RPPE  —  Accelerator Technology   (19-May-05   13:50—17:10)

Paper Title Page
RPPE001 The CARE Accelerator R&D Programme in Europe 749
 
  • O. Napoly, R. Aleksan, A. Devred
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • A. Den Ouden
    Twente University, Laser Physics and Non-Linear Optics Group, Enschede
  • R. Garoby, R. Losito, L. Rinolfi, F. Ruggiero, W. Scandale, D. Schulte, M. Vretenar
    CERN, Geneva
  • T. Garvey, F. Richard
    LAL, Orsay
  • A. Ghigo
    INFN/LNF, Frascati (Roma)
  • E. Gschwendtner
    CUI, Geneva
  • H. Mais, D. Proch
    DESY, Hamburg
  • V. Palladino
    INFN-Napoli, Napoli
 
  Funding: This work is supported by the European Community-Research Infrastructure Activity under the FP6 “Structuring the European Research Area” programme (CARE, contract number RII3-CT-2003-506395).

CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards HEP projects, has been launched in January 2004 by the main European laboratories and the European Commission within the 6th Framework Programme. This programme aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. An important part of this programme is devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron and proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We describe the R&D plans of the four main R&D activities and report on the results and progress obtained so far.

 
RPPE002 Installation and Radiation Maintenance Scenario for J-PARC 50 GeV Synchrotron 835
 
  • M. Yoshioka, H. Kobayashi, T. Oogoe, Y. Takeuchi, Y. Watanabe
    KEK, Ibaraki
  • Y. Kuniyasu
    MELCO SC, Tsukuba
  • H. Oki, Y. Takiyama
    ,
 
  Funding: Ministry of Education, Culture, Science and Technology, Japan

J-PARC comprises a 400 MeV linac (181 MeV at the first stage), a 3 GeV rapid-cycling synchrotron and a 50 GeV synchrotron (Main Ring), which will provide high power proton beam to the material and life science facility, the neutrino facility and the nuclear and particle physics experimental hall. The installation of the accelerator components for the Main Ring will be started on mid. 2005 and the beam commissioning is scheduled in end of 2007. This paper describes the installation scenario of the accelerator components into the main ring tunnel and the development of radiation maintenance scenario for the beam injection and ejection systems.

 
RPPE003 Operational Experience of Cooling Water Systems for Accelerator Components at PLS 850
 
  • K.R. Kim, C.W. Chung, H.S. Han, H.-G. Kim, Y.-C. Kim, I.S. Ko, B.H. Lee
    PAL, Pohang, Kyungbuk
 
  Funding: Work supported by MOST and POSCO in Republic of Korea.

The cooling water system has been utilized for absorbing heat generated by a multitude of electromagnetic power delivering networks at PLS. The separate cooling water distribution systems for the storage ring, beam transport line and linear accelerator have been operated with a different operating temperature of supplying water. All water used for heat removal from the accelerator components are deionised and filtered to provide with over 2 MO-cm specific resistance. The operating pressures and flows of input water are also controlled with flow balancing scheme at a specified range. The operating temperature of components in the accelerator is sustained as tight as below ±0.1 deg C to minimize the influence of temperature fluctuation on the beam energy and stability. Although the PLS cooling systems were initially installed with a high degree of flexibility to allow for easy maintenance, a number of system improvements have been employed to enhance operational reliability and to incorporate the newly developed operating interfaces such as EPICS accelerator control systems. The important design and operational features of PLS cooling water systems are presented as well as lessons learned from around 10-years normal operation.

 
RPPE005 Ions for LHC: Beam Physics and Engineering Challenges 946
 
  • S. Maury, M.-E. Angoletta, V. Baggiolini, A. Beuret, A. Blas, J. Borburgh, H.-H. Braun, C. Carli, M. Chanel, T. Fowler, S.S. Gilardoni, M. Gourber-Pace, S. Hancock, C.E. Hill, M. Hourican, J.M. Jowett, K. Kahle, D. Kuchler, E. Mahner, D. Manglunki, M. Martini, M.M. Paoluzzi, J. Pasternak, F. Pedersen, U. Raich, C. Rossi, J.-P. Royer, K. Schindl, R. Scrivens, L. Sermeus, E.N. Shaposhnikova, G. Tranquille, M. Vretenar, Th. Zickler
    CERN, Geneva
 
  The first phase of the heavy ion physics program at the LHC aims to provide lead-lead collisions at energies of 5.5 TeV per colliding nucleon pair and ion-ion luminosity of 1027 cm-2s-1. The transformation of CERN’s ion injector complex (Linac3-LEIR-PS-SPS) presents a number of beam physics and engineering challenges. Conversion of the Low Energy Antiproton Ring (LEAR) to a Low Energy Ion Ring (LEIR) is under way: the high-current electron cooling system, novel broad-band RF cavities and vacuum equipment to achieve 10-12 mbar are the major challenges. Commissioning of LEIR with beam will start in the middle of 2005. Major hardware changes in Linac3 include the installation of the new ECR ion source and of the energy ramping cavity. The PS will have a new injection system and RF gymnastics. A stripping insertion between PS and SPS must not disturb the proton operation. In the LHC itself, there are fundamental performance limitations due to various beam loss mechanisms. To study these without risk of damage there will be an initial period of operation with a reduced number of nominal intensity bunches. While reducing the work required to commission the LHC with ions in 2008, this will still enable early physics discoveries.  
RPPE006 Air Temperature Analysis and Control Improvement for the Storage Ring Tunnel 1027
 
  • J.-C. Chang, Z.-D. Tsai
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
  • M. Ke
    NTUT, Taipei
 
  The stability of the electron beam orbit had been observed to be sensitive to the utility conditions. The stability of air temperature in the storage ring tunnel is one of the most critical factors. Accordingly, a series of air conditioning system upgrade studies and projects have been conducted at the Taiwan Light Source (TLS). Computational fluid dynamics (CFD) is applied to simulate the flow field and the spatial temperature distribution in the storage ring tunnel. The circumference and the height of the storage tunnel are 120m and 2.8m, respectively. The temperature data and the flow rates at different locations around the storage ring tunnel are collected as the boundary conditions. The k-epsilon turbulence model is applied to simulate the flow field in the three dimensional space. The global air temperature variation related to time in the storage ring tunnel is currently controlled within ±0.1 degree C. However, the temperature difference between two different locations is as high as 2 degree C. Some measures improving the temperature uniformity will be taken according to the CFD simulation results.  
RPPE007 High Precision Temperature Control and Analysis of RF Deionized Cooling Water System 1057
 
  • Z.-D. Tsai, J.-C. Chang, C.-Y. Liu
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
 
  Previously, the Taiwan Light Source (TLS) has proven the good beam quality mainly depends on the utility system stability. A serial of efforts were devoted to these studies. Further, a high precision temperature control of the RF deionized cooling water system will be achieved to meet the more critical stability requirement. The paper investigates the mixing mechanism through thermal and flow analysis and verifies the practical influences. A flow mixing mechanism and control philosophy is studied and processed to optimize temperature variation which has been reduced from ±0.1? to ±0.01?. Also, the improvement of correlation between RF performance and water cooling stability will be presented.  
RPPE008 Water Induced Vibration in the NSRRC 1102
 
  • D.-J. Wang, H.C. Ho, Z.-D. Tsai, J. Wang
    NSRRC, Hsinchu
 
  Water flow related vibrations were found on the spectrum of electron beam position monitor in the NSRRC. They were associated with the vibrations of quadrupole magnets. One major vibration source was from a pump in the cooling water system. Most amount of vibration coupled through water pipe and water flow and propagated to the magnets. A small water flow station was set up to study the effect about coupling, propagating and excitation. Some damping schemes tested in the ring to improve the vibration are also included..  
RPPE009 Extremely High Current, High-Brightness Energy Recovery Linac 1150
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, J.G. Grimes, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, Z. Segalov, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, P. Kneisel, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Under contract with the U.S. Department of Energy, U.S. DOD Office of Naval Research and Joint Technology Office.

Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

 
RPPE010 Beam Transport Devices for the 10kW Free Electron Laser at Thomas Jefferson National Accelerator Facility 1210
 
  • L.A. Dillon-Townes, C.P. Behre, M.E. Bevins, G.H. Biallas, D. Douglas, C.W. Gould, J.G. Gubeli, D.H. Kashy, R. Lassiter, L. Munk, G. Neil, M.D. Shinn, S. Slachtouski, D. Waldman
    Jefferson Lab, Newport News, Virginia
 
  Funding: Department of Energy

The beam transport vacuum components for the 10 kW Free Electron Laser (FEL) at Thomas Jefferson National Accelerator Facility (TJNAF) were designed to address 10 MeV electron beam characteristics and maintain an accelerator transport vacuum of 10-9 torr. The components discussed include a novel zero length beam clipper, novel shielded bellows, one decade differential pumping stations with a 7.62 cm (3.0”) aperture, and a 50 kW beam dump. Incorporation of these accelerator transport components assist in establishing the environment needed for the electron beam to produce the optical light required to lase at 10 kW.

 
RPPE011 SNS AC Power Distribution and Reliability of AC Power Supply 1231
 
  • P.S. Holik
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

The SNS Project has 45MW of installed power. A design description under the Construction Design and Maintenance (CDM) with regard to regulations (OSHA, NFPA, NEC), reliability issues and maintenance of the AC power distribution system are herewith presented. The SNS Project has 45MW of installed power. The Accelerator Systems are Front End (FE)and LINAC KLYSTRON Building (LK), Central Helium Liquefier (CHL), High Energy Beam Transport (HEBT), Accumulator Ring and Ring to Target Beam Transport (RTBT) Support Buildings have 30MW installed power. FELK has 16MW installed, majority of which is klystron and magnet power supply system. CHL, supporting the super conducting portion of the accelerator has 7MW installed power and the RING Systems (HEBT, RING and RTBT) have also 7MW installed power.*

*SNS SRD. KJ Basis of Design. IEEE Red Book. IEEE Gold Book. IEEE Green Book. NEC NFPA.

 
RPPE012 Grounding of SNS Accelerator Structure 1278
 
  • P.S. Holik
    ORNL, Oak Ridge, Tennessee
 
  Funding: UT-Battelle, SNS Collaboration.

Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

*SNS SRD *IEEE GREEN BOOK *IEEE EMERALD BOOK

 
RPPE014 Temperature Regulation of the Accelerating Section in CANDLE Linac 1416
 
  • S. Tunyan, G.A. Amatuni, B. Grigoryan
    CANDLE, Yerevan
 
  The temperature of the CANDLE S-Band Linac high-power RF components will be regulated by stand-alone closed loop (SACL) water system. The RF components are made of oxygen-free high conductivity copper and respond quickly to temperature changes. Temperature stabilization better than ± 0.1 C is required to achieve a good RF phase and energy stability. The temperature regulation and control philosophy along with the simulation results are discussed.  
RPPE015 Diagnostics and Protection Control for IREN Linac Test Facility
 
  • V.N. Zamriy
    JINR, Dubna, Moscow Region
 
  The diagnostic and protection control systems for the full-scale test facility of the linear electron accelerator are constructed according to the project on pulsed neutron source IREN. Combined control schemes of timed diagnostics of a duty cycle and real-time protection control are created for the linac test facility. Applicability of the diagnostics systems of cycle parameters and deviations of a status for control of the mode of protection is shown. Multichannel control modules of the protection system have been developed for logging and diagnostics of a status change, the alarms and control of a mode of operation. The applied multiway controllers for duty protection with fast locking of cycles of the IREN linac are presented.  
RPPE016 Protection Level During Extraction, Transfer and Injection into the LHC 1505
 
  • V. Kain, B. Goddard, R. Schmidt, J. Wenninger
    CERN, Geneva
 
  Failures during the LHC transfer and injection process cannot be excluded and beam loss with the foreseen intensities and energies, which are an order of magnitude above the damage limit, could cause serious equipment damage. Consequences of equipment failures such as kicker erratics, power converter faults, etc. are investigated by means of a Monte Carlo based on MAD-X tracking with a full aperture model of the transfer line and the injection region. Geometrical and optical mismatch, orbit tolerances, mechanical tolerances for settings of protection elements, power converter ripples, misalignment of elements, etc. are all taken into account. The required performance of the protection system is discussed. The overall protection level for the LHC and the transfer lines during injection is presented.  
RPPE018 Material Damage Test with 450 GeV LHC-Type Beam 1607
 
  • V. Kain, J. Ramillon, R. Schmidt, K.V. Vorderwinkler, J. Wenninger
    CERN, Geneva
 
  The design of LHC protection elements is based on assumptions on damage levels, which are derived from simulations. A dedicated experiment was prepared and carried out to cross-check the validity of this approach by trying to damage material in a controlled way with beam. The impact of a 450 GeV beam extracted from the SPS on a specially designed high-Z target with a simple geometry, comprising several typical materials used for LHC equipment, was simulated. The beam intensities for the test were chosen to exceed the damage limits of parts of the target. Results of the simulations are presented and compared with test results.  
RPPE021 The SNS Machine Protection System: Early Commissioning Results and Future Plans 1727
 
  • C. Sibley III, D.J. Armstrong, A. Jones, T.A. Justice, D.H. Thompson
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source under construction in Oak Ridge TN has commissioned low power beam up to 187 Mev. The number of MPS inputs is about 20% of the final number envisioned. Start-up problems, including noise and false trips, have largely been overcome by replacing copper with fiber and adding filters as required. Initial recovery time from Machine Protection System (MPS) trips was slow due to a hierarchy of latched inputs in the system: at the device level, at the MPS input layer, and at the operator interface level. By reprogramming the MPS FPGA such that all resets were at the input devices, MPS availability improved to acceptable levels. For early commissioning MPS inputs will be limited to beam line devices that will prohibit beam operation. For later operation, the number of MPS inputs will increase both software alarms and less intrusive MPS inputs such as steering magnets are implemented. Two upgrades to SNS are on the horizon: a 3 MW upgrade and a second target station. Although these are years away the MPS system as designed should easily accommodate the increase in power and pulse-to-pulse target switching at 120 Hz.

Work supported by the U.S. Department of Energy under contract DE-AC05-00OR22725.

 
RPPE022 Machine Protection System for Concurrent Operation of RHIC and BLIP 1754
 
  • M. Wilinski, S. Bellavia, J. Glenn, L.F. Mausner, K.L. Unger
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

The Brookhaven 200 MeV linac is a multipurpose machine used to inject low intensity polarized protons ultimately ending up in RHIC as well as to inject high intensity protons to BLIP, a medical isotope production facility. If high intensity protons were injected to RHIC by mistake, administrative radiation limits could be exceeded or sensitive electronics could be damaged. In the past, the changeover from polarized proton to high intensity proton operation has been a lengthy process, thereby never allowing the two programs to run simultaneously. To remedy this situation and allow for concurrent operation of RHIC and BLIP, an active interlock system has been designed to monitor current levels in the AGS using two current transformers with fail safe circuitry and associated electronics to inhibit beam to RHIC if high intensity is detected.

 
RPPE026 Operating Experience with Meson Production Targets at TRIUMF 1919
 
  • E.W. Blackmore, A.S. Dowling, R. Ruegg, M.C. Stenning
    TRIUMF, Vancouver
 
  High power targets are now required for operation at beam powers in excess of 1 MW for spallation neutron sources and neutrino factories. TRIUMF has been operating beryllium and graphite meson production targets for many years. Although the proton beam power of 100 kW at 500 MeV is lower, the beam densities and fluences are higher than most operating solid targets as other accelerators use rotating targets or larger beam spots. The beam size on the TRIUMF targets is maintained at 0.15 cm2 and this beam density leads to proton fluences of 1·1023 protons/cm2 per year. The beryllium targets are rectangular rods immersed in a water-cooled stainless steel jacket. The pyrolytic graphite targets consist of pie-shaped segments bonded to a water-cooled copper saddle. Operating experience shows that the graphite targets suffer thermal damage above beam currents of 120 uA but will operate for long periods at 100 uA. The beryllium targets can operate to 200 uA and appear to survive radiation damage beyond 10 dpa although some targets have failed due to structural damage. This paper will describe the operating experience with these targets and present some thermal and radiation calculations.  
RPPE027 High Intensity High Energy E-Beam Interacting with a Thin Solid State Target: First Results at AIRIX 1982
 
  • M. Caron, F. Cartier, D.C. Collignon, L.H. Hourdin, E. Merle, M. Mouillet, C. Noel, D.P. Paradis, O.P. Pierret
    CEA, Pontfaverger-Moronvilliers
  • O. Mouton, N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
 
  Funding: CEA, Polygone d’Expérimentation de Morronvilliers, LEXA F-51 475 Pontfaverger (France).

AIRIX is a 2 kA, 20 MeV, 60 ns linear accelerator dedicated to X-ray flash radiography. During a regular running phase, the primary electron beam is accelerated to and focused on a high atomic number target in order to generate X-rays by brembtrahlung mainly. The huge energy density deposited into the material is such that temperature rises up to 15000°K and that clusters and particles are violently ejected from the surface. In that mechanism, the backward emission speed can reach 5 km.s-1 and the debris can gradually accumulate and subsequently contaminate some sensitive parts of the machine. In order to protect the whole accelerating line from the detrimental effect of back-ejected particles, we have investigated the technical feasibility of a thin foil implementation upstream the X-ray converter.

 
RPPE029 Rotating Aperture Deuterium Gas Cell Development for High Brightness Neutron Production 2074
 
  • B. Rusnak, M. Hall, S. Shen
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

A project is underway at LLNL to design and build a system for fast neutron imaging. The approach being pursued will use a 7 MeV deuterium linac for producing high-energy neutrons via a D(d,n)3He reaction. To achieve a high-brightness neutron source, a windowless rotating aperture gas cell approach is being employed. Using a series of close-tolerance rotor and stator plates, a differential pumping assembly has been designed and built that contains up to 3 atmospheres of deuterium gas in a 40 mm long gas cell. Rarefaction of the gas due to beam-induced heating will be addressed by rapidly moving the gas across the beam channel in a crossflow tube. The design and fabrication process has been guided by extensive 3D modeling of the hydrodynamic gas flow and structural dynamics of the assembly. Summaries of the modeling results, the fabrication and assembly process for the rotating aperture system, and initial measurements of gas leakage shall be presented.

 
RPPE030 Corrugated Thin Diamond Foils for SNS H- Injection Stripping 2152
 
  • R.W. Shaw, V.A. Davis, R.N. Potter, L.L. Wilson
    ORNL, Oak Ridge, Tennessee
  • C.S. Feigerle, M.E. Peretich
    University of Tennessee, Knoxville, Tennessee
  • C.J. Liaw
    BNL, Upton, Long Island, New York
 
  Funding: MEP acknowledges a SURE fellowship, supported by Science Alliance, a UT Center of Excellence. RNP acknowledges an appointment to the U.S. DOE SULI Program at the Oak Ridge National Laboratory. SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a collaboration of six US National Laboratories: ANL, BNL, TJNAF, LANL, LBNL, and ORNL.

We have prepared and tested corrugated, thin diamond foils for use in stripping the SNS H- Linac beam. Diamond has shown promise for providing ca. 10X increased lifetime over traditional carbon foils. The preferred foil geometry is 10.5 by 20 mm at 350 microgram/cm2, mechanically supported on preferably one, but no more than two, edges. The foils are prepared by chemical vapor deposition (CVD) on a patterned silicon substrate, followed by chemical removal of the silicon. This yields a foil with trapezoidal corrugations to enhance mechanical strength and foil flatness. Both micro- and nano-crystalline diamond foils have been grown. Microwave plasma CVD methods that incorporate high argon gas content were used to produce the latter. Sixteen foils of a variety of characteristics have been tested using the BNL 750 keV RFQ H- beam to simulate the energy deposition in the SNS foil. Long foil lifetimes, up to more than 130 hours, have been demonstrated. Characterization of the foils after beam testing indicates creation of sp2 defects within the ion beam spot. Current efforts are centered on development of corrugation patterns that will enhance flatness of single-edge supported foils.

 
RPPE031 Target and Horn Cooling for the Very Long Baseline Neutrino Experiment 2209
 
  • S. Bellavia, S.A. Kahn, H.G. Kirk, H. Ludewig, D. Raparia, N. Simos
    BNL, Upton, Long Island, New York
 
  Funding: This work is performed under the auspices of the US DOE.

Thermodynamic studies have been performed for the beam target and focusing horn system to be used in a very long baseline neutrino oscillation experiment. A 2mm rms beam spot with power deposition of over 18 KW presents challenging material and engineering solutions to this project. Given that the amount of heat transferred by radiation alone from the target to the horn is quite small, the primary mechanism is heat removal by forced convection in the annular space between the target and the horn. The key elements are the operating temperature of the target, the temperature of the cooling fluid and the heat generation rate in the volume of the target that needs to be removed. These working parameters establish the mass flow rate and velocity of the coolant necessary to remove the generated heat. Several cooling options were explored using a carbon-carbon target and aluminum horn. Detailed analysis, trade studies and simulations were performed for cooling the horn and target with gaseous helium as well as water.

 
RPPE032 Measurement of the Secondary Emission Yield of a Thin Diamond Window in Transmission Mode 2251
 
  • X.Y. Chang, I. Ben-Zvi, A. Burrill, S. Hulbert, P.D.J. Johnson, J. Kewisch, T. Rao, Z. Segalov, J. Smedley, Y. Zhao
    BNL, Upton, Long Island, New York
 
  The secondary emission enhanced photoinjector (SEEP) is a promising new approach to the generation of high-current, high-brightness electron beams. A low current primary electron beam with energy of a few thousand electron-volts strikes a specially prepared diamond window which emits secondary electrons with a current two orders of magnitude higher. The secondary electrons are created at the back side of the diamond and drift through the window under the influence of a strong electrical field. A hydrogen termination at the exit surface of the window creates a negative electron affinity (NEA) which allows the electrons to leave the diamond. An experiment was performed to measure the secondary electron yield and other properties. The results are discussed in this paper.  
RPPE033 Engineering the SNS RTBT/Target Interface for Remote Handling 2278
 
  • M. Holding, C.M. Hammons, B.R. Lang, G.R. Murdoch, K.G. Potter, R.T. Roseberry
    ORNL, Oak Ridge, Tennessee
 
  The SNS facility is designed for a 1.4MW 1.0GeV proton beam and the interface region of this beam with the Hg spallation target will be highly activated. This installation is located about fifteen feet below the access floor and the activity levels in the RTBT/Target interface are sufficiently high to warrant the application of Remote Handling techniques. The installed components are manufactured from radiation hard materials with serviceability beyond the lifetime of the machine, and all connections and mechanisms have been simplified to allow remote handling. The application of pneumatics to facilitate the assembly of major components and to the operation of moveable diagnostics has produced some unique design solutions.  
RPPE034 Measurements of the Energy Deposition Profile for 238U Ions with Energy 500 and 950 MEV/U in Stainless Steel and Copper Targets 2318
 
  • E. Mustafin, I. Hofmann, D. Schardt, K. Weyrich
    GSI, Darmstadt
  • A. Fertman, A. Golubev, A. Kantsyrev, V. Luckjashin
    ITEP, Moscow
  • A. Gnutov, A. Kunin, Y. Panova, V. Vatulin
    VNIIEF, Sarov (Nizhnii Gorod)
  • L.N. Latysheva, N. Sobolevskiy
    RAS/INR, Moscow
 
  Funding: Supported by the grant of the GSI-INTAS #03-54-3588.

Sub-millimeter wall thickness is foreseen for the vacuum tubes in the magnets of the superconducting dipoles of the SIS100 and SIS300 of the FAIR Project. The Bragg peak of the energy deposition by the U ions in these walls may lie dangerously close to the superconducting cables. Thus the precise knowledge of the dE/dx profile is essential for estimating the heat load by the lost ions in the vicinity of the superconducting wires. Here we present the results of the measurement of the U ion beam energy deposition profile in Cu and stainless steel targets and compare the measured data with the Monte-Carlo simulation using the SHIELD code.

 
RPPE036 Pressure Field Distribution in a Conical Tube with Transient and Outgassing Gas Sources 2422
 
  • F.T. Degasperi
    FATEC-SP, Sao Paulo, SP
  • M.N. Martins, J. Takahashi
    USP/LAL, Bairro Butantan
  • L.L. Verardi
    IBILCE - UNESP, Sao Jose do Rio Preto, SP
 
  Funding: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq

This work presents numerical results for the pressure field distribution along the axis of conical tube with outgassing plus a transient degassing. Several areas of applied physics deal with problems in high-vacuum and ultra high-vacuum technology that present tubular form. In many cases one finds conical tubes, which are frequently present in particle accelerators, colliders, storage rings and several electron devices. This work presents and describes in detail the pressure field in a conical tube with a transient gas source, for instance, when particles from the beam hit the walls, plus the steady state outgassing. Mathematical and physical formulations are detailed, and the boundary conditions are discussed. These concepts and approach are applied to usual realistic cases, with typical laboratory dimensions.

 
RPPE037 The Vacuum System for PETRA III 2473
 
  • M. Seidel, R. Bospflug, J. Boster, W. Giesske, U. Naujoks, M. Schwartz
    DESY, Hamburg
 
  It is planned to rebuild the storage ringe PETRA II, presently used as pre-accelerator of HERA, into a high performance synchrotron light source. By making use of the large circumference and the installation of damping wigglers it will be possible to achieve exceptionally small emittances in the new storage ring. The requirements for the vacuum system are more advanced in the new storage ring as well. Besides the goal to achieve low pressures and fast conditioning times a major key for the new ring is a very high orbit stability which implies high thermal stability of BPM's and other vacuum components. We describe the basic concepts for chamber layout, pumping schemes, synchrotron radiation absorption and mechanical stability for the standard arcs and the experimental octant. Furthermore the expected performance will be discussed.  
RPPE039 Alumina Ceramics Vacuum Duct for the 3GeV-RCS of the J-PARC 2604
 
  • M. Kinsho
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
  • Z. Kabeya
    MHI, Nagoya
  • N. Ogiwara
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Saito
    KEK, Ibaraki
 
  It was success to develop alumina ceramics vacuum ducts for the 3GeV-RCS of J-PARC at JAERI. There are two types of alumina ceramics vacuum ducts needed, one being 1.5m-long duct with a circular cross section for use in the quadrupole magnet, the other being 3.5m-long and bending 15 degrees, with a race-track cross section for use in the dipole magnet. These ducts could be manufactured by joining several duct segments of 0.5-0.8 m in length by brazing. The alumina ceramics ducts have copper stripes on the outside surface of the ducts to reduce the duct impedance. One of the ends of each stripe is connected to a titanium flange by way of a capacitor so to interrupt an eddy current circuit. The copper stripes are produced by an electroforming method in which a stripe pattern formed by Mo-Mn metallization is first sintered on the exterior surface and then overlaid by PR-electroformed copper (Periodic current Reversal electroforming method). In order to reduce emission of secondary electrons when protons or electrons strike the surface, TiN film is coated on the inside surface of the ducts.  
RPPE040 Development of Copper Coated Chamber for Third Generation Light Sources 2633
 
  • H. Sakai, I. Ito, H. Kudo, N. Nakamura, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • K. Kobayashi
    KEK, Ibaraki
 
  For the 3rd generation light sources, it is essential to reduce the beam instability in order to produce the highly bright synchrotron light much stably. Especially, to avoid the coupled bunch instability, the resistive wall impedance must be reduced. The copper-coating inner surface of the chamber(especially in insertion device section)is much effective method for the reduction of the resistive wall impedance, whose method was already proposed by our group (N.Nakamura et.al., EPAC 1998 p984). We have already produced the copper coated chamber. In this paper, we describe the measurement of the outgassing from the copper coated chamber to evaluate if this chamber is valid on the ultra-low high vacuum condition.  
RPPE041 Design and Construction of the CERN LEIR Injection Septa 2690
 
  • J. Borburgh, B. Balhan, P. Bobbio, E. Carlier, M. Hourican, T. Masson, T.N. Mueller, A. Prost
    CERN, Geneva
  • M. Crescenti
    TERA, Novara
 
  The Low Energy Ion Ring (LEIR) transforms long pulses from Linac 3 into high brilliance ion bunches for LHC by means of multi-turn injection, electron cooling and accumulation. The LEIR injection comprises a magnetic DC septum followed by an inclined electrostatic septum. The electrostatic septum has been newly designed and built. The magnetic septum is mainly recovered from the former LEAR machine, but required a new vacuum chamber. Dynamic vacua in the 10-12 mbar range are required, which are hard to achieve due to the high desorption rate of ions lost on the surface. A new interlock and displacement control system has also been developed. The major technical challenges to meet the magnetic, electrical and vacuum requirements will be discussed.  
RPPE042 Aperture and Field Constraints for the Vacuum System in the LHC Injection Septa 2732
 
  • M. Gyr, B. Henrist, J.M. Jimenez, J.-M. Lacroix, S. Sgobba
    CERN, Geneva
 
  Each beam arriving from the SPS has to pass through five injection septum magnets before being kicked onto the LHC orbit. The injection layout implies that the vacuum chambers for the two circulating beams pass through the septum magnet yokes at a flange distance from the chamber of the beam to be injected. Specially designed vacuum chambers and interconnections provide the required straightness and alignment precision, thus optimising the aperture for both the circulating and injected beams, without affecting the quality of the magnetic dipole field seen by the injected beam. The circulating beams are shielded against the magnetic stray field by using μ-metal chambers with a thickness of 0.9 mm to avoid saturation of the μ-metal (0.8 T), coated with copper (0.4 mm) for impedance reasons and NEG for pumping and electron cloud purposes. A sufficiently large gap between the iron yoke and the μ-metal chamber allows an in-situ bake-out at 200°C, based on a polyimide/stainless steel/polyimide sandwich structure with an overall thickness of 0.2 mm. The constraints will be described and the resulting vacuum system design, the apertures and the residual stray field will be presented.  
RPPE043 Ultrathin Polyimide-Stainless Steel Heater for Vacuum System Bake-Out 2744
 
  • C. Rathjen, S. Blanchard, B. Henrist, K. Koelemeijer, B. Libera, P. Lutkiewicz
    CERN, Geneva
 
  Space constraints in several normal conducting magnets of the LHC required the development of a dedicated permanent heater for vacuum chamber bake-out. The new heater consists of stainless steel bands inside layers of polyimide. The overall heater thickness is about 0.3 mm. The low magnetic permeability is suitable for applications in magnetic fields. The material combination allows for temperatures high enough to activate a NEG coating. Fabrication is performed in consecutive steps of tape wrapping. Automation makes high volume production at low costs possible. About 800 m of warm vacuum system of the long straight sections of the LHC will be equipped with the new heater. This paper covers experience gained at CERN from studies up to industrialization.  
RPPE044 Vacuum Modifications for the Installation of a New CESR-c Fast Luminosity Monitor 2836
 
  • Y. Li, Y. He, M.A. Palmer
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: Work supported by the National Science Foundation.

In order to improve luminosity tuning and maintenance for the CLEO-c high energy physics (HEP) program at the Cornell Electron Storage Ring (CESR), a luminosity monitor using photons from radiative Bhabha events has been installed in the CESR ring. Over 10 meters of CESR vacuum chambers near the interaction region were modified to accommodate this new device. The vacuum modifications were designed to meet two criteria. First, the new vacuum chambers had to provide sufficient horizontal and vertical aperture for photons originating from the IP over a wide range of colliding beam conditions. Secondly, the new vacuum chambers required adequate safety margins for operation at beam energies up to 5.3 GeV for Cornell High Energy Synchrotron Source running. In order to be certain that the vacuum modifications would not give rise to any localized pressure bumps, a detailed calculation of the expected vacuum pressure distribution due to synchrotron radiation flux was carried out. Careful design and planning enabled a successful installation and resumption of CESR operations in record time.

 
RPPE045 Vacuum Pumping Performance Comparison of Non-Evaporable Getter Thin Films Deposited Using Argon and Krypton as Sputtering Gases 2860
 
  • X. Liu, Y. He, Y. Li
    Cornell University, Department of Physics, Ithaca, New York
  • M.R. Adams
    Cornell University, Ithaca, New York
 
  Funding: Work Supported by the National Science Foundation.

Owing to the outstanding vacuum performance and the low secondary electron yield, non-evaporable getter (NEG) thin film deposited onto interior walls has gained widespread acceptance and has been incorporated into many accelerator vacuum system designs. The titanium-zirconium-vanadium (T-Zr-V) NEG thin films were deposited onto the interior wall of stainless steel pipes via DC magnetron sputtering method using either argon or krypton gas as sputtering gas. Vacuum pumping evaluation tests were carried out to compare vacuum pumping performances of the Ti-Zr-V NEG thin films deposited using argon or krypton. The results showed much higher initial pumping speed for the Kr-sputtered NEG film than the Ar-sputtered film, though both films have similar activation behavior. The compositions and textures of both thin films were measured to correlate to the pumping performances.

 
RPPE046 A Summary and Status of the SNS Ring Vacuum Systems 2929
 
  • M. Mapes, H.-C. Hseuh, J. Rank, L. Smart, R.J. Todd, D. Weiss
    BNL, Upton, Long Island, New York
  • M.P. Hechler, P. Ladd
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) ring is designed to accumulate high intensity protons. The SNS ring vacuum system consists of the High Energy Beam Transport (HEBT) line, Accumulator Ring and the Ring to Target Beam Transport (RTBT) line. The Accumulator ring has a circumference of 248m with 4 arcs and 4 straight sections, while the RTBT and HEBT have a total length of 350m of beam transport line. Ultrahigh vacuum of 10-9 Torr is required in the accumulator ring to minimize beam-residual gas ionization. To reduce the secondary electron yield (SEY) and the associated electron cloud instability, the ring vacuum chambers are coated with Titanium-Nitride (TiN). This paper describes the design, fabrication, assembly and vacuum processing of the ring and beam transport vacuum systems as well as the associated instrumentation and controls.

 
RPPE047 Upgrade of RHIC Vacuum Systems for High Luminosity Operation 2977
 
  • H.-C. Hseuh, M. Mapes, L. Smart, R.J. Todd, D. Weiss
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed and summarized.

 
RPPE048 Physical and Electromagnetic Properties of Customized Coatings for SNS Injection Ceramic Chambers and Extraction Ferrite Kickers 3028
 
  • H.-C. Hseuh, M. Blaskiewicz, P. He, Y.Y. Lee, C. Pai, D. Raparia, R.J. Todd, L. Wang, J. Wei, D. Weiss
    BNL, Upton, Long Island, New York
  • S. Henderson
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The inner surfaces of the 248 m SNS accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. All the ring inner surfaces are made of stainless or inconel, except those of the injection and extraction kickers. Ceramic vacuum chambers are used for the 8 injection kickers to avoid shielding of a fast-changing kicker field and to reduce eddy current heating. The internal diameter was coated with Cu to reduce the beam coupling impedance and provide passage for beam image current, and a TiN overlayer to reduce SEY. The ferrite surfaces of the 14 extraction kicker modules were coated with TiN to reduce SEY. Customized masks were used to produce coating strips of 1 cm x 5 cm with 1 to 1.5 mm separation among the strips. The masks maximized the coated area to more than 80%, while minimizing the eddy current effect to the kicker rise time. The coating method, as well as the physical and electromagnetic properties of the coatings for both types of kickers will be summarized, with emphasis on the effect to the beam and the electron cloud buildup.

†Corresponding author email: hseuh@bnl.gov.

 
RPPE049 Summary on Titanium Nitride Coating of SNS Ring Vacuum Chambers 3088
 
  • R.J. Todd, P. He, H.-C. Hseuh, D. Weiss
    BNL, Upton, Long Island, New York
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 100 chambers and kicker modules, some up to 5 m in length and 36 cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering using a cylindrical magnetron with internal permanent magnets. This cathode configuration generates a deposition rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arc, injection, extraction, collimation and RF regions. Chamber types, quantities and the cathode configurations used to coat them are presented herein. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing. Limitations of this coating method are also discussed.

 
RPPE050 Development of NEG Coating for RHIC Experimental Beamtubes 3120
 
  • D. Weiss, P. He, H.-C. Hseuh, R.J. Todd
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract No. DE-AC02-98CH10886 under the auspices of the U.S. Department of Energy.

As RHIC beam intensity increases beyond original scope, pressure rises in some regions have been observed. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beampipes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beampipes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beampipes installed in RHIC experimental regions. It features a hollow, liquid cooled cathode producing power density of 500W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beampipe. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NEG coated pipes was measured. Coating analysis includes energy dispersive spectroscopy, auger electron spectroscopy and scanning electron microscopy. System design, development, and analysis results are presented.

 
RPPE051 NEG Pumping Strip Inside Tevatron B2 Magnets 3144
 
  • A.Z. Chen, T. G. Anderson, B.M. Hanna
    Fermilab, Batavia, Illinois
 
  Funding: DOE

NEG pumping strips were installed inside four Tevatron B2 Magnets in order to improve the vacuum environment in B2 magnets that have embedded unbakable vacuum chamber. The prelimary results shown the total presure in that region was significant reduced. Complelte testing and opertation results will be available soon.

 
RPPE052 Application of Comb-Type RF-Shield to Bellows Chambers and Gate Valves 3203
 
  • Y. Suetsugu, K.-I. Kanazawa, N. Ohuchi, K. Shibata, M. Shirai
    KEK, Ibaraki
 
  A comb-type RF-shield, which was recently proposed for high current accelerators, was experimentally applied to bellows chambers and gate valves. The comb-type RF-shield has a structure of nested comb teeth, and has higher thermal strength and lower impedance than usual finger-type RF shields. The shield is suitable for future high intensity accelerators, such as particle factories aiming a luminosity of 1·1035 - 36 /cm2 /s. Seven bellows chambers with a circular or a racetrack cross section had been installed in the KEKB (KEK B-factory) positron ring since 2003 in series. Some bellows chambers are forced to bend up to 20 mrad during the beam operation. No significant problem had been found with a stored beam current up to 1.6 A (1.25 mA/bunch). On the other hand, a circular-type gate valve with the comb-type RF shield will be installed in the ring in January, 2005. Structures, properties and results of the beam test of the bellows chamber and the gate valve are discussed.  
RPPE053 R&D Status of Vacuum Components for the Upgrade of KEKB 3256
 
  • Y. Suetsugu, H. Hisamatsu, K.-I. Kanazawa, N. Ohuchi, K. Shibata, M. Shirai
    KEK, Ibaraki
 
  An upgrade plan of the KEK B-factory (KEKB), Super KEKB, aiming a luminosity over 1·1035 /cm2 /s has been discussed in KEK. To achieve the high luminosity, the stored beam currents are 4.2 - 9.4 A and the bunch length is 3 mm. In designing the vacuum system of the Super KEKB, therefore, the main issues are how to manage the resultant highly intense synchrotron radiation (SR) power, and how to reduce the beam impedance. The R&Ds for basic vacuum components, such as a beam duct, a bellows chamber, a connection flange, a collimator, a high-capacity pump and so on, are now undergoing to deal with the problems. For examples, a copper beam duct with an antechamber was manufactured to reduce the power density of SR, and to suppress the electrons around the beam for the positron ring. The test chamber was installed in the positron ring of KEKB and tested with a beam. Bellows chambers with a newly developed RF-shield were also installed in the ring and the property was investigated. A special connection flange with little step or gap inside was developed and examined in a test bench. The designs of these components and the results of tests are presented and discussed.  
RPPE056 Status of the NSRL Storage Ring UHV System After Project-II 3334
 
  • Y. Wang, L. Fan, C. Y. Guan, D. M. Jiang, J. P. Wang, W. Wei, F. Y. Zhao
    USTC/NSRL, Hefei, Anhui
 
  The NSRL project-II has been finished in December 2004. The UHV system of storage ring has undergone improvement and now provide long beam lifetime and stable operations, the average pressure of ring is better than 2 × 10-8 Pascal without beam and 1 × 10-7 Pascal with beam, The typical beam lifetime is 12 hours at 300 mA and 800 MeV without wiggler and 8 hours at 300 mA and 800 MeV with wiggler on. The improvements and status of NSRL storage ring are described in this paper.  
RPPE057 Resistive Wall Wakefield in the LCLS Undulator 3390
 
  • K.L.F. Bane, G.V. Stupakov
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy, contract DE-AC03-76SF00515.

In the Linac Coherent Light Source (LCLS), a short, intense bunch (rms length 20 microns, bunch charge 1 nC) will pass through a small, long undulator beam pipe (radius 2.5 mm, length 130 m). The wakefields in the undulator, particularly the resistive wall wake of the beam pipe, will induce an energy variation along the bunch, a variation that needs to be kept to within a few times the Pierce parameter for all beam particles to continue to lase. Earlier calculations included the short-range resistive wall wake, but did not include the frequency dependence of conductivity (ac conductivity) of the beam pipe walls. We show that for copper and for the LCLS bunch structure, including the ac conductivity results in a very large effect. We show that the effect can be ameliorated by choosing aluminum and also by taking a flat, rather than round, beam pipe chamber (if the vertical aperture is fixed). The effect of the (high frequency) anomalous skin effect is also considered.

 
RPPE058 Successful RF and Cryogenic Tests of the SOLEIL Cryomodule 3438
 
  • P. Marchand, M. Louvet, M. Louvet-Monsanglant, K. Tavakoli, C. Thomas-Madec
    SOLEIL, Gif-sur-Yvette
  • L. Arnaudon, O. Brunner, R. Losito, P. Maesen, E. Montesinos, G. Pechaud, M.P. Prax
    CERN, Geneva
  • P. Bosland, P. Bredy, S. Chel, G. Devanz
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  In the Storage Ring (SR) of the Synchrotron SOLEIL light source, two cryomodules will provide the maximum power of 600 kW required at the nominal energy of 2.75 GeV with the full beam current of 500 mA and all the insertion devices. A cryomodule prototype, housing two 352 MHz superconducting single-cell cavities with strong damping of the Higher Order Modes has been built and successfully tested in the ESRF. Even though the achieved performance (3 MV and 380 kW) does meet the SOLEIL requirement for the first year of operation, it was decided to upgrade the cryomodule prototype before its implementation in the SR. Modifications of the internal cryogenic system as well as the input power and dipolar HOM couplers required complete disassembling, reassembling and testing of the cryomodule, which were carried out at CERN. This refurbishment program, which was achieved in the framework of a collaboration between SOLEIL, CEA and CERN, is reported in this paper. A second cryomodule, similar to the modified prototype, is under manufacturing and will be implemented in the SR by the end of 2006.  
RPPE059 Measurements of Epsilon and Mu of Lossy Materials for the Cryogenic HOM Load 3462
 
  • V.D. Shemelin, H. Padamsee
    Cornell University, Ithaca, New York
  • M. Liepe
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
 
  Funding: Supported by Cornell University

In high current storage rings with superconducting cavities strong broadband HOM damping has been achieved by using beam-pipe ferrite loads, located at room temperature. Adopting the same damping concept for the ERL with RF absorbers between the cavities in a cavity string will require operating the absorbers at a temperature of about 80 K. This temperature is high enough to intercept HOM power with good cryogenic efficiency, and is low enough to simplify the thermal transition to the cavities at 2 K. However the electromagetic properties of possible absorber materials were not well known at cryogenic temperatures. We performed a measurement program at Cornell to find possible absorbers for HOMs in the ERL. Measurements were done for 10 different materials in the range from 1 to 40 GHz.

 
RPPE060 Overview of SNS Cryomodule Performance 3496
 
  • M. A. Drury, E. Daly, G.K. Davis, J.R. Delayen, C. Grenoble, W.R. Hicks, K. King, T. Plawski, T. Powers, J.P. Preble, H. Wang, M. Wiseman
    Jefferson Lab, Newport News, Virginia
 
  Funding: Supported by U.S. DOE Contract Nos. DE-AC05-84ER40150.

Thomas Jefferson National Accelerating Facility (Jefferson Lab) has completed production of 24 Superconducting Radio Frequency (SRF) cryomodules for the Spallation Neutron Source (SNS) superconducting linac. This includes one medium-beta (0.61) prototype, eleven medium-beta and twelve high-beta (0.81) production cryomodules. Ten medium-beta cryomodules as well as two high beta cryomodules have undergone complete operational performance testing in the Cryomodule Test Facility at Jefferson Lab. The set of tests includes measurements of maximum gradient, unloaded Q (Q0), microphonics, and response to Lorentz forces. The Qext’s of the various couplers are measured and the behavior of the higher order mode couplers is examined. The mechanical and piezo tuners are also characterized. The results of these performance tests will be discussed in this paper.

 
RPPE061 SRF Accelerator Technology Transfer Experience from the Achievement of the SNS Cryomodule Production Run 3517
 
  • J. Hogan, T.C. Cannella, E. Daly, M. A. Drury, J.F. Fischer, T. Hiatt, P. Kneisel, J. Mammosser, J.P. Preble, T.E. Whitlatch, K. Wilson, M. Wiseman
    Jefferson Lab, Newport News, Virginia
 
  This paper will discuss the technology transfer aspect of superconducting RF expertise, as it pertains to cryomodule production, beginning with the original design requirements through testing and concluding with product delivery to the end user. The success of future industrialization, of accelerator systems, is dependent upon a focused effort on accelerator technology transfer. Over the past twenty years the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has worked with industry to successfully design, manufacture, test and commission more superconducting RF cryomodules than any other entity in the United States. The most recent accomplishment of Jefferson Lab has been the successful production of twenty-four cryomodules designed for the Spallation Neutron Source (SNS). Jefferson Lab was chosen, by the United States Department of Energy, to provide the superconducting portion of the SNS linac due to its reputation as a primary resource for SRF expertise. The successful partnering with, and development of, industrial resources to support the fabrication of the superconducting RF cryomodules for SNS by Jefferson Lab will be the focus of this paper.  
RPPE062 The Use of Integrated Electronic Data Capture and Analysis for Accelerator Construction and Commissioning: Pansophy from the SNS Towards the ILC 3556
 
  • J.P. Ozelis, V. Bookwalter, B.D. Madre, C.E. Reece
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work supported by U.S. Department of Energy under contract DE-AC05-84ER40150.

Jefferson Lab has extensively used a proprietary web-based system (Pansophy) that integrates commercial database, data analysis, document archiving and retrieval, and user interface software, as a coherent knowledge management product during the construction of the cryomodules for the SNS Superconducting Linac, providing elements of process and procedure control, data capture and review, and data mining and analysis. With near real-time and potentially global access to production data, process monitoring and performance analyses could be pursued in a timely manner, providing crucial feedback. The extensibility, portability, and accessibility of Pansophy via universally available software components provide the essential features needed in any information and project management system capable of meeting the needs of future accelerator construction efforts, requiring an unprecedented level of regional and international coordination and collaboration, to which Pansophy is well suited.

 
RPPE063 Concepts for the JLab Ampere-Class CW Cryomodule 3588
 
  • R.A. Rimmer, E. Daly, J. Henry, W.R. Hicks, J.P. Preble, M. Stirbet, H. Wang, K. Wilson, G. Wu
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authored by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy, and by The Office of Naval Research under contract to the Dept. of Energy.

We describe the concepts and developments underway at JLab as part of the program to develop a new CW cryomodule capable of transporting ampere-level beam currents in a compact FEL. Requirements include real-estate gradient of at least 10 MV/m and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping, power couplers, tuners etc. are being designed and optimized for this application. Cavity considerations include a large iris for beam halo, low-RF losses, HOM frequencies and Q’s, low peak surface fields, field flatness and microphonics. Module considerations include high packing factor, low static heat leak, image current heating of beam-line components, cost and maintainability. This module is being developed for the next generation ERL based high power FELs but may be useful for other applications such as electron cooling, electron-ion colliders, industrial processing etc.

 
RPPE064 Development of a Cryogenic Radiation Detector for Mapping Radio Frequency Superconducting Cavity Field Emissions 3627
 
  • D.W. Dotson, J. Mammosser
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work supported by: U.S. DOE Contract No. DE-AC05-84er4015.

There is a relationship between field emissions in a Super Conducting RF cavity and the production of radiation (mostly X-rays). External (room temperature) detectors are shielded from the onset of low energy X-rays by the vacuum and cryogenic stainless steel module walls. An internal measuring system for mapping field emissions would assist scientists and engineers in perfecting surface deposition and acid washing module surfaces. Two measurement systems are undergoing cryogenic testing at JLab. One is an active CsI photodiode array and the second is an X-ray film camera. The CsI array has operated sucessfully in a cavity in liquid Helium but saturated at higher power due to scattering in the cavity. A shield with an aperature similar to the X-ray film detector is being designed for the next series of tests which will be completed before PAC-05.

 
RPPE065 Beam Loss Ion Chamber System Upgrade for Experimental Halls 3650
 
  • D.W. Dotson, D.J. Seidman
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work supported by: U.S. DOE Contract No DE-AC05-84ER4015.

The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic "burn through." Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an "off the shelf" Programmable Logic Controller located in a single controll box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage "Brick" at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.

 
RPPE067 Design and Fabrication of an FEL Injector Cryomodule 3724
 
  • J. Rathke, A. Ambrosio, H. Bluem, M.D. Cole, E. Peterson, T. Schultheiss, A.M.M. Todd
    AES, Medford, NY
  • I.E. Campisi, E. Daly, J. Hogan, J. Mammosser, G. Neil, J.P. Preble, R.A. Rimmer, C.H. Rode, T.E. Whitlatch, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • J.S. Sekutowicz
    DESY, Hamburg
 
  Funding: This work is supported by NAVSEA, MDA, and SMDC.

Advanced Energy Systems has recently completed the design of a four cavity cryomodule for use as an FEL injector accelerator on the JLAB Injector Test Stand. Fabrication is nearing completion. Four 748.5 MHz single cell superconducting cavities have been completed and are currently at Jefferson Lab for final processing and test prior to integration in the module. This paper will review the design and fabrication of the cavities and cryomodule.

 
RPPE068 A Magnetostrictive Tuning System for Particle Accelerators 3762
 
  • C.-Y. Tai, J. Cormier, W. J. Espinola, Z. Han, C.H. Joshi, A. Mavanur, L.M. Racz
    Energen, Inc., Lowell, Massachusetts
  • E. Daly, G.K. Davis
    Jefferson Lab, Newport News, Virginia
  • K.W. Shepard
    ANL, Argonne, Illinois
 
  Funding: This work is supported by DOE SBIR Program DE-FG02-03ER83648.

Energen, Inc. has designed, built, and demonstrated several fast and slow tuners based on its magnetostrictive actuators and stepper motor. These tuners are designed for Superconducting Radio Frequency (SRF) cavities, which are important structures in particle accelerators that support a wide spectrum of disciplines, including nuclear and high-energy physics and free electron lasers (FEL). In the past two years, Energen’s work has focused on magnetostrictive fast tuners for microphonics and Lorentz detuning compensation on elliptical-cell and spoke-loaded cavities, including the capability for real-time closed-loop control. These tuners were custom designed to meet specific requirements, which included a few to 100 micron stroke range, hundreds to kilohertz operation frequency, and cryogenic temperature operation in vacuum or liquid helium. These tuners have been tested in house and at different laboratories, such as DESY, Argonne National Lab, and Jefferson Lab. Some recent results are presented in this paper.

 
RPPE072 The Improvement and Data Acquisition Systems on Electrical Systems and Grounding Networks in NSRRC 3868
 
  • Y.-H. Liu, J.-C. Chang, J.-R. Chen, Y. Lin, Z.-D. Tsai
    NSRRC, Hsinchu
 
  Funding: NSRRC.

The purpose of this paper is to declare the improvement on electrical and grounding systems in NSRRC. In electrical power system, an Automated Voltage Regulator (AVR) was established to RF system in 2003. The variation of voltage supply from Taiwan Power Company (TPC) is reduced from 3% to 0.2% through the AVR system. And a Supervisory Control and Data Acquisition (SCADA) system was also setup to monitoring the electrical power conditions in each power station. After the high precision grounding systems were constructed in 2004, the stability of beam line was raised. For comprehending the grounding current and noise control, a grounding monitoring system with 32 channels was built in the storage ring. The grounding currents of 4 kickers, one septum and grounding bus are on-line acquisition. Two Electromagnetic Field (EMF) apparatuses were also installed to collect electrical and magnetic fields in the R1 section. It was observed that the electromagnetic field was correlated to grounding currents in certain locations. Injection effects were clearly found in most monitored data. Some improvement works, including expansion of the grounding monitoring system composing analytical software will integrate in the next step.

 
RPPE074 The Multichannel Deflection Plates Control System for the ALF Facility at the APS 3937
 
  • B. Deriy
    ANL, Argonne, Illinois
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

A deflection plate control system was developed as part of SPIRIT (Single Photon Ionization / Resonant Ionization to Threshold), a new secondary neutral mass spectrometry (SNMS) instrument that uses tunable vacuum ultraviolet light from the ALF (Argonne Linear Free-electron laser) facility at the APS for postionization. The system comprises a crate controller with PC104 embedded computer, 32 amplifiers, and two 1-kV power supplies. Thirty-two D/A converters are used to control voltages at the deflection plates within ± 400 V with 100-mV resolution. An algorithm of simultaneous sweeping of up to 16 XY areas with 10-μs time resolution also has been implemented in the embedded computer. The purpose of the system is to supply potentials to various ion optical elements for electrostatic control of keV primary and secondary ion beams in this SNMS instrument. The control system is of particular value in supplying (1) bipolar potentials for steering ions, (2) multiple potentials for octupole lenses that shape the ion beams, and (3) ramped deflection potentials for rastering the primary ion beam. The system has been in use as part of the SPIRIT instrument at the ALF facility since 2002.

 
RPPE075 Injector Electronics for Multi-Turn Operation of the University of Maryland Electron Ring (UMER) 3952
 
  • M. Holloway, T.F. Godlove, P.G. O'Shea, B. Quinn, M. Walter
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
 
  Funding: This work is funded by U.S. Department of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178.

Progress is described toward the development of pulse generators required for injection and extraction of the University of Maryland Electron Ring (UMER). The geometry, described elsewhere, employs a fast ironless dipole at the junction of a Y-shaped section of the ring. The dipole as developed has an inductance of 600 nH. The required +21 A, long pulse generator for multi-turn operation is installed. A pulser providing -42 A for deflection in the opposite sense during injection is under development. It must have a fall time of ~100 ns in view of the 200 ns circulation time for the beam. A similar pulser, having a 100 ns risetime is required for beam extraction. The fast pulsers employ MOSFET switches.

 
RPPE076 Overview of Electrical Systems for the University of Maryland Electron Ring (UMER) 3988
 
  • B. Quinn, G. Bai, S. Bernal, T.F. Godlove, I. Haber, J.R. Harris, M. Holloway, H. Li, J.G. Neumann, P.G. O'Shea, K. Tian, M. Walter
    IREAP, College Park, Maryland
  • M. Reiser
    University Maryland, College Park, Maryland
 
  Funding: This work is funded by the United States Department of Energy under grants DE-FG02-94ER40855 and DE-FG02-92ER54178.

Commissioning of the University of Maryland Electron Ring (UMER) is underway (see general abstract on UMER). We discuss the various electrical systems of UMER. The power system includes 114 supplies for 70 air-core magnetic quadrupoles, 36 bending dipoles and 30+ steering dipoles as well as earth's field compensating coils. Systems for data collection comprise multiplexers and fast digitizers for diagnostics including 15 fast beam position monitors (BPMs)and video capture from fluorescent screen monitors. Several pulsers have been built in-house for injection and extraction magnets. The stringent timing schemes are also presented.

 
RPPE077 A Complete System for Operation of a Superconducting Magnet 4003
 
  • G.W. Codner, M.W. Comfort, D.M. Sabol, T.F. VanDerMark, D.W. Widger, R.J. Yaeger
    CESR-LEPP, Ithaca, New York
 
  Funding: National Science Foundation.

A complete system for operating, protecting and monitoring a superconducting magnet is described. This system is used in CESR (Cornell Electron Storage Ring) at Cornell University's Laboratory for Elementary Particle Physics (LEPP) for the CESR superconducting wigglers, part of the accelerator upgrade in pursuit of the CESR charm physics program known as CESR-c.