Keyword: EPICS
Paper Title Other Keywords Page
TUP15 Control System Dedicated for Beam Line of Proton Radiography on 100 MeV Cyclotron CYCIAE-100 controls, proton, PLC, interface 202
 
  • Y.W. Zhang, H.R. Cai, L.C. Cao, T. Ge, S.M. Wei, J.J. Yang, Z.G. Yin, T.J. Zhang
    CIAE, Beijing, People's Republic of China
 
  After the first beam on July 4 2014, CYCIAE-100's performance have been improved gradually and is ready for routine operation. There are 7 beam lines in total in the design stage, i.e. N1:ISOL, N2:isotope production, N3:beam dump, S1: single energy neutron, S2:white light neutron source, S3: radiobiological effect, S4:single event effect. The beam lines N2 and N3 were combined into one line during the construction. In the last two years, we propose to build to two new lines, one for principle verification of Proton Radiography, the other one for demonstration of proton therapy. Both of them are quite special. In this paper, a control system for the operation of the beam line of proton radiography, including the magnets, vacuum and water cooling, the beam intensity & profile diagnostics, and the imaging etc, will be presented.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB01 A New Digital Low-level RF Control System for Cyclotrons controls, FPGA, cyclotron, operation 258
 
  • W. Duckitt, J. Abraham, J.L. Conradie, M.J. Van Niekerk
    iThemba LABS, Somerset West, South Africa
  • T.R. Niesler
    Stellenbosch University, Matieland, South Africa
 
  Stable control of amplitude and phase of the radio frequency (RF) system is critical to the operation of cyclotrons. It directly influences system performance, operability, reliability and beam quality. iThemba LABS operates 13 RF systems between 8 and 81 MHz and at power levels of 50 W to 150 kW. A critical drive has been to replace the 30 year old analog RF control system with modern technology. To this effect a new generic digital low-level RF control system has been designed. The system is field programmable gate array (FPGA) based and is capable of synthesizing RF signals between 5 and 100 MHz in steps of 1 μHz. It can achieve a closed-loop amplitude stability of greater than 1/10000 and a closed-loop phase stability of less than 0.01°. Furthermore, the system is fully integrated with the Experimental Physics and Industrial Control System (EPICS) and all system and diagnostic parameters are available to the Control System Studio clients. Three prototypes of the system have been in operation since November 2014. A general analysis of RF control systems as well as the methodology of design, implementation, operational performance and future plans for the system is presented.  
slides icon Slides WEB01 [3.088 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)