Keyword: synchrotron
Paper Title Other Keywords Page
TUCB01 Ultrahigh Vacuum in Superconducting Synchrotrons vacuum, cryogenics, ion, booster 23
 
  • A.V. Smirnov, A.V. Butenko, A.R. Galimov
    JINR, Dubna, Moscow Region, Russia
  • A.M. Bazanov, A. Nesterov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The achievement of ultrahigh vacuum conditions in the range of 10-10 – 10-12 Torr is a very complicate task for charged particle accelerators. For superconducting accelerators the main rest gas is hydrogen which does not freeze effectively on the chamber wall even under the liquid helium temperature. Fast ramp of the magnetic field in the superconducting synchrotrons leads to the heating of the vacuum chamber that brings an additional problem for the achievement of the ultrahigh vacuum. In this talk the review of ultrahigh vacuum systems in superconducting accelerators is presented. Non-evaporated getters under the liquid nitrogen temperature are planned to the achievement of necessary vacuum conditions in the new accelerator complex of the NICA project (JINR, Russia).  
slides icon Slides TUCB01 [2.220 MB]  
 
TUZ02 Accelerator Technologies Development at ITEP ion, proton, rfq, heavy-ion 34
 
  • N.N. Alexeev, V. Andreev, A. Golubev, A. Kolomiets, A.M. Kozodaev, T. Kulevoy, V.I. Nikolaev, Yu.A. Satov, V.A. Schegolev, A. Shumshurov, A. Zarubin
    ITEP, Moscow, Russia
 
  Restart of scientific activity at ITEP associated with join it to the pilot project of NRC "Kurchatov Institute" is the occasion for summing up of intermediate results and existing capability of accelerator physics and technologies development in the institute. School of accelerators construction at ITEP has old traditions and refers on studying, invention, mastering and implementation to operation of technological features of proton and ion beams generation, transportation, acceleration, accumulation, extraction and space-time formation for usage of accelerated beams in physical experiments and applied research works. Historical survey and current state of accelerator science activity at ITEP are presented.  
slides icon Slides TUZ02 [2.051 MB]  
 
TUPSA13 The Interactive Computer Environment for Designing and Tuning of Charged Particle Beams Transport Channels focusing, controls, operation, quadrupole 63
 
  • Y.A. Bashmakov
    LPI, Moscow, Russia
  • G.P. Averyanov, V.A. Budkin, V.V. Dmitriyeva, I.O. Osadchuk
    MEPhI, Moscow, Russia
 
  This paper considers the application package that simulates transport channel of relativistic charged particles. The package provides an interactive mode for the user. It is possible to observe the main parameters of the beam crossing the channel on the PC screen such as envelope and cross-section of the beam at different sections of the channel while changing the main control parameters of the real channel. Enabling of procedures of mathematical programming provides express optimization of control parameters of the channel. The designed package is compact, has a modular structure and can be easily adapted to different software platforms. MATLAB integrated environment is used as instrumental environment, which has a freeware version of this system - SCILAB. Package testing was carried out on the electron synchrotron "Pakhra" during the recalibration of the channel of the accelerator working in different modes, which are determined by conducted experiments.  
 
WECA04 Accelerator Hadron Therapy Technique Developed at JINR cyclotron, proton, extraction, synchro-cyclotron 131
 
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Accelerator hadron therapy technique is one of applied researches realized at JINR. The JINR-IBA collaboration has developed and constructed the C235-V3 cyclotron for Dimitrovgrad hospital center of the proton therapy. Proton transmission in C235-V3 from radius 0.3m to 1.03 m is 72% without beam cutting diaphragms; the extraction efficiency is 62%. The main advantage of this cyclotron in comparison with serial commercial cyclotrons of IBA is related to higher current of the extracted beam. The cancer treatment is realized in JINR on the phasotron proton beam. More than 1000 patients were treated there. A project of the demonstration center of the proton therapy is discussed on base of a superconducting 250 MeV synchrocyclotron. The superconducting synchrocyclotron is planned to install instead of phasotron in Medical Technical Complex of DLNP. The project of the medical carbon synchrotron together with superconducting gantry was developed in JINR. The basis of this medical accelerator is the superconducting JINR synchrotron – Nuclotron. One important feature of this project is related to the application of superconducting gantry.  
slides icon Slides WECA04 [1.517 MB]  
 
THY02 The Status of the Facilities of Kurchatov's Synchrotron Radiation Source electron, injection, kicker, controls 290
 
  • V. Korchuganov
    RRC, Moscow, Russia
  • A. Belkov, Y.A. Fomin, E.V. Kaportsev, M.V. Kovalchuk, Y.V. Krylov, V.I. Moiseev, N.I. Moseiko, D.G. Odintsov, S.G. Pesterev, A.S. Smygacheva, S.I. Tomin, V. Ushakov, V.L. Ushkov, A.G. Valentinov, A. Vernov
    NRC, Moscow, Russia
 
  The first electron beam had been received 20 years ago in a storage ring SIBERIA-2 - dedicated synchrotron radiation source in the Kurchatov's Institute and, also, the official opening of the Kurchatov's SR source for the experiments marks 15th anniversary in 2014 . The report focuses on the accelerator complex of the SR source, the development of actual SR source systems, SR beam lines and experimental stations by 2014.  
slides icon Slides THY02 [3.125 MB]  
 
THCB01 The NSLS-II Booster Development and Commisioning booster, dipole, extraction, injection 293
 
  • V.A. Kiselev
    BINP SB RAS, Novosibirsk, Russia
 
  National Synchrotron Light Source II is a third generation light source constructed at Brookhaven National Laboratory. The project includes highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy injector-synchrotron. Budker Institute of Nuclear Physics built turnkey booster for NSLS-II. The main parameters of the booster, its characteristics and the results of commissioning are described in this paper.  
slides icon Slides THCB01 [1.328 MB]  
 
THZ01 Superconducting Multipole Wigglers for Generation of Synchrotron Radiation wiggler, radiation, electron, synchrotron-radiation 296
 
  • N.A. Mezentsev
    BINP SB RAS, Novosibirsk, Russia
 
  Superconducting multipole wigglers are very powerful instruments for generation of synchrotron radiation of high intensity. Use of a superconducting wire for creation of a sign alternating lateral magnetic field has the big advantages in comparison of permanent magnets and conventional electromagnets. Superconductivity use allows to create much higher magnetic field at the same field period and the vertical aperture for a beam. The high magnetic field allows not only to increase intensity, but also to expand spectrum of synchrotron radiations. The first superconducting wiggler has been made and installed on the VEPP-3 electron storage ring as a generator of synchrotron radiation in 1979. Nowadays tens of the wigglers are successfully working in the various synchrotron radiation centers and more than 10 of them were developed and made in Budker INP. The description of magnetic properties of the wigglers, parameters of both cryogenic and vacuum systems and their technical decisions are resulted in the report.  
slides icon Slides THZ01 [2.096 MB]  
 
THPSC02 Geometry of Quadrupole Magnet for the U-3.5 Accelerator in the OMEGA Project multipole, quadrupole, proton, hadron 315
 
  • L. Tkachenko, S. Kozub, P.A. Shcherbakov
    IHEP, Moscow Region, Russia
 
  Accelerating complex of intensive beams of charged particles (project Omega) is being developed at IHEP. The main part of this complex is 3.5 GeV ring accelerator. The basic parameters of the quadrupole magnet for this ring are: 5.564 T/m central gradient in the 102.9 mm radius of the "good field"; the injection gradient is 1.222 T/m; the gradient ramp rate is 334 T/m/s. Different profiles of the poles were considered for the purpose of selecting the most optimal 2D and 3D geometries of the magnet. The basic parameters of the optimal geometries are presented.  
 
THPSC12 Effect of the Vertical Velocity Component on Properties of Synchrotron Radiation radiation, electron, synchrotron-radiation, betatron 345
 
  • O.E. Shishanin
    MSIU, Moscow, Russia
 
  This subject determines more precisely characteristics of synchrotron radiation when charge particle moves on the spiral in physical devices and a space. For this purpose first the Bessel functions of a high order are approximated to within the second approach. It is discussed that the vertical component of velocity in alternating magnetic fields of accelerators significantly changes spectral and angular distributions of radiation intensity.  
 
THPSC42 Modernization of the Automated Control System of Kurchatov Synchrotron Radiation Source Using Citect SCADA controls, software, synchrotron-radiation, radiation 417
 
  • E.V. Kaportsev, V. Dombrovsky, Y.V. Efimov, V. Korchuganov, Y.V. Krylov, K. Moseev, N.I. Moseiko, A.G. Valentinov
    NRC, Moscow, Russia
 
  The running cycle of Kurchatov Synchrotron Radiation Source (KSRS) includes the injection of electrons with energy 80 MeV from the linear accelerator in the booster storage ring Siberia-1, the accumulation of a electron current up to 400 mA and, then, electron energy ramping up to 450 MeV with the subsequent extraction of electrons in the main ring, storage ring Siberia-2, and accumulation there up to 300 mA, and at last the energy ramping up to 2.5 GeV. A few years ago we started modernization of the automated control systems (ACS) of accelerator - storage complex. Modernization has affected the most important parts of the system - the system of data collection and control system. Used advanced solutions based on CAN and VME and modular complexes National Instruments. Currently begins implementation of the Citect SCADA system. In this paper the stages of implementation of the SCADA control system. Showing part of the system, which is already widely used, as well as parts of the system, which is scheduled to launch in the near future.