Paper | Title | Other Keywords | Page |
---|---|---|---|
MOA3 | Development towards intense uranium ion beam production of the RIKEN 28 GHz SC-ECRIS | emittance, extraction, ECR, ECRIS | 1 |
|
|||
High intensity Uranium ²³⁸U³⁵⁺ ion beams are produced in the 28 GHz superconducting electron cyclotron resonance ion source (SC-ECRIS) and accelerated to high energies in the Radioactive Isotope Beam Factory (RIBF) at RIKEN. We report the current progress of the SC-ECRIS. Intense beam operation of U³⁵⁺ was made possible through the development of high temperature ovens with optimized consumption rates of more than 10 mg/h and beam intensities reaching up to 250 eμA. With efforts toward realizing even higher beam intensities, it is now more important to optimize beam optics and minimize losses in the accelerator. This has stressed the study of emittance size and its growth factors. Measurement using a slit-collector type emittance monitor showed beam emittances that increase proportionally with the extraction current. For beam currents of 100 to 150 eμA, the beam emittances had minimal variation and remain at 0.15 π·mm·mrad for an extraction current of 5.5 mA. Differences between the normalized horizontal and vertical rms emittances were observed and horizontal emittances tend to be lower and less affected by beamline components. Using measured horizontal emittances coupled with a reference model calculation of space charge induced beam emittances, the ²³⁸U³⁵⁺ beam emittance ε₀ defined by the ion source was estimated. A systematic study using the calculated ε₀ to understand its correlation between the ECR parameters and magnetic field strength is currently ongoing. | |||
![]() |
Slides MOA3 [1.637 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOA3 | ||
About • | Received ※ 15 September 2024 — Revised ※ 16 September 2024 — Accepted ※ 29 January 2025 — Issued ※ 01 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOB1 | GANIL ion sources: optimisation for operation | ECR, plasma, experiment, cyclotron | 5 |
|
|||
The GANIL (Grand Accélérateur National d’Ions Lourds) in Caen has been producing and accelerating stable and radioactive ion beams for nuclear physics, atomic physics, radiobiology and materials irradiation since 1982. On cyclotrons facility, two ion sources (ECR4 and ECR4M) are used to produce around 4,000 hours per year of gaseous and metallic beams. Recently, studies have been carried out to find ways of optimizing beam characteristics (stability, intensities). One of these involves improving the long-term stability of the beam, which is an important parameter for tuning the accelerator and for physics experiments. At the same time, this improved stability will also reduce the need of on-call interventions for ion source experts. Other studies and tests have been carried out to increase the intensity and/or stability of the metal beams by adapting the injection of the ion source on ECR4/4M. Depending on the configuration, the gain shall be up to a factor of 2 on the charge state required for acceleration, and stability has also been improved compared to previous one. Some details and results will be presented. | |||
![]() |
Slides MOB1 [6.158 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOB1 | ||
About • | Received ※ 04 November 2024 — Revised ※ 22 November 2024 — Accepted ※ 20 January 2025 — Issued ※ 23 January 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOB2 | ECRIS operation and developments at TRIUMF | experiment, ECR, plasma, background | 10 |
|
|||
Rare isotope beams are used at the ISAC facility at TRIUMF for studies mainly in nuclear and astrophysics, but also for applications ranging from material science to medicine. The isotopes are produced via the ISOL technique and ionized via a set of different ion sources depending on the application. In cases where highly charged ions are needed, charge state breeding is done with a 14.5 GHz PHOENIX ECR ion source from PANTECHNIK. The source has been operational for more than a decade providing a wide range of ions from Na to U at A/Q <7 for post-acceleration. A second ECR ion source, a SUPERNANOGAN also from PANTECHNIK is used to provide highly charged ions from stable isotopes either for set-up and calibration for the rare isotope beams or for nuclear reaction studies with stable ions. The presentation will give a summary of results and will describe the challenges and improvements to the original sources. For the charge state breeding this is mainly increasing the efficiency and the purity of the delivered beams. In the case of the SUPERNANOGAN special emphasis is put on operational aspects to cover a wide range of elements and easy switchover. The latest in this series of improvements is the implementation of two frequency plasma heating in both ion sources. | |||
![]() |
Slides MOB2 [2.008 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOB2 | ||
About • | Received ※ 15 September 2024 — Revised ※ 25 November 2024 — Accepted ※ 29 January 2025 — Issued ※ 29 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOC2 | A novel inductive oven design for the production of high current, metal ion beams | plasma, cyclotron, target, electron | 19 |
|
|||
Essential to the proposed search for element 120 at LBNL’s 88-Inch Cyclotron is the continual delivery of over a particle microamp of ⁵⁰Ti¹²⁺ for weeks-long campaigns spanning many months. The fully-superconducting ECR ion source VENUS will be the injector source for these runs, and we have developed a new inductive oven design that can survive VENUS’ high magnetic fields while injecting metallic gas into the plasma with high efficiency. The new oven employs a vertical susceptor to permit use with metals that melt before outgassing sufficiently, while also allowing a rotation of the oven’s material exit toward the plasma center for better conversion efficiency to the produced beam. The performance of VENUS with this oven has been outstanding: as reported here, 282 MeV ⁵⁰Ti¹²⁺ beams with stable currents between 1.0 and 1.5 pμA have been delivered for superheavy element searches over multiple ten-day runs. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOC2 | ||
About • | Received ※ 04 October 2024 — Revised ※ 10 October 2024 — Accepted ※ 29 January 2025 — Issued ※ 22 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP01 | Characterization of the 2.45 GHz DREEBIT ECRIS via optical spectroscopy | plasma, electron, ECR, ECRIS | 31 |
|
|||
ECR ion sources are widely used to provide ions for various experimental setups. DREEBIT GmbH aims to industrialize this type of ion source technology for efficient and reliable use in, e. g., hadron cancer therapy as well as ion implantation of semiconductors. Our goal is to build table-top sized ion sources which can easily be handled as part of a larger machine such as a particle accelerator or target irradiation facility, thereby fulfilling high requirements on beam current, quality, stability as well as reproducibility in serial production. To achieve this, we have already optimized the microwave injection system and magnetic plasma confinement by introducing a simple method to allow for injection of circularly polarized waves and adjusted the magnetic field distribution which led to an 80 % increase of beam current. In the present work, we show how optical emission spectroscopy was used to gain deeper information about the plasma of this specific type of ion source, independent from its ion extraction system. The plasma characterization includes studies of the electron energy distribution and the density of atomic and molecular hydrogen showing that the previous design changes of introducing circularly polarized microwaves and optimizing the magnetic field distribution have led to a well-optimized ECR ion source concerning plasma heating and proton production inside the plasma, indicating how the source performance can be enhanced in further steps. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP01 | ||
About • | Received ※ 02 October 2024 — Revised ※ 09 October 2024 — Accepted ※ 29 January 2025 — Issued ※ 07 April 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP03 | ALISES II source is still alive at CEA Saclay | plasma, proton, rfq, emittance | 35 |
|
|||
Developments of ECR intense light ion sources is an important research axis of the Laboratory of Study and Development of Accelerator at CEA-Saclay. Starting from the SILHI proton source in the 90’s to inject the IPHI accelerator, several SILHI-type sources have been realized and installed for high intensity proton or deuteron accelerators for international projects like IFMIF, FAIR or SPIRAL2. From 2011, we started new R&D program on high intensity ECR compact ion sources with the ALISES source family. The results obtained with the first ALISES source prototype gave us the main goals for the design of ALISES II source that runs several months on our 50 kV test bench BETSI and was dismounted at the end of 2016 to upgrade the test bench to 100 kV. But this source was never reinstalled and has been replaced by the ALISES III sources that runs on BETSI up to now. Recently, ALISES II ion source and its equipment is reassembled to be restarted on BETSI for beam characterization before sending it to MIRROTRON factory in Hungary as injector of proton for neutron beam facility. This paper describes the setup on BETSI and proton beam characteristics obtained by emittance measurements, spatial species proportion analysis with Wien filter and current optimization. Installation at MIRROTRON factory is also reported. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP03 | ||
About • | Received ※ 13 September 2024 — Revised ※ 16 September 2024 — Accepted ※ 29 January 2025 — Issued ※ 17 February 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP04 | ALISES v3 ion source in various configuration along the year | extraction, plasma, proton, electron | 39 |
|
|||
ALISESv3 is a very compact light ion source that has been developed at CEA Saclay in 2018. The easy maintenance procedure of this source allowed us to test many different configurations. On the BETSI test bench equipped with an single Alisson Scanner and a pair a solenoid/deviator, we studied the extraction energy influence, we changed the number of electrodes in order to extract different kind of ions other than protons. This paper will describe briefly the ALISES 3 ion source and will present some results that we gathered in a year. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP04 | ||
About • | Received ※ 13 September 2024 — Revised ※ 04 February 2025 — Accepted ※ 06 February 2025 — Issued ※ 07 May 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP07 | Use of a 2.45 GHz ECR ion source for the neutron target demonstrator project | solenoid, extraction, plasma, neutron | 42 |
|
|||
D-Pace has licensed a 2.45 GHz ECR ion source from Neutron Therapeutics. The ion source will be used for the Neutron Target Demonstrator project at Los Alamos National Laboratory where 10 mA of singly charge krypton ions at 50 keV are required with a normalized 4-RMS emittance of less than 1 mm·mrad. The goal of the project is to create a reverse kinematics neutron capture reaction with ⁸⁴Kr ions. Due to the high radiation environment that the ion source will be subjected to, a solid state microwave power supply will be used instead of the traditional magnetron for the experiment. The main advantage of the solid state power supply is that the output is transmitted by a coax cable instead of a waveguide, so the power supply can be located a long distance away from the ion source without the need for a complicated and expensive waveguide. The other advantage of the solid state device is that the frequency can be varied from 2.4 GHz to 2.5 GHz. This gives the operator an extra degree of freedom for tuning the ion source and also allows for the use of permanent magnets instead of solenoids while still having the ability to tune the ECR condition. We present how the frequency variation affects the beam parameters with both the solenoid and the permanent magnet versions of the ion source. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP07 | ||
About • | Received ※ 14 September 2024 — Revised ※ 17 June 2025 — Accepted ※ 29 June 2025 — Issued ※ 30 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP08 | Automatic classification of plasma states in an ECR-type ion source | plasma, luminosity, network, ECR | 45 |
|
|||
In this paper we present the methodology used to acquire the data needed to obtain and train a neural network that will be used in an ECR source to infer the state of the plasma. All the data is the combination of the control signals and a set of non-intrusive measurements that can be accessed during normal operation. For this purpose, machine learning techniques are explored. First, a set of characterisation experiments are carried out in which the state of the plasma is detected for different operating conditions that are fed to a clustering algorithm. Second, a supervised learning paradigm is adopted to train a neural network that is capable of determining the state of the plasma at different working states. The variables that are controlled are: the input RF power and gas flow, the non-intrusive measurements that are acquired are: transmitted and reflected RF power and a ccd camera is used to measure the relative luminosity of the plasma. Based on these variables the state of the plasma is determined. This methodology has been applied to the low-power ECR source in which low-density hydrogen plasmas are generated at the IZPILab laboratory of the University of the Basque Country. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP08 | ||
About • | Received ※ 13 September 2024 — Revised ※ 07 February 2025 — Accepted ※ 28 February 2025 — Issued ※ 25 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP09 | Status report on 60 GHz ECRIS activity | experiment, LEBT, ECR, extraction | 49 |
|
|||
SEISM (Sixty gigahErtz Ion Source using Megawatt magnets) is an electron cyclotron resonance ion source source operating at the frequency of 60 GHz using a gyrotron producing high intensity HF pulse (up to 1 ms/300 kW/2 Hz). The prototype is based on an axial cusp magnetic geometry using polyhelix coils (installed at the LNCMI facility in Grenoble) generating a closed ECR surface at 2.1 T. Since 2019 and the restart of the project, several experimental campaigns were carried out using oxygen support gas. Beam production was studied using the setting of the source aiming to reproduce the ion current densities of 1 A/cm² previously measured. Set up and recent experimental results, will be presented. Furthermore, in the frame of the PACIFICS project (funded by French National Research Agency under the Equipex Program), a new 60 GHz ion source will be built, where polyhelix will be replaced by superconducting coils and the source will be installed at LPSC for easier availability. A new extraction system will be built in order to transform the observed high current density into a target ion beam intensity of ~100 mA. This paper will present a preliminary study of the new extraction system, built upon the principles developed by Vybin [1]. The system’s design and optimization is carried out using COMSOL Multiphysics and IBSIMU simulation tools, ensuring precise modeling of electric field fields and ion trajectories.
[1] S.S. Vybin et al., “Plasma Sources Sci. Technol.”, vol. 29, p. 11LT02, 2020 |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP09 | ||
About • | Received ※ 15 September 2024 — Revised ※ 22 November 2024 — Accepted ※ 02 June 2025 — Issued ※ 22 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP13 | Production of “cocktail beams” with ECR booster, post-accelerated for industrial applications | booster, cyclotron, radiation, acceleration | 60 |
|
|||
The GANIL (Grand Accélérateur National d’Ions Lourds) in Caen produces up to 20 % of the beam times dedicated to industrial applications, such as the irradiation of electronic components. The SAGA (Space Application at GAnil) project aims to increase beam times for these applications in the future in order to meet demand from French and European industries. In this context, one of the challenges is to be able to switch rapidly from one beam to another in order to optimize the beam time available to industry. To meet these requirements, CIME’s cyclotron could be an interesting device: it is capable of accelerating beams up to 20 MeV/A for light elements, and it can be used as a mass separator to select the desired beam. In order to supply stable ion beams to the CIME cyclotron, the charge breeder installed on the SPIRAL1 facility has been tested and adapted to provide a stable cocktail-type beam with a very close A/Q. Details of the project and initial results will be described. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP13 | ||
About • | Received ※ 03 December 2024 — Revised ※ 20 January 2025 — Accepted ※ 03 May 2025 — Issued ※ 19 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP15 | Study of noble gas memory effect of ECR3 at ATLAS | ECR, experiment, detector, ECRIS | 64 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Over the past three decades a portion of the accelerated beam time at the Argonne Tandem Linac Accelerator System (ATLAS) has been reserved for ultra-sensitive detection of argon radioisotopes. A unique noble-gas accelerator mass spectrometry (NOGAMS) technique [1] at ATLAS combines electron cyclotron resonance ion source (ECRIS) positive ion production, acceleration up to ~6 MeV/u and detection methods for separating isobars and other m/q contaminants. The ECR3 ion source was chosen for such experiments due to the limited scope of material introduced into the plasma chamber, inferring a lower background production compared to ECR2. A recent ³⁹⸴⁴²Ar NOGAMS experiment has highlighted a need to understand the beam production of material that is no longer being actively introduced into the ECRIS, known as memory effect. A quantitative study of source memory was performed to determine the decay characteristics of argon in the ECR3 ion source. Results of this study as well as details of setup and operation of ECR3 for NOGAMS experiments are presented. [1] M. Paul et al., Nucl. Instr. and Methods in Phys. Res., Sect. B, vol. 456, p. 222, 2019. doi:10.1016/j.nimb.2019.04.003 |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP15 | ||
About • | Received ※ 13 September 2024 — Revised ※ 20 September 2024 — Accepted ※ 29 May 2025 — Issued ※ 07 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUA2 | ECR2 performance upgrades at ATLAS | ECR, plasma, solenoid, extraction | 72 |
|
|||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The user requests for higher beam energies and intensities have driven the decision to upgrade the ECR2 ion source at the Argonne Tandem Linac Accelerator System. Multiple upgrades are in progress with the expected outcome of dramatically increased ECR2 beam intensities and charge state capabilities. The magnetic upgrades include integrating an improved hexapole permanent magnet array [1] that provides the ion source radial fields, reworking the magnetic materials surrounding the plasma chamber, and installing a new cooling system for the electromagnetic solenoids that govern the ion source axial fields. The new hexapole and higher solenoid magnet operating currents will increase the ion source magnetic fields and support the use of 18 GHz RF heating, further increasing the ECR2 beam capabilities. Following these improvements and subsequent source performance, simulations of beam transport devices on the ion source platform will need to be revisited for transmission of high intensity beams. Details of these upgrade projects and simulations of the ion optics are presented. [1] R. Vondrasek, J. McLain, and R. Scott, J. Phys.: Conf. Ser., vol. 2743, p. 012044. 2024. |
|||
![]() |
Slides TUA2 [2.658 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUA2 | ||
About • | Received ※ 13 September 2024 — Revised ※ 25 November 2024 — Accepted ※ 29 January 2025 — Issued ※ 05 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUB2 | Simulation of surface X-ray emission from the ASTERICS ECR ion source | electron, extraction, plasma, injection | 81 |
|
|||
A new electron cyclotron resonance ion source (ECRIS) named ASTERICS is under development for the NEWGAIN project, aiming at building a new injector for the SPIRAL2 accelerator at GANIL. A Monte Carlo code dedicated to the electron dynamics in ECRIS is used to investigate the local energy, position and velocity distribution of electrons impinging on the plasma chamber wall of ASTERICS. These quantities are presented for both the injection and extraction planes and the radial chamber wall. Results show that the electron energy distribution function is different on each of these three surfaces and that the electron velocity direction to the walls is deeply anisotropic. This data is next used as an input in a Fluka 3-dimensional model including the ASTERICS ECRIS mechanics, a simplified low energy beam line and the experimental cave in which the ion source will be installed. The x-ray flux characteristics around the source are presented. The shielding thickness and its location are studied to grant the safe passage of personnel around the ECRIS location in the accelerator building. | |||
![]() |
Slides TUB2 [7.367 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUB2 | ||
About • | Received ※ 30 October 2024 — Revised ※ 31 October 2024 — Accepted ※ 29 January 2025 — Issued ※ 25 February 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP01 | Operation with the LAPECR3 ion sources for cancer therapy accelerators | ECR, extraction, operation, high-voltage | 91 |
|
|||
An all-permanent magnet electron cyclotron resonance ion source-LAPECR3 (Lanzhou All Permanent magnet Electron Cyclotron Resonance ion source No.3) had been developed as the C⁵⁺ ion beam injector of Heavy Ion Medical Machine (HIMM) accelerator facility since 2009 in China. The first HIMM demo facility was built in Wuwei city in 2015, which had been officially licensed to treat patients in early 2020. The facility has been proven to be very effective, and more than 1000 patients have been treated so far. In order to prevent ion source failure, each facility employs two identical LAPECR3 ion sources to supply C⁵⁺ beam. At present, there are eight HIMM facilities under construction or in operation, and more than 16 LAPECR3 ion sources have been built. In order to improve the performance of the ion source for long term operation, some techniques were employed to optimize source performance and to avoid the damage of key equipment. This paper will introduce the operation status of LAPECR ion sources at these HIMM facilities and present the latest results of carbon beam production. | |||
![]() |
Poster TUP01 [1.475 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP01 | ||
About • | Received ※ 10 September 2024 — Revised ※ 14 September 2024 — Accepted ※ 27 May 2025 — Issued ※ 26 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP04 | Tests of a low-energy pepperpot based on a micro-channel plate for high current protons sources 4D-emittance characterization | emittance, proton, electron, MMI | 94 |
|
|||
In the scope of high current protons sources characterization, the CEA is working on a 4D-emittancemeter based on the pepperpot technology. After some unsuccessful developments with phosphorous scintillators, we decided to test micro-channel plates (MCP) for measurements of proton beams at very low energy (typically between 50 and 100 keV). MCP are supposed to resist to proton beams at very low energy better than scintillators. This work presents some results for MCPs with an ALISES source on the BETSI test bench. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP04 | ||
About • | Received ※ 10 September 2024 — Revised ※ 13 September 2024 — Accepted ※ 30 January 2025 — Issued ※ 23 February 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP06 | Wien Filter upgrade and measurement for BETSI test bench | proton, diagnostics, ECR, electron | 101 |
|
|||
During first operation of SILHI in 1995 at CEA Saclay, a velocity filter diagnostic (Wien Filter) was installed on the LEBT, analyzing the 100 mA of protons at 95 keV. The device was used many years providing beam proportion measurements on the beam axis. Unfortunately, it was damaged while handling and was no longer working as intended. This paper describes the maintenance and upgrade of the diagnostic as well as the first beam proportion figures with ALISES 2 and ALISES 3 ion sources. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP06 | ||
About • | Received ※ 13 September 2024 — Revised ※ 20 November 2024 — Accepted ※ 04 February 2025 — Issued ※ 06 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP07 | Modification of the flexible plasma trap for high-intensity metal ion beams production | extraction, plasma, proton, injection | 105 |
|
|||
NQSTI (National Quantum Science and Technology Institute) is the enlarged partnership on QST established under the National Recovery and Resilience Plan (NRRP) funded by the European Union – NextGenerationEU. In this framework, there is a growing interest in the availability of mA beams of singly charged (1+) metallic ions to realise quantum devices. To satisfy this request, the joint INFN Laboratories LNS and LNL proposed to modify the Flexible Plasma Trap (FPT), installed at LNS, thus transforming it into a simple mirror Electron Cyclotron Resonance Ion Source (ECRIS). This contribution describes the various technical solutions that will be adopted, foreseeing novel radial RF and gas/metal injection systems, focusing particularly on the design and simulations of a flexible extraction system capable of handling different beam intensities and ion species. Specifically, the project targets the production of high-intensity beams of singly charged ions such as Fe⁺, and Ba⁺, highlighting the versatility and innovation of the proposed modifications. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP07 | ||
About • | Received ※ 09 October 2024 — Revised ※ 15 October 2024 — Accepted ※ 20 January 2025 — Issued ※ 07 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP08 | Planned optimization of the ion sources on the HIT test bench | plasma, resonance, ECR, rfq | 109 |
|
|||
The Heidelberg Ion Beam Therapy Center (HIT) is a hospital-based treatment facility in Germany. Since the first treatments in 2009, more than 8.500 patients have been irradiated with protons or carbon ions and since July 2021 with helium ions. At HIT, three Supernanogan ion sources supplied by Pantechnik are in operation around the clock for therapy up to 335 days a year. A 4th Supernanogan ECR ion source is installed at the HIT test bench. The test bench is currently being prepared for a measurement campaign that will begin in October. The aim of the investigations is to obtain more beam current for the carbon ions used in therapy by feeding two microwave frequencies in parallel. We expect that this experiment will provide a better understanding of the ionization process in the ion source. In the first step we will feed 14.5 GHz and an extra frequency near the resonance frequency of 14.5 GHz. ±0.5 GHz. In the second step we will feed in 14.5 GHz and 18 GHz. To characterize and evaluate the beam quality in this setup, we will use the pepperpot a 4D emittance measuring device. In addition, it is possible to measure the beam current and the beam profile at the test bench. This article provides an overview of the planned developments on the test bench. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP08 | ||
About • | Received ※ 12 September 2024 — Revised ※ 19 September 2024 — Accepted ※ 30 January 2025 — Issued ※ 14 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP09 | Characterization of an proton ECR ion source for low beam current | plasma, experiment, luminosity, ECR | 112 |
|
|||
Funding: Basque Government, Department of Industry, Elkartek KK-2022/00026 + Basque Government, Department of Education, IT1533-22 In this paper we analyze the behavior of a low beam current proton ECR ion source for linac. During the operation of the source, as a function of the operating parameters we have observed a complex behavior. The state of the plasma is highly dependent on the input parameters, and in some cases even bi-stable conditions can be achieved showing abrupt changes in the state. To try to understand this behavior we carried out a series of experiments varying the input parameters both sequentially and randomly to avoid following the same path every time. Thanks to these experiments we have been able to observe the change in the luminosity of the plasma, which is an indirect measure of the degree of ionization in the plasma, along with the changes in reflected and transmitted RF power delivered to the source. We also characterized the relation between the outside temperature of the ion source chamber walls and the plasma. In addition to this we have analyzed the resulting extracted ion beam using a pepperpot and a faraday cup. We have observed that our beam doesn’t have one dominant species and has three species that are found in comparable quantities. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP09 | ||
About • | Received ※ 31 August 2024 — Revised ※ 13 September 2024 — Accepted ※ 19 September 2024 — Issued ※ 29 December 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP10 | Optical diagnostic studies to analyse electron cyclotron resonance plasma produced in the GTS-LHC ion source | experiment, ECR, plasma, dipole | 116 |
|
|||
The GTS-LHC electron cyclotron resonance (ECR) ion source is an integral part of the chain of accelerators at CERN. It produces the heavy ion beams which are accelerated using a series of accelerators from LINAC up to the LHC. The ion beams are extracted from an ECR plasma generated at the GTS-LHC ion source, however, there has not yet been a non-invasive diagnostic device to study the plasma. This research focuses on the implementation of an optical diagnostics and studies the optical emission spectra (OES) as a monitor of the performance of the ion source. Furthermore, we explore the correlation between spectral properties and changing source parameters, offering insights into the behaviour of the ion source, which in turn helps in fine-tuning of the source. Specifically, the study concentrates on long-term OES analysis spanning several weeks, focusing on the production of magnesium and lead ions using the GTS-LHC ion source. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP10 | ||
About • | Received ※ 11 September 2024 — Revised ※ 19 September 2024 — Accepted ※ 09 October 2024 — Issued ※ 26 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP13 | Transport of intense Bismuth and Uranium beams into a radio frequency quadrupole accelerator | rfq, ECR, extraction, focusing | 124 |
|
|||
A 48.5 MHz RFQ has been designed to transport and accelerate ²³⁸U⁴⁰⁺ (0.52 emA) and ²⁰⁹Bi³⁰⁺ (1.047 emA) beams extracted from a high performance ECR ion source. The RFQ design comprises of a pre-buncher built into the vanes to narrow the transmitted charge state distribution as much as possible. The design parameters as a function of cell length is optimised on ²⁰⁹Bi³⁰⁺. It is shown that the losses of various ions without using an inlet aperture are inevitable, but by proper coating of the vanes of the RFQ, sputtering can be minimised to a great extent. Titanium shows better results when compared with gold or copper and this has been verified using the modelling results from SRIM. The design details of matching the ECR and the RFQ and the predicted performance will be presented. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-TUP13 | ||
About • | Received ※ 12 March 2025 — Revised ※ 01 May 2025 — Accepted ※ 29 June 2025 — Issued ※ 29 June 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEA1 | Characterization of D⁺ species in the 2.45 GHz ECRIS for 14-MeV neutron production | neutron, extraction, ECR, plasma | 136 |
|
|||
The Institute for Plasma Research has set up a 14-MeV neutron generator facility. The stability, quality, and repeatability of the D⁺ ion beam are critical parameters for ensuring the reliable operation of the neutron generator. Hence, a 2.45 GHz ECR ion source has been installed to produce the deuterium beam. The primary D beam characteristics are assessed by varying extraction voltage, microwave power, gas flow, and solenoid current of the ECRIS. By optimizing these parameters, the maximum design beam current is achieved. The D ion beam contains various species, including D⁺, D₂⁺, D₃⁺, and impurities. Accurate measurement of the D⁺ content within the D ion beam is the key parameter for a neutron generator. Multiple experiments were conducted to determine the D⁺ species and optimise the ECRIS parameters for maximum production of D⁺ species. Two beam current measurement devices, the DCCT and the Faraday Cup, were installed in the beamline to measure the total deuterium beam current and D⁺ beam current, respectively. Notably, the variation in the D⁺ fraction primarily depends on the operating parameters of the ECRIS, such as extraction voltage, microwave power and gas flow. This paper presents the results of the D⁺ ion current as a function of extraction voltage, microwave power, and gas flow rate. Understanding and characterizing the D⁺ species are essential steps toward achieving stable and efficient neutron production in fusion applications. | |||
![]() |
Slides WEA1 [3.259 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-WEA1 | ||
About • | Received ※ 15 September 2024 — Revised ※ 16 September 2024 — Accepted ※ 29 January 2025 — Issued ※ 26 April 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEA2 | Compact 2.45 GHz PMECR ion sources and LEBTs developed for accelerator based radiation therapy facilities at Peking University | proton, rfq, ECR, LEBT | 139 |
|
|||
Funding: National Natural Science Foundation of China (Grant Nos. 11975036, 11775007) Recently, Accelerator Based Radiation Therapy (ABRT) facilities for cancer treatment, that includes ion therapy and BNCT, have been bloomed up rapidly and is being established as a future modality to start a new era of in-hospital facilities around the world. A high current, small emittance, easy maintenance, long lifetime, high stability and reliability ion source is crucially important for those ABRT facilities. Research on this kind of characters ion source has been launched at Peking University (PKU) ion source group for more than 30 years and some exciting progresses, such as hundred mA H⁺/N+/O+ etc. beam current, less than 0.2 pi.mm.mrad emittance, a continue 300 hours non-sparking CW proton operation record have been achieved. Recently, we also involved in the ABRT campaign by in charging of ion sources. In this paper, we will summarize the several compact PKU 2.45 GHz permanent magnet ECR sources (PMECR) that were developed for proton therapy machines and BNCT facilities. The individual structure of the sources as well as the LEBT along with the commissioning results will be presented then. |
|||
![]() |
Slides WEA2 [18.981 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-WEA2 | ||
About • | Received ※ 18 September 2024 — Revised ※ 25 November 2024 — Accepted ※ 29 January 2025 — Issued ※ 31 May 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEB1 | Mixed carbon and helium ion beams for simultaneous heavy ion radiotherapy and radiography: an ion source perspective | experiment, plasma, instrumentation, ECR | 148 |
|
|||
Within the framework of research on simultaneous heavy ion radiotherapy and radiography, a mixed carbon/helium ion beam with a variable He percentage has been successfully established and investigated at GSI for the first time in order to study this new mode of image guidance for carbon ion beam therapy. The mixed C/He ion beam was provided by the 14.5 GHz CAPRICE ECR ion source for the subsequent linac-synchrotron accelerator systems at GSI. Prior to that experiment, different ion combinations (¹²C³⁺/⁴He⁺ or ¹²C⁴⁺/³He⁺) out of CH₄ or CO₂ have been investigated at the ECR test bench in terms of ion beam currents, stability, and C-to-He-fraction quantified by optical spectral lines and mass spectra. From an ion source perspective, it turned out that each of the different combinations comply with all the requirements of the experiments which successfully took place utilizing a ¹²C³⁺/⁴He⁺- ion beam with an energy of 225 MeV/u. Finally, both ions were simultaneously accelerated and extracted and characterised in the biophysics cave. This paper briefly outlines some of the measurements obtained at the test bench and during the beam time from an ion source perspective. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-WEB1 | ||
About • | Received ※ 15 January 2025 — Revised ※ 24 January 2025 — Accepted ※ 26 February 2025 — Issued ※ 22 May 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEB2 | Applying machine learning techniques to the operation of the superconducting ECR ion source VENUS | operation, controls, ECR, plasma | 152 |
|
|||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Nuclear Physics program under Award Numbers DE-FOA-0002490 and DE-FOA-0002875 An operator of the superconducting ECR ion source VENUS tasked with optimizing the current of a specific ion species or finding a stable operating mode is faced with an operation space composed of ten-to-twenty knobs in which to determine the next move. Machine learning techniques are well-suited to multidimensional optimization spaces. Over the last three years we have been working to employ such techniques with the VENUS ion source. We will present how the introduction of computer control has allowed us to automate tasks such as source baking or to utilize optimization tools to maximize beam currents with no human intervention. Our more recent applications of Bayesian optimization and reinforcement learning to beam current maximization and the maintenance of long term source stability will also be presented. Finally, we will discuss control and diagnostic changes that we have employed to exploit the faster data collection and decision making abilities when VENUS is under computer control. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-WEB2 | ||
About • | Received ※ 04 October 2024 — Revised ※ 18 October 2024 — Accepted ※ 26 February 2025 — Issued ※ 24 May 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEB3 | Beam intensity prediction using ECR plasma images and machine learning | plasma, ECR, extraction, operation | 156 |
|
|||
Long-term beam stability is one of the important issues in supplying multivalent heavy ion beams using an Electron Cyclotron Resonance Ion Source (ECRIS). When the beam intensity drops for long-term operation, the ECRIS parameters need to be tuned to restore the original beam intensity. Continuous measurement of the beam intensity using a Faraday cup (FC) is impractical while the beam is in use. We have had to rely on an unreliable method of monitoring the total drain current to estimate the beam intensity during beamtime. To resolve this issue, we propose a new method for predicting the beam intensity at FC using machine learning. Our approach incorporates plasma images, captured through a hole in the beam extraction electrode, and operating parameters as input data for the machine learning model. In short-term test datasets, our model has successfully produced rough predictions of the beam intensity. This presentation will detail the prediction model and its prediction results on the test data. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-WEB3 | ||
About • | Received ※ 14 September 2024 — Revised ※ 18 October 2024 — Accepted ※ 02 February 2025 — Issued ※ 04 March 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THA3 | Waveguide DC breaks with optimized impedance matching networks | GUI, impedance, simulation, network | 162 |
|
|||
A custom 18 GHz waveguide DC break with a built-in impedance matching network, consisting of two inductive irises adjacent to a capacitive gap assembled around a quartz disk, was built for VENUS and simulated using the ANSYS High Frequency Structure Simulator, a finite element analysis tool. The DC break effectively doubled the RF power available for plasma production at the secondary frequency of 18 GHz while maintaining a DC isolation of 32 kV. Measurements of the forward and reflected power coefficients, performed with a network analyzer, showed excellent agreement with the simulations [1]. Additionally, an extended study was conducted to tailor the frequencies of 28, 35, and 45 GHz using WR-34, WR-28, and WR-22 waveguides with built-in impedance matching networks, aiming to predict performance for our upcoming 4th generation low-power, multi-frequency operation of the MARS-D ion source.
[1] M. Kireeff Covo et al., “Inductive Iris Impedance Matching Network for a Compact Waveguide DC Break”, IEEE Transactions on Microwave Theory and Techniques, early access 2024. doi:10.1109/TMTT.2024.3409470. |
|||
![]() |
Slides THA3 [1.702 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-THA3 | ||
About • | Received ※ 13 September 2024 — Revised ※ 09 October 2024 — Accepted ※ 30 January 2025 — Issued ※ 18 May 2025 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||