

V. Kiselev for the BINP and BNL teams*

THE NSLS-II BOOSTER DEVELOPMENT AND COMMISSIONING

9 October 2014

Contents

- Booster lattice design
- Magnetic system
- Beam Diagnostics
- Injection and Extraction System
- Commissioning
- Orbit correction
- Transmission
- Emittance measurement
- Conclusion

	NSLS-II Storage Ring			BROOKHAVEN NATIONAL LABORATORY		
DUDELEAR PHYSICS	STORAGE RING Budk has k			ker Institute of Nuclear P built a turnkey booster fo	Physics or NSLS-II	
	BOOSTER RING LINAC					
	Energy [GeV]	3				
	Circumference [m]	792				
	Circulating current, mA	500				
	Stability of average current [%]	<1				
	Horizontal emittance [nm-rad]	0.6				
	Bunch length, [mm]	2.9				
	Average brightness	10 ²¹				
	Average flux	10 ¹⁶				
	Beam line	60				
	Lifetime (hours)	≈ 3		Linac(Accsel)		
				Energy MeV	200	
		and the second se		Geometric emittance nm-rad	150	
				Energy spread σ _E /E	<1*10⁻² 4	

Main parameter of the booster

The magnetic lattice includes four quadrants. Every quadrant contains five regular cells with two modified cells at the ends of the quadrant for dispersion suppression.

Energy	200 MeV	3 GeV	
Number of periods	4		
Circumference, m		158.4	
Repetition rate, Hz		1(2)	
Bunch number	1,	80÷-150	
Current, mA	0,5	, 25	
Revolution time, nsec		528	
RF frequency, MHz	499.68		
RF harmonic number	264		
Betatron tunes: $\sqrt{1}_{X} / \sqrt{1}_{Y}$	9.645 / 3.41		
Natural chromaticity: ξx/ξy	-9.5/-13.5		
Corrected chromaticity: ξx/ ξy	1.25 / 2.05		
Momentum compaction factor, α	0.00838		
RF voltage, MV	0.2	1.2	
RF acceptance, ɛ _{RF,} %	1.65	0.54	
Horizontal emittance, ϵ_{χ} , nm-rad	0.166	37.4	
Energy spread, s _e /E	0.55·10 ⁻⁴	8.23·10 ⁻⁴	
Energy loss per turn, Usr, kV	0.0135	686	
Dumping times:(τ _{X,Y} , τ _S)	(15.6, 7.8)s	(4.62, 2.31)ms	

Booster layout (quadrant)

Each quadrant contains the following magnetic elements:

8 combined-function defocusing dipole magnets (BD) with 8.39° bending angle, 7 combined-function focusing dipole magnets (BF) with 3.27° bending angle, 6 quadrupole magnets to adjust the tune point,

2 SD sextupole magnets and 2 SF sextupole magnets to increase flexibility for the chromaticity compensation. Each sextupole has a separate power supply.

Both dipoles are H-shape curved magnets with parallel ends.

To compensate major part of chromaticity a sextupole component is incorporated in both dipole magnets.

Working point at the betatron tune diagram together with resonances (up to the 4th order).

The working point (9.645 / 3.41) is chosen to be at sufficient distance from dangerous sum and half-integer resonances.

NSLS-II booster; arc #3 before an RF straight.

Design parameters of the booster magnets

Magnets	Total Number	Magnetic	Magnetic force for 3 GeV		
magnete		length, m	т	T/m	T/m2
BF Dipoles	28	1.24	0.46	8.2	36
BD Dipoles	32	1.30	1.13	-5.6	-43
Quadrupoles	8+8+8	0.30		20.4	
Sextupoles	16	0.12			400
Correctors	20+16	0.13	0.1		

Production of magnets

The BINP workshop has designed and produced all dies for magnet laminations with the accuracy up to 5 µm on the critical surfaces
The BF and BD dipoles have complicated end chamfers After magnetic calculation, the 3D model of the dipole yokes was transferred to a designer. The designer processed the 3D model and sent it to the workshop for a milling machine and a coordinate measurement machine to check the produced end chamfers. As a result, the prototypes meet the specifications after two iterations

The BF and BD dipoles end chamfers

BF dipole

BD dipole

The results of measuring the BF magnets

Gradient

Sextupole component

Histograms deviation field integrals (left), K1 (center) and K2 (right) components from the design values for BD and BF magnets. Blue column on the energy 0.2 GeV, purple on the energy of 3 GeV

As can be seen from Figure 4 the quality of the magnetic field better than the original requirements: difference of integrated parameters between dipoles should not exceed: for integral of a field <0.1%, for integral of a gradient <0.5% and for integral of a sextupole field component <5%

17/10/14

Tolerances of the magnetic elements

Error type	σ			
Energy, GeV	Orig.	0.2	3	
Dipole magnet BF				
Relative error in the dipole field integral	1×10 ⁻³	0.97×10 ⁻³	0	
Relative error in the gradient integral	5.0×10 ⁻³	0.9×10 ⁻³	0.4×10 ⁻³	
Relative error in the K_2 integral	5.0×10 ⁻²	1.6×10 ⁻²	0.5×10 ⁻²	
Dipole magnet BD				
Relative error in the dipole field integral	1×10 ⁻³	0.75×10 ⁻³	0	
Relative error in the gradient integral	5.0×10 ⁻³	1.9×10 ⁻³	1.6×10 ⁻³	
Relative error in the K_2 integral	5.0×10 ⁻²	1.3×10 ⁻²	0.5×10 ⁻²	
Quadrupole magnet				
Relative error in the K_1 gradient integral	5.0×10 ⁻³	2.3×10 ⁻³	0.87×10 ⁻³	
Sextupole magnet				
Relative error in the K_2 gradient integral	5.0×10 ⁻²	2.1×10 ⁻²	0.25×10 ⁻²	

Diagnostics and Instrumentation

Signal from Booster FCT showing bunch pattern in long pulse mode.

Electrostatic BPMs (36 pieces)

Fast current transformer Bergoz FCT-WB-CF6"-60.4-40-20:1-UHV-H

Tune measurement system

Two identical sets of four 50-Ω striplines are used, one set is a kicker for beam excitation; another one is a pickup for measurement of a beam response signal.

Beam flag (8 pieces)

DC current transformer **Bergoz NPCT-**CF4.5"-60.4-120-UHV-H

> Synchrotron radiation monitor (2 pieces)

INJECTION AND EXTRACTION SYSTEM

Injection straight section

Extraction straight section

Main Parameters of IES Magnets

Magnets	Q- ty	Magnetic length, m	Field T	Angle mrad	Pulse μs	Field stability	
	Injection System for 200 MeV						
Kicker	4	0.207	0.055	17	0.3	± 5x10 ⁻³	
Septum(AC)	1	0.75	0.112	125	100	± 1x10 ⁻³	
Extraction System for 3 GeV							
Bump	4	0.17	0.46	7.8	1500	± 1x10 ⁻³	
Kicker	1	0.83	0.073	6.1	0.3	± 2x10 ⁻³	
Septum(AC)	1	0.6	0.8	48	150	± 2x10 ⁻⁴	
Septum(DC)	1	1.2	0.89	106	-	± 2x10 ⁻⁴	

Injection and Extraction Kicker

Kicker module. **General view**

by organosilicon compound "Viksint "

Extraction kicker assembly layouts.

Al2O3 (aluminium oxide) ceramic

11					
-	_				
1					
-					
-		_			
100			_	_	-
				_	
Jermen					
-		_			
1					
-					
-	-				-
- 2-1					

The coating is made as strips of 3.4 mm width with 3.4 mm

Extraction kicker B-field waveform normalized to maximum (720 G)

Extraction kicker-pulser assembly

Extraction AC and DC septums

Out of vacuum eddy-current type septum magnets used for booster NSLS-II. Pulsed septum magnet consists of the C-shape laminated steel yoke with single-turn excitation coil.

DC septum cross section

Requirement -Integral of a stray field ∫HdI ≤1 Gs*m

Timeline

- •Budker Institute of Nuclear Physics won this tender in May 2010.
- •The booster was designed, produced and delivered in full to BNL by September 2012.
- •During 2013 the booster was assembled and all equipment was tested.
- •The authorization to start the commissioning was received in November 2013.
- •The BNL and BINP teams started beam injection into the Booster on December 8. The first turn was closed soon by tuning the LTB and BR orbit correctors.
- •The beam was accelerated to 3 GeV by the end of 2013.
- •The commissioning of the booster was successfully completed in February 2014

Beam orbit

Thanks to the good quality of the booster magnets and precise booster alignment, commissioning of the booster passed without any problems. After achievement of the captured beam, the orbit at injection was corrected and the beam was accelerated.

Vertical and horizontal orbit of beam along the whole ramp

> As can be seen from Figure, the beam orbit remains constant during the ramp with accuracy of ± 1 mm in the vertical plane and ± 2 mm in the horizontal without additional correction.

Tunning

Thereafter the optical model of the magnetic structure was improved towards better booster ring parameters using the data of the final booster survey and the results from beam position monitors. The optical functions and betatron tunes were corrected throughout the ramp. As a result, the betatron frequences over the entire ramp remained constant

The horizontal (blue) and vertical (red) tunes along the whole ramp (purple)

Transmission

The beam current from DCCT (blue), the beam energy according dipole magnet currents (red) and the RF cavity voltage (orange) during 1Hz-cycle.

After adjustment optical functions of the booster and linac-to-booster transport line, efficiency of particle capture and acceleration was increased up to ~ 95 %

Emittance measurement

Synchrotron radiation monitor

Horizontal and vertical emittance during the acceleration cycle as determined by the profile of the synchrotron light seen by the BR-A1SLM monitor

Using operating machine currents, Twiss parameters at the source are estimated to be $\beta x = 5.8 \text{ m}$, $\beta y = 23.8 \text{ m}$, and ηx =0.1 m. At extraction energy the measured emittances were

 \mathcal{E}_{X} = 33 nm and \mathcal{E}_{Y} =4nm.

CONCLUSION

The NSLS-II 3-GeV booster synchrotron has passed the acceptance testing and the machine performance closely corresponds to the project requirements.

	Design	Measured
Beam energy	3+/-0.15 GeV	~3 GeV
Bunch charge	0.5…15 nC	0.5…10 nC
Bunch train	1 / 80…160 bunches	1 / 75 bunches
Beam energy spread @3GeV	0.08%	0.10%
Beam emittance X	38 nm rad	33 nm rad
Beam emittance Y	4 nm rad	48 nm rad
Charge transport efficiency between ICTs in LB and BSR TL	>75%	~80% as seen between LtB and BsT FCTs

The booster commissioning was successfully completed in February 2014. The commissioning of NSLS-II Storage Ring was started in March 2014 and stored beam was achieved on April 5, 2014.

Control room NSLS-II

Thank you for your attention !

