-prompt studies)

Acceleration : what happens to « lost » protons (1)

\checkmark Protons at 225 MeV outside the separatrix
\checkmark Tracking over 20 RF periods
\checkmark Falling RF frequency: 10 kV dee voltage
\checkmark Rising RF frequency : 5 kV dee voltage
\checkmark resonances appear on the rising and the falling RF frequency flank

\checkmark The net energy gain :

- rising flank : on average $\approx 0 \mathrm{MeV}$
- falling flank: -1.63 MeV

Extraction

Extraction : vertical coil positioning

\checkmark Vertical coil positioning :
$<0.25 \mathrm{~mm}$ precision needed
\checkmark Vertical displacement in the last turn is linear with the coil displacement
\checkmark Fast, precise and easy on-site coil positioning

Extraction : what happens to « lost » protons (2)

What if ... We intentionally loose beam very close to extraction?

We drop the dee voltage a few μ s before extraction ...
Observation during $2^{\text {nd }}$ RF frequency sweep:
(1) protons coming out on the rising frequency flank
\Rightarrow Explained from energy resonances (see previous)

$$
f_{R F}=f_{p}
$$

(2) protons coming out before the extraction frequency
\Rightarrow Explained from emittance blow-up and orbit center instability when off-centering becomes too large.

$$
f_{R F}=f_{p} \pm\left(v_{r}-1\right) f_{p}
$$

Extraction : what happens to « lost » protons (2)

$---\boldsymbol{F}_{\boldsymbol{R F}}=\boldsymbol{F}_{\boldsymbol{p}}$ $----\boldsymbol{F}_{R F}=\boldsymbol{F}_{p}-\left(\boldsymbol{v}_{r}-1\right) \boldsymbol{F}_{p}$

$$
\frac{d x_{c}}{d t}=\left(v_{r}-1\right) y_{c}+(\ldots)+\beta_{2} x_{c}+(\ldots)
$$

β_{2} oscillates with the same frequency as the energy: $\left(f_{R F}-f_{p}\right)$ x_{c} oscillates with the frequency $\left(v_{r}-1\right) f_{p}$

$$
\text { If } f_{R F}=f_{p} \pm\left(v_{r}-1\right) f_{p}: \text { resonance effect }
$$

Extraction : how to avoid unwanted extraction

$$
\text { Bucket area }[\mathrm{MeV} . \mathrm{ns}]=16 \sqrt{\frac{e V}{2 \pi \beta^{2}\left(T+E_{0}\right)|\eta|}} \cdot \alpha_{b} \cdot \frac{\left(T+E_{0}\right) \beta^{2}}{2 \pi f_{p}} 10^{3}
$$

\checkmark Important step during commissioning!
\checkmark Iterative, time consuming
\checkmark Optimization by observation of "ghost beam"

Extraction : simulated vs measured beam properties

Property	Simulated	Measured
Energy spread	150 keV	$\approx 900 \mathrm{keV}$
$\Delta \mathrm{E} / \Delta \mathrm{I}_{\text {coil }}$	$440 \mathrm{keV} / \mathrm{A}$	$440 \mathrm{keV} / \mathrm{A}$
$\Delta \mathrm{E} / \mathrm{mm}$ source shift	$200 \mathrm{keV} / \mathrm{mm}$	$\approx 200 \mathrm{keV} / \mathrm{mm}$
Pulse duration (total)	$8 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$
$1-\sigma$ pulse duration	$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
Extraction efficiency	50%	$\approx 35 \%$
Horizontal emittance	$24 \pi . \mathrm{mm} . \mathrm{mrad}$	$23.2 \pi . \mathrm{mm} . \mathrm{mrad}$
Vertical emittance	$5 \pi . \mathrm{mm} . \mathrm{mrad}$	$4.0 \pi . \mathrm{mm} . \mathrm{mrad}$
Max. clinical intensity		$134 \mathrm{pC} / \mathrm{pulse}$

The S2C2 from source to extraction

Thank you!

Jarno Van de Walle ${ }^{1,{ }^{*},}$ W. Kleeven ${ }^{1}$, S. Henrotin ${ }^{1}$, P. Verbruggen ${ }^{1}$, E. Forton ${ }^{1}$, Y. Jongen ${ }^{1}$, M. Abs ${ }^{1}$,
J. Mandrillon ${ }^{1,2}$, P. Mandrillon, ${ }^{2}$, M. Conjat ${ }^{2}$
$4{ }^{1}$ Ion Beam Applications, Louvain-la-Neuve, Belgium ${ }^{2}$ AIMA, Nice, France
月 * Jarno.vandewalle@iba-group.com

[^0]: \checkmark Weak focusing - peak field $=6.1 \mathrm{~T}$ (regenerator)
 \checkmark Frequency modulation $(90 \rightarrow 60 \mathrm{MHz}) @ 1 \mathrm{kHz} \Rightarrow$ pulsed beam
 \checkmark Dee voltage : $7 \rightarrow 10 \mathrm{kV}$
 \checkmark Injection frequency 87 MHz
 \checkmark Extraction frequency 63 MHz
 \checkmark Acceleration time $\approx 450 \mu \mathrm{~s}$
 \checkmark Half-integer regenerative extraction $\left(2 v_{r}=2\right)$

