Keyword: wiggler
Paper Title Other Keywords Page
THZ01 Superconducting Multipole Wigglers for Generation of Synchrotron Radiation radiation, electron, synchrotron, synchrotron-radiation 296
 
  • N.A. Mezentsev
    BINP SB RAS, Novosibirsk, Russia
 
  Superconducting multipole wigglers are very powerful instruments for generation of synchrotron radiation of high intensity. Use of a superconducting wire for creation of a sign alternating lateral magnetic field has the big advantages in comparison of permanent magnets and conventional electromagnets. Superconductivity use allows to create much higher magnetic field at the same field period and the vertical aperture for a beam. The high magnetic field allows not only to increase intensity, but also to expand spectrum of synchrotron radiations. The first superconducting wiggler has been made and installed on the VEPP-3 electron storage ring as a generator of synchrotron radiation in 1979. Nowadays tens of the wigglers are successfully working in the various synchrotron radiation centers and more than 10 of them were developed and made in Budker INP. The description of magnetic properties of the wigglers, parameters of both cryogenic and vacuum systems and their technical decisions are resulted in the report.  
slides icon Slides THZ01 [2.096 MB]  
 
THPSC14 Electron Emission and Trapping in Non-Uniform Fields of Magnet Structure and Insertion Devices at SR Source Siberia-2 electron, quadrupole, storage-ring, vacuum 350
 
  • V.I. Moiseev, V. Korchuganov, N.V. Smolyakov
    NRC, Moscow, Russia
 
  In vacuum chamber of SR source, scattered photons provide high intensity flows of photo emitted electrons along the magnetic fields lines. The unperturbed electrons reach the opposite walls. The relativistic bunches influence the trajectories of low energy electrons. These electrons can be trapped by non-uniform magnetic field. The low energy electron distributions change the operating settings of the storage ring. For Siberia-2 case, the low energy electron densities are evaluated both in quadrupole lenses and in superconducting wiggler on 7.5 T field. The qualitative description of the trapped electrons behavior was developed. In calculations, the analitical solution was obtained and used for estimations of the single impact of relativistic bunch.