
INITIAL STAGE OF SELF AMPLIFIED RADIATION EMISSION FROM

ELECTRON BUNCHES IN CRYSTAL: LINEAR RESPONSE THEORY

A. Benediktovitch∗, I. Lobach, Belarusian State University, Minsk, Belarus

Abstract

Self amplified spontaneous emission (SASE) is a key pro-

cess in X-ray free electron lasers’ operation. In this case the

spontaneous emission is undulator radiation emission, the ra-

diation in X-ray range being possible from electrons in GeV

energy range. In the case of interaction of electrons with

properly aligned crystal the channeling radiation results in X-

rays from electrons with energies in tens MeV energy range.

In this situation for high current densities the SASE process

may take place that potentially could lead to construction

of a compact bright X-ray source. In present contribution

the first principle theoretical description is outlined and first

order perturbation theory is used to model the initial stage of

SASE. The transition from spontaneous to SASE regime is

described, the requirements for bunch current and emittance

are determined. By means of dispersion equation analysis

and boundary condition application the intensity radiated

from crystal slab is calculated and it is shown that Bragg

diffraction could enhance self amplification. A numerical

example for Si (001) illustrates the model.

INTRODUCTION

High brightness fs short x-ray pulses are unique tools to

investigate structure and dynamics of matter. X-ray beams

of this kind are produced at the X-ray Free Electron Laser

(XFEL) facilities where electrons accelerated to GeV energy

radiate coherently in hundreds meters long undulators. The

km large scale of XFELs as well as synchrotrons is condi-

tioned by the basic properties of undulator radiation which

is the underlying mechanism of x-ray production. The high

overbooking of existing facilities motivates the search for

compact sources of bright and short x-ray pulses relying

on different mechanisms of x-ray generation and electron

acceleration.

The electron energy needed to generate x-rays can be

reduced to tens of MeV if one considers x-ray generation

due to interaction of electrons with crystalline targets, the

generation mechanisms include Cherenkov radiation near

K-edge, parametric x-ray radiation, channeling radiation and

others. The principal drawback of the sources based on

these radiation mechanisms is low number of emitted x-ray

quanta which is conditioned by limitations on interaction

length and current densities. The brightness of the source

increases drastically in situation when electrons radiate co-

herently. The coherence in radiation between electrons can

be achieved in two ways: the electron bunch can be modu-

lated in advance with modulation period equal to radiation

wavelength, or the electron beam can become bunched it-

self due to interaction with the generated radiation resulting
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in the phenomenon of self amplified spontaneous emission

(SASE).

In the present contribution we consider the possibility of

SASE process, the spontaneous emission being the chan-

neling radiation. The SASE process requires large current

density low emittance electron beams and large interaction

lengths. However, the progress in the field of generation

of low emittance fs short electron beams makes the needed

electron properties close to reality. Also, the "diffraction be-

fore destruction" concept which in our case can be reflected

as "radiation before destruction" concept lifts restrictions on

beam current density in the case of fs short electron bunches.

In this paper we use the linear response theory to describe

the initial stage of channeling radiation SASE process and

find the conditions at which SASE can be observed. In or-

der to favor the conditions for SASE onset and reduce the

requirements for the beam we take advantage of the crystallo-

graphic order in a way that it forms the distributed feedback,

which is known to improve the lasing properties.

The paper is organized as follows: In first section chan-

neling radiation is briefly described and the way how first

principle exact description can be build is outlined, next we

consider simplified approach within the first order perturba-

tion theory which leads to treatment of the electron beam

as an active medium, the intensity being determined from

boundary conditions, within this approach the SASE process

is described in terms of imaginary part of dispersion equa-

tion solution, and finally a numerical example of Si(001) is

given.

CHANNELING RADIATION AND FIRST

PRINCIPLE FORMALISM

When a relativistic electron enters the crystal in a direction

close to a crystallographic axes the channeling phenomena

takes place: electron’s motion in direction orthogonal to

crystallographic axes is bounded and determined by an av-

erage potential of the atoms constituting the axes. It can

be shown that the transverse motion can be described by a

non-relativistic Schrodinger equation with effective mass

γm where γ is the relativistic factor, m is electron rest mass.

In the electron’s energy range of tens of MeV the quan-

tum mechanical treatment is necessary, in contrast to GeV

energy range where classical description is sufficient, and

one can find transverse energy states and their occupations

conditioned by state of the electron at the entrance to the

crystal. The oscillations of electron around the crystallo-

graphic axes (in classical descriptions) or transition between

the transverse energy levels (in quantum description) results

in spontaneous channeling radiation. The radiation prop-

erties are close to that of undulator radiation, the radiation
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frequency ω being centered at

ω =
2γ2
Ω

1 + γ2θ2
, (1)

here Ω is transition frequency between the transverse energy

levels, the peak photon density in forward direction being

dN

d2�ndω/ω
= 4αK2

uN2
uγ

2Pe, (2)

Ku = γ
Ωdeg

c
, Nu =

ωL

4πγ2
,

here α = 1/137, deg is dipole moment for the transition

between excited and ground channeling states, Pe is the

occupation of excited channeling state.

For high current density of channeling electrons one has

to consider the evolution of radiation in crystal and state of

channeled electrons self-consistently, the feedback of radia-

tion toward electrons leading to SASE process. Considering

the transitions between excited |e〉 and ground |g〉 channel-

ing states one can derive from the first principles Hamilto-

nian the Heisenberg equation for operator of electromag-

netic field vector-potential �̂A(�r, t) and operators describing

the channeling states σ̂eg = |e 〉〈g |, σ̂zz = |e 〉〈e| − |g 〉〈g |:

Δ �̂A(�r, t) −
ε(�r)

c2

∂2 �̂A(�r, t)

∂t2
− �∇(�∇ · �̂A(�r, t)) = (3)

4πi

c

∑

i

eΩσ̂
(i)
eg(t) ×

[ �deg +
i

Ω
�u( �deg · �∇)]δ(�r − �r

(i)
0

− �ut) + h.c.

∂σ̂
(i)
eg(t)

∂t
= iΩσ̂

(i)
eg(t) + σ̂

(i)
zz (t)

eΩ

�c
×

[ �deg +
i

Ω
�u( �deg · �∇)] �̂A(�r, t)|�r=�r (i)

0
+�ut
+ h.c.

∂σ̂
(i)
zz (t)

∂t
= σ̂

(i)
eg(t)

2eΩ

�c
×

[ �deg +
i

Ω
�u( �deg · �∇)] �̂A(�r, t)|�r=�r (i)

0
+�ut
+ h.c.

here �u is electron’s velocity along the channeling axes, �r
(i)
0

is its initial position, ε(�r) is dielectric permittivity of the

crystal.

LINEAR RESPONSE THEORY

The system (3) is difficult to handle since it is formulated

for non-commutating operators and has non-linear terms.

It can be simplified for the initial stage of SASE process

when electromagnetic field vector-potential and the change

of occupations can be assumed to be small. In the zeroth

approximation if one assumes that σ̂eg(t) = eiΩt σ̂eg(0),
σ̂zz(t) = σ̂zz(0) from (3) one can get the value of radi-

ation field amplitude that will be proportional to σ̂eg(0).
Performing the quantum-mechanical averaging 〈σ̂eg(0)〉 =

0, 〈σ̂eg(0)σ̂ge(0)〉 = Pe one obtains the expression for spon-

taneous channeling radiation.

If one considers the first order perturbation theory one can

find from (3) a contribution to σ̂eg(t) proportional to elec-

tromagnetic field vector-potential, it results in an effective

susceptibility due to linear response of the electron beam to

electromagnetic field, in Fourier �k, ω space it takes the form

χ(b)(�k, ω) = χb
ω

ω − �k�v −Ω
�a ⊗ �a, (4)

χb =
4πec jΔP

�ω3

Ω
2d2

eg

c2
, �a =

�deg

deg
+ �v

�k �deg

Ωdeg
,

here ΔP = Pe − Pg, j is electron beam current density.

Within this treatment the equation for electromagnetic field

in the crystal (3) in Fourier space results in

[Xk I − �k ⊗ �k −
ω2

c2
χ(b)(�k, ω)] · �Ak(�k, ω) − (5)

ω2

c2
χ−H �AH (�k, ω) =

4π

c
�j(sp)(�k, ω)

[XH I − (�k + �H) ⊗ (�k + �H)] · �AH (�k, ω) −

ω2

c2
χH �Ak(�k, ω) = 0,

Xk = k2 −
ω2

c2
(1 + χ0),

XH = (�k + �H)2 −
ω2

c2
(1 + χ0),

here we have taken into account the crystallographic order

present in the crystal that results in periodic permittivity

ε(�r) = 1 + χ0 + χHei
�h�r
+ χ−He−i

�h�r and assume that the

emitted radiation is close to Bragg conditions for reciprocal

lattice vector �H (a two-wave approximation), the current

density �j(sp)(�k, ω) corresponding to spontaneous radiation

appearing within the zeroth order approximation is

�j(sp)(�k, ω) = (6)

2πieΩdeg �aδ(ω − �k �u −Ω)
∑

i

e−i
�k�r

(i)
0 σ̂

(i)
eg(0).

From (5) one can find the homogeneous solution of the wave

field inside the crystal

�A(�k, ω) =
∑

s

As(�k,ω)�es(�k,ω)δ(kz − k
(s)
z (�k | |, ω)) (7)

here index s corresponds to the solutions of the dispersion

equation, As are the amplitudes to be found from the bound-

ary conditions, �es are the polarization vectors, k
(s)
z (�k | |, ω)

are the solutions of the dispersion equation. The dispersion

equation can be factorized in dispersion equations corre-

sponding to σ and π polarizations in a practically impor-

tant case when the ground state is double degenerate giving

rise to two orthogonal and equal in magnitude values of
�deg1
, �deg2

. In this case the expression for σ polarization

takes the form

[XkXH −
ω4

c4
χH χ−H ](ω − �k �u −Ω) = χbXH

ω3

c2
. (8)
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Figure 1: Dispersion surface and channeling radiation intensity, see details in text, a - general view of dispersion surface, b -

dispersion surface in the vicinity of Bragg conditions, c - detailed view near the resonance conditions, blue lines - dispersion

equation solution corresponding to dynamical diffraction roots, red lines - to channeling radiation condition; d - radiation

intensity profile, solid line represents SASE effect, dashed line corresponds to spontaneous radiation.

The amplification of spontaneous radiation takes place at the

intersection of dispersion equation XkXH − ω
4

c4 χH χ−H = 0

corresponding to Bragg diffraction and ω − �k �u − Ω = 0

corresponding to channeling radiation condition. At the

intersection the right hand side of (8) becomes important for

dispersion equation solution and leads to imaginary addend

to dispersion equation roots [1]. It corresponds to instability

increment and describes the initial stage of SASE process.

To determine the amplitudes As of the radiation field one has

to apply boundary conditions for the field similar to used in

dynamical diffraction theory and in addition for the current

density, since the number of roots of (8) is larger by one

compared to dynamical diffraction case. The corresponding

boundary condition (for σ polarization) can be transformed

to

8π2ieΩdeg

∑

i

e−i
�k�r

(i)
0 σ̂

(i)
eg(0) = (9)

∑

s

As

[XkXH − ω
4

c4 χH χ−H ]

XHω2/c2
|
kz=k

(s)
z

.

One can see that far from dispersion roots intersection the

main contribution to (9) comes from the root corresponding

to channeling radiation and results in similar expressions as

for the spontaneous radiation case.

NUMERICAL EXAMPLE FOR Si (001)

Consider the case of axial channeling along [001] direc-

tion in Si crystal and the channeling radiation satisfying

the Bragg condition for 004 reflexion at Bragg angle close

to π/2, the resulting x-ray photon energy is 4.5 keV. For

25 MeV electrons moving along channeling axis the occupa-

tion of the energy levels calculated within the Moliere poten-

tial show population inversion between the fourth level and

degenerate second and third levels with occupation inversion

6.5 %, the transition frequency being Ω = 14.3 eV. Assum-

ing the electron beam brightness B = 1.7 · 1019 A m−2 cor-
responding to [2] and beam focused within Lindhard angle

one get from (4) for the beam susceptibility χb = 4.6 · 10−13.

The largest instability increment can be observed when roots

of (8) left hand side are closest to each other, that takes place

at the edge of the Darwin table, see Fig 1. For the considered

case from (8) one can estimate instability increment as

Imk
(r)
z =

ω

c

χb

2Imχ0(1 − e−W )
(10)

here we have taken use of the fact that for even reflexions

ImχH = e−W Imχ0 where W is Debye-Waller factor. One

can see that accounting for Bragg diffraction leads to in-

crease of instability increment due to increase of effective

absorption length, an effect being similar to anomalous trans-

mission Borrmann effect. Applying the boundary conditions

and assuming the crystal slab thickness 200 μm one can see

in a narrow angle range an essential increase of radiation in-

tensity compared to spontaneous radiation case for the same

parameters. To describe this process beyond the exponential

growth regime and more realistically one has to take the

dechanneling effect into account and analyze the complete

system (3), that will be the subject of further investigations.
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