Ultrahigh Vacuum in Superconducting Synchrotrons A.Smirnov, JINR, Dubna, Russia

Topics:

- Pumping & outgasing of hydrogen
- Cryogenic pumps & non evaporable getters for UHV
- Superconducting accelerators: LHC, RHIC, SIS100, Nuclotron
- Vacuum system for NICA Booster

Russian Particle Accelerator Conference Obninsk, October 5 -10, 2014

Limiting mechanisms during pump down

Out gassing of Metals

Unbaked metals

- Water is the main gas desorbed by unbaked metals.
- The outgassing rate of water decreases following a 1/t law: the outgassing of unbaked metals is not an intrinsic value.
- The water outgassing does not depend significantly on the nature of metals, on surface treatments and on temperature (for temperatures lower than 110 C).
- At present no methods, except heating, exist to quickly remove water from unbaked metals.

Baked metals

- Hydrogen is the main gas desorbed by baked metals.
- The value of the outgassing rate of hydrogen is stable at room temperature; when the thermal history is known the outgassing of hydrogen is an intrinsic property of metals.
- The diffusion model predicts values for the hydrogen outgassing that are in accord with experimental observations.
- Firing decrease the hydrogen outgassing rate by more than 2 orders of magnitude

Hydrogen diffusion in metals: Firing

CERN unpublished results

Material: 316LN

Wall thickness: 2 mm

Vacuum firing:

950 C x 2 h, 10⁻⁵ Torr H₂

For the fired chambers, the outgassing rate is limited by the background signal. The result was so intriguing that the experiment was repeated in a second system. On both systems, the upper limit at RT is 10^{-14} Torr.l.s⁻¹.cm⁻².

Pressure Ranges of Vacuum Pumps

Cryopumping

Cryopumping relies on three different pumping mechanisms:

- 1. Cryocondensation: is based on the mutual attraction of similar molecules at low temperature:
 - a. the key property is the **saturated vapour pressure**, i.e. the pressure of the gas phase in equilibrium with the condensate at a given temperature. It limits the attainable pressure.
 - b. Only Ne, H_2 and He have saturated vapour pressures higher than 10⁻¹¹ mbar at 20 K.

- c. The vapour pressure of H_2 at 4.3 K is in the 10⁻⁷ mbar range, at 1.9 K lower than 10⁻¹² mbar.
 - Large quantity of gas can be cryocondensed (limited only by the thermal conductivity of the condensate phase and the thermal flow)

Courtesy of F. Dylla

Cryopumping

- 2. Cryosorption: is based on the attraction between molecules and substrate. The interaction is much stronger than that between similar molecules:
 - a) Gas molecules are pumped at pressures much lower than the saturated vapour pressure providing the adsorbed quantity is lower than one monolayer.
 - a) Porous materials are used to increase the specific surface area; for charcoal about 1000 m² per gram are normally achieved.
 - b) The important consequence is that significant quantities of H₂ can be pumped at 20 K and He at 4.3 K.
 - c) Submonolayer quantities of all gases may be effectively cryosorbed at their own boiling temperature; for example at 77 K all gases except He, H₂ and Ne.
- **3. Cryotrapping** : low boiling point gas molecules are trapped in the layer of an easily condensable gas. The trapped gas has a saturation vapor pressure by several orders of magnitude lower than in the pure condensate. Examples: Ar trapped in CO₂ at 77 K; H₂ trapped in N₂ at 20 K.

Non-Evaporable Getter (NEG) Pumps

The dissolution of the oxide layer is possible only in metals having very high oxygen solubility limit, namely the elements of the 4th group: Ti, Zr and Hf.

Non-Evaporable Getter Pumps

Gases are categorized into four families based on their interactions with NEGs:

- 1. Hydrogen and its isotopes sorbed reversibly.
- 2. CO, CO₂, O₂, and N_2 sorbed irreversibly.
- 3.H₂O, hydrocarbons sorbed in a combination of

reversible and irreversible processes.

Hydrocarbons are sorbed very slowly.

4. Rare gases - not sorbed at all.

Ion pumps are required in combination with NEGs

A typical alloy produced by **SAES Getter** is St707:

Element	Concentration [wt. %]	Main role in the alloy			
Zr	70	High O solubility limit.Chemical reactivity			
V	24.6	Increases O diffusivity,Chemical reactivity			
Fe	5.4	- Reduces pyrophoricity			

Full pumping speed is obtained after heating at 400°C for 45' or 300°C for 24h

CapaciTorr®, NEXTorr® (SAES Group)

Vacuum, Surfaces & Coatings Group

- A CERN-wide responsibility for the operation of accelerators and detectors vacuum systems
 - 128 km of vacuum:
 - 78 km of high/UHV vacuum for beams w/wo NEG coated beam pipes
 - 50 km of high vacuum for insulation
- A large quantity of gauges, instrumentation, pumps and leak detectors
 - 2850 ion pumps, 450 turbo molecular pumps and 325 Ti sublimation pumps
 - 2750 pressure gauges, 40 leak detectors and 50 RGAs
 - 1930 roughing valves and 510 gate sector valves

Machine	Type	Year	Energy	Bakeout	Pressure (Pa)	Length	Particles
Linac, Booster, ISOLDE, PS, n-TOF and A	D Complex	Constant of	a second day		20	2.6 km 1	50 S
LINAC 2	linec	1978	50 MeV	Ion pumps	10.7	40 m	р
ISOLDE	electrostatic	1992 60 keV 2001 3 Mev/u	60 keV	-	10-4	150 m	ions: 700 isotopes
REX-ISOLDE	linac		partly	10 ⁻⁶ - 10 ⁻¹⁰	20 m	and 70 (92) elements	
LINAC 3	linac	1994	4.2 MeV/u	Ion pumps	10.7	30 m	ions
LEIR	accumulator	1982/2005	72 MeV/u	complete	10.10	78 m	pbar, ions
PSB	synchrotron	1972	1-1.4 GeV	lon pumps	103	157 m	P, ions
PS	synchrotron	1959	28 GeV	Ion pumps	10.7	628 m	P, ions
AD	decelerator	7	100 MeV	complete	10.6	188 m	pbar
CTF3 complex	linac/ring	2004-09		partly	10-8	300 m	•
PS to SPS TL	Transfer line	1976	26 GeV		10-6	~1.3 km	P. ions
SPS Complex						15.7 km !	
SPS	synchrotron	1976 1976	450 GeV	Extractions	10.7	7 km	p, ions
SPS North Area	Transfer line				10 ⁴ - 10 ⁷	~1.2 km	
SPS West Area	Transfer line	1976				~ 1.4 km	
SPS to LHC T12/8 Line	Transfer line	2004/2006				2 x 2.7 km	
CNGS Proton Line	Transfer line	2005				~730 m	
LHC Accelerator	jú					~109 Km !	
LHC Arcs (Beam x2, Magnets & ORL insul.)				5 WS		2 x (2 x 25 km)	
LSS RT separated beams	a a Utalana	2007	2 * 7 TeV	complete	< 10 ⁻⁰	2 × 3.2 km	p, ions
LSS RT recombination	conder					~ 570 m	
Experimental areas						~ 180 m	
Beam Dump Lines TD62/68	Transfer line	2006	7 TeV	· •:-	10-6	2 × 720 m	8
High Vacuum				Vacuum	~20 km	~128 km !	
UHV w/wo NEG					w/wo NEG		~ 57.5 km
Insulation vacuum						~ 50 km	1

Cold vacuum chamber with cryosorber

- 1- outer shell, 2 beam screen,
- 3 cooling tube, 4,7 pumping
- slot shield, 5 charcoal fiber,
- 6 grid for charcoal fixing

More than 1300 chambers coated with TiZrV NEG for the LHC.

Standard chambers are 7 m long, 80 mm diameter.

CERN's NEG Coating Facility

RHIC @ BNL, Long Island, New York

FIGURE 1. Schematic layout of RHIC ring and one-half of sextant showing the three types of warm vacuum regions, the Q3-Q4 insertion, the final DX focusing and the interaction region.

Sorption pumps containing activated charcoal are mounted to the pull through ports of the RF-shielded bellows at every fourth interconnect (B30 m intervals) to pump He and H2.

Fig. 2. Vacuum layout of arc sections, and the magnet and beam tube interconnects.

FAIR Vacuum Requirements

Vacuum Systems of SIS100

SIS100 Dipole Chamber Design

Length of chamber: 3.35 m Aperture: 120 x 60mm² Wall thickness: 0.3mm Rib thickness: 3.0 mm

Vacuum physical requirements on the magnet chamber design

- all dipole chambers represent 45% of the total cold surface in the cryogenic arcs

- the inner beam pipe wall will be used as expanded cold surface of an efficient cryopump with practically infinite capacity for nearly all condensable gas species -> wall temperatures as low as possible

- static vacuum pressure inside the chamber 10^{-12} mbar, under dynamic conditions < 10^{-11} mbar

- due to the fast magnet ramping eddy currents heat up the chamber wall to temperatures > 20K

Cryosorption Pumps

 auxiliary pumps are used primarily to lower the partial pressures of H₂ and He
10 cryosorption pumps per arc (each 13 m) and one per short quadrupole doublet in the straight sections

 2 different pump layouts
cryosorption pump consists of several round cryopanels (i.e.
copper disks coated with charcoal of SC2 type made by
CHEMVIRON, coating by KIT,
Karlsruhe, Germany)
panels stacked on a central
cooling tube cooled down to *T* ~ 4.5K

• $S_{He} \sim 1 \ \ell/s \ cm^2$ for He and $S_{H2} \sim 10 \ \ell/s \ cm^2$ for H₂

Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

Upgrade of Nuclotron vacuum system

Booster magnet connection

NEG pumps at cryogenic temperature

NEG still have good pumping speed for H2 close to liquid nitrogen temperature

SORB-AC[®] Getter Wafer Modules and Panels

Vacuum scheme for NEG test under cryogenic temperatures

in collaboration with SAES Group

Warm test bench at JINR

in collaboration with Vakuum Praha (Czech Republic) and ФГУП СКБ ИРЭ РАН (г.Фрязино, МО)

Backing of Test Bench at JINR

After baking during 30 hours with 280°C vacuum was reached value about **10**⁻¹¹ **Torr !**

