



## **Status of Hydrogen Ion Sources at PKU**

Yuan Xu, Shixiang Peng<sup>\*</sup>, Haitao Ren, Ailin Zhang, Tao Zhang, Jingfeng Zhang, Jiamei Wen, Wenbin Wu, Zhiyu Guo and Jia'er Chen

State Key Laboratory of Nuclear Physics and Technology& Institute of Heavy Ion Physics, Peking University \*Email of corresponding author: sxpeng@pku.edu.cn

CYC2016, ETH Zürich, Switzerland

Sep. 15<sup>th</sup>, 2016



## Outline

## Background

## ➢ Ion sources developed at PKU

- Overview
- $H^+$  ion source
- Molecular ion source  $(H_2^+ \& H_3^+)$
- Microwave-driven Cs-free negative hydrogen ion source

## ➢ Conclusion



## Outline

## Background

## ➢ Ion sources developed at PKU

- Overview
- $\bullet \quad H^+ \text{ ion source}$
- Molecular ion source  $(H_2^+ \& H_3^+)$
- Microwave-driven Cs-free negative hydrogen ion source

## ➢ Conclusion



### Background

#### ➢ Requirements of H<sup>+</sup> ions

Proton cyclotrons are needed in fundamental physics research, spallation source, medical therapy and radioisotopes production etc. Recently, high current high power is a important trend for cyclotrons.

Proton beam can be generated by accelerating several hydrogen ions in cyclotrons:  $H^+$ ,  $H^-$ ,  $H_2^+$ , or  $H_3^+$ .

For example, the upgrade of PSI Cyclotron Facility needs to accelerate 3 mA proton beam to 590 MeV. The requirement for the ion source is around 10 mA.



#### Proton cyclotron at PSI

CYC2016, ETH Zürich , Switzerland

Yuan Xu *et al.* Sep. 15<sup>th</sup>, 2016

4



### Background

#### ➢ Requirements of H<sup>-</sup> ions

Charge exchange method has a relatively high efficiency.





## Background

### > Requirements of $H_2^+ \& H_3^+$ ions



#### Constrains Initial flux Constrains rise of probability wave Osc. maximur at ~40 MeV Near-site Accelerator Module, up to 1.5km, 0.8 MW Mid-site Accelerator Module, 8km, 1.6 MW Far-site Accelerator Module, 9km, 1.6 MW Underground detector: Gd-doped water Or Uquid scintillator Underground detector: Gd-doped water

#### generalized perveance K:

The DAE $\delta$ ALUS -  $\pi^+$  decay-at-rest (DAR) experiment

$$K \propto \frac{qI}{m \cdot \gamma^3 \beta^3}$$

 $\delta = \pi/2$ 

#### Space Charge Effect

By accelerating  $H_2^+$  ions, and stripping them at extraction area can decrease the space charge effect obviously, so the load of accelerator from beam loss can be decreased.

\*L. Calabretta *et al*, Prilimilary design study of high-power  $H_2^+$  cyclotrons for the DAE $\delta$ ALUS expriment, 2th July, 2011.

Table 1: Perveance values of proton and  $H_2^+$  beams at various energies.

|                         | $E_{p} = E_{H2}$       | $E_p = E_{H2}$ | E <sub>p</sub> =30 keV  |  |
|-------------------------|------------------------|----------------|-------------------------|--|
|                         | 30 keV                 | 800 MeV        | E <sub>H2</sub> =70 keV |  |
| $H_2^+, I=5 \text{ mA}$ | 0.881 10 <sup>-3</sup> | 0.151 10-9     | 0.247 10-3              |  |
| P, I=10 mA              | 1.245 10-3             | 1.075 10-9     | 1.245 10-3              |  |
| $K_{H2}/K_p$            | 0.707                  | 0.141          | 0.198                   |  |
| P, I=2 mA               | 2.491 10-4             | 2.15 10-10     | $2.491 \ 10^{-4}$       |  |
| $K_{H2}/K_p$            | 3.537                  | 0.703          | 0.992                   |  |

#### CYC2016, ETH Zürich , Switzerland

Sep. 15th, 2016

#### 6



## Outline

## Background

## ➢ Ion sources developed at PKU

- Overview
- $H^+$  ion source
- Molecular ion source  $(H_2^+ \& H_3^+)$
- Microwave-driven Cs-free negative hydrogen ion source

## > Conclusion



### Ion source principle



**Study Topics** 

ria miarawawa windaw Tahana antanna.

1)RF matching: ridged waveguide, dielectric microwave window, T-shape antenna;
2)B Field Generation: electromagnetic coils, electromagnetic coil plus permanent magnetic rings, or only permanent magnet;

**3)Beam Formation and Handing:** Geometry of the electrodes, Electric field configuration.

CYC2016, ETH Zürich, Switzerland





#### ➤ The First PKU 2.45 GHz ECR Ion Source in 1980s



- Prototype at very beginning
- Antenna coupling
- ≻ 2.45 GHz
- Permanent magnet
- ➢ Aperture <1 mm</p>
- ➢ Low current ~100 uA

\*Zhao Kui, Song Zhizhong, Wang lifang, Zhao Weijiang, Xiao Min, A compact Microwave Ion source with co-axis coupling type.1987, Proceedings of The Third Symposium on Ion Sources and Beams, Lanzhou, China, Sep. ,1987.

CYC2016, ETH Zürich , Switzerland

Yuan Xu *et al.* Sep. 15<sup>th</sup>, 2016





#### ➤ 2.45 GHz ECR Ion Sources



Electromagnetic coils > Five electrodes beam extraction > About 50 cm\*50 cm

CYC2016, ETH Zürich, Switzerland

Yuan Xu et al. Sep. 15<sup>th</sup>, 2016



### Overview

#### PKU Permanent Magnet ECR Ion Source (PKU PMECRIS)



A series of 2.45 GHz microwave-driven ion sources were designed and fabricated at PKU. Ions such as 130 mA H<sup>+</sup>, 83 mA D<sup>+</sup>, 65 mA He<sup>+</sup>, 63 mA N<sup>+</sup>, 70 mA Ar<sup>+</sup>, 50 mA O<sup>+</sup> and H<sub>2</sub><sup>+</sup>, H<sub>3</sub><sup>+</sup>, H<sup>-</sup> can be extracted from the ion source.

CYC2016, ETH Zürich , Switzerland



## H<sup>+</sup> Ion Source

#### Pulsed mode



#### Counting operation time is >1000 hours



Emmitance <0.20 pi.mm.mrad

RF 2400 W H<sub>2</sub> 2 sccm CH1 Off Duty factor 10% Rise Time Mean. 130 mA CH3 Pk-Pk 12.6V CH4 Off Mean CH2 Fall Time 54.00,us CH2 5,00V M 250,0s CH2 / 1.60V CH3 5.00V 28-Jun-16 16:12 99.9881Hz

CYC2016, ETH Zürich, Switzerland

30.0,us



## Beam Stability and Reliability

### ≻ CW mode

Improvements:

- ➤ Water-cooling
- $\succ$  Electrode material (SS $\Rightarrow$ Mo)
- High current Faraday cup









 $50 \text{ kV} / 50 \text{ mA H}^+ \text{CW beam}$ 

RF power 500 W



300 hours continuous experiment. (12.5 days)

CYC2016, ETH Zürich , Switzerland



## Molecular ion source $(H_2^+ \& H_3^+)$



<sup>+</sup>H<sup>o</sup> 0.4 0.5 <sup>+</sup>H<sup>o</sup> 0.4 0.2 0.2 100 150 200 250 Power(W)

 $H_2^+ vs$  RF power at different pressure

\*Yuan Xu et al., Rev. Sci. Instrum. 85, 02A943 (2014).

Comparing with proton ion source:

- Larger discharge chamber
- Different liner material of the cavity
- Different operation parameters

 $H_2^+$  and  $H_3^+$  are sensitive to RF power and pressure.



 $H_3^+ vs$  RF power at different pressure



## Molecular ion source $(H_2^+ \& H_3^+)$

#### Optimizing results with molecular ions



#### These results were got with different operation parameters and identical ion source PMECR II.

\*Y. Xu et al., Proceedings of IPAC2013, Shanghai, China MOPFI035, pp. 363–365 (2013).

Yuan Xu *et al.* Sep. 15<sup>th</sup>, 2016



#### Prototype H- Source 2012/10/28 - 2012/11/7 Tek







\*Haitao Ren, Shixiang Peng\*, Jie Zhao, MOPFI034, Proceeding of IPAC13, Shanghai, China, May 12-17, 2013: 360-362.



7-Nov-12 09:17

CYC2016, ETH Zürich , Switzerland

Yuan Xu *et al.* 

Sep. 15<sup>th</sup>, 2016

174.819Hz



#### Principle of H<sup>-</sup> Source Redesign (2013/3)



CYC2016, ETH Zürich , Switzerland



#### ➢ H⁻ Source Bodies and their best results

| No.1                                                                                   | <image/>      |                   | High Voltage region<br>230mm<br>Gas inlet |      | ion  |      |  |
|----------------------------------------------------------------------------------------|---------------|-------------------|-------------------------------------------|------|------|------|--|
| NO. 3                                                                                  | Source Number |                   | No.1                                      | No.2 | No.3 | No.4 |  |
| 0.                                                                                     |               | RF Window         | No                                        | Yes  | Yes  | Yes  |  |
|                                                                                        | Water         | Plasma Chamber    | Poor                                      | Yes  | Yes  | Yes  |  |
|                                                                                        | Cooling       | Connection Flange | No                                        | No   | Yes  | Yes  |  |
|                                                                                        |               | Extraction        | No                                        | Poor | Yes  | Yes  |  |
| E-Dump Position                                                                        |               | Ι                 | II                                        | II   | Ι    |      |  |
|                                                                                        | Current       | CW                | 8                                         | 10.8 | 25   | 29   |  |
|                                                                                        | (mA)          | Pulsed(100Hz/1ms) | 16                                        | 20   | 35   | 45   |  |
| CYC2016, ETH Zürich , Switzerland Yuan Xu <i>et al.</i> Sep. 15 <sup>th</sup> , 201618 |               |                   |                                           |      |      |      |  |



### Duty Factor Variation Possibility

Operation pressure:  $4 \times 10^{-3}$  Pa

Extraction Voltage: -35 kV

**CW mode:** RF:1200W, **H<sup>-</sup>25mA**, Power efficiency: **20.8 mA/kW**.

**Pulsed Mode:** Duty factor variation: 1% to 100%. H<sup>-</sup> up to 35mA, Power efficiency up to 20 mA/kW.



CYC2016, ETH Zürich, Switzerland



**No.3 Source** 



#### Best results in pulsed mode

#### **No.4 Source**



#### electrons

CYC2016, ETH Zürich , Switzerland



#### Best results in CW mode

#### **No.4 Source**



CH4\_200mV

electrons



**RMS** emmitance 0.182 pi.mm.mrad

CYC2016, ETH Zürich, Switzerland

Yuan Xu et al. Sep. 15<sup>th</sup>, 2016

<10Hz



# Accelerators implemented with PKU PMECRIS





Requirements 10 mA/φ10mm 50 mA/φ40mm ε<0.1 π.mm.mrad

Achievements 54 mA/φ10mm ε<0.1 π.mm.mrad

 1. S. X. Peng et. al., Rev. Sci. Instrum. 79, 02B706 (2008).
 2. H. T. Ren et. al., Rev. Sci. Instrum. 81, 02B714 (2010).

 3. S. X. Peng et al., Rev. Sci. Instrum. 85, 02A712 (2014).
 4. S. X. Peng et. al. Nucl. Instr. and Meth. A, 763 (2014) 120.

Yuan Xu *et al.* Sep. 15<sup>th</sup>, 2016



# Accelerators implemented with PKU PMECRIS

> H<sup>-</sup> ion source



#### Layout of XiPAF facility 10 mA H<sup>-</sup> 10% duty factor

Potential application in cyclotron for isotope production

1. S. X. Zheng et al., in proceedings of HB2016, Malmö, Sweden, MOPR006 pp. 56 (2016).

2. P. W. Schmor, in proceedings of CYCLOTRONS 2010, Lanzhou, China, FRM2CIO01, pp. 419 (2010).

CYC2016, ETH Zürich , Switzerland

Yuan Xu *et al.* Sep. 15<sup>th</sup>, 2016



## Outline

## Background

## ➢ Ion sources developed at PKU

- Overview
- $\bullet \quad H^+ \text{ ion source}$
- Molecular ion source  $(H_2^+ \& H_3^+)$
- Microwave-driven Cs-free negative hydrogen ion source

## ➤Conclusion



## Conclusion

- > 2.45 GHz microwave driven ion sources have been developed at PKU for several decades. After improvements, the ion sources can already produce high current  $H^+$ ,  $H_2^+$ ,  $H_3^+$  and  $H^-$  ions to fulfil the requirements of cyclotrons.
- For positive hydrogen ions, 130 mA H<sup>+</sup>, 42 mA H<sub>2</sub><sup>+</sup>, and 20 mA H<sub>3</sub><sup>+</sup> ion beam could be extracted in pulsed mode.
- Moreover, a 300 h long time continuous test with 50 mA CW H<sup>+</sup> beam was performed to demonstrate the stability and reliability of the ion source recently.
- For negative hydrogen ion source, 29 mA CW and 45 mA pulsed H<sup>-</sup> beam was generated with very high power efficiency. In conclusion, it is promising to use 2.45 GHz microwave driven ion source at PKU in cyclotrons as it has very high reliability to generate both CW and pulsed beam.





## Thank you for your attention!



