

Compact 2.45 GHz Microwave Driven Ion Sources Developed for Accelerator Based Radiation Therapy Facilities at Peking University

Shixiang Peng, Bujian Cui, Tenghao Ma, Wenbin Wu, Kai Li, Yicheng Dong, Jianbin Zhu, Zhiyu Guo and Jiaer Chen

SKLNPT & IHIP, School of Physics, Peking University. No.201, Chengfu Road, Beijing, China

WEA2, 15th - 19th Sept. 2024, Welcome Hotel, Darmstadt, Germany.

E-mail: sxpeng@pku.edu.cn

2.45GHz Microwave Driven Ion Sourcs family at PKU

2.45GHz Microwave Driven Ion Source Family at PKU

SMIS: PKU Standarded Permanent Magnet 2.45GHz Microwave Driven Ion Source

🛞 北京大学

MMIS: Miniaturized Microwave Driven Ion Source

H₂+/H₃+ Ion Source

Multi-Charged C²⁺/ O³⁺/ Ar³⁺ Ions Beam Generation

Surface Plasma Electron Source(E-Gun) for Implantation machine

1) PKU Standart 2.45GHz Permanent Magnet Ion Sources - SMIS

2) Some Applications of SMIS

S. X. Peng*, RSI 85 (2014):02A712

ABRT: Accelerator Based **Radiation Therapy Facilities**

1)Proton Therapy(PT)

2)Boron Neutron **Capture Therapy (BNCT)**

S. X. Peng*, NIMA 763 (2014):120-123

🛞 北京大学

3) Miniaturized Microwave Ion Source(MMIS) Cerimac window

Ion source characters				
Microwave frequency	2.45 GHz			
Microwave power	40-100 W			
Beam energy	30-50 kV			
Magnets	Full permanent magnet			
Extraction hole	6 mm			
Source body	88 mm ×			
The Whole Source	130 mm ×			
RF Matching	1) Ceramic plus Co-axial cable			
	2) Ceramic plus BJ 32 waveguide			
Operation mode	Pulsed / DC			
Total current	DC: 42mA@100W RF			
	Pulsed: 72mA@100Hz/10%@1800W			
Applications	Neutron source, PFG, etc.			

3) MMIS Resluts - Cerimac window

S. X

🛞 北京大学

Full embeded

Ion source characters				
Microwave frequency	2.45 GHz			
Microwave power	10 - 100 W			
Beam energy	30-50 kV			
Source body	60 mm ×			
Magnets	Full permanent magnet			
Extraction hole	6 mm			
RF transportation	Co-axial cable			
Discharge Chamber	39 mm × φ 10 mm			
RF Matching	Antenna			
Operation mode	DC/Pulsed			
Current	CW: 8.5mA@40W			
	Pulsed: 21mA@180W(peak)			
Applications	Neutron source, PFG, etc.			

> Pulsed mode, 50Hz, 10% duty

Outline

- 1. 2.45GHz Microwave Driven Ion Source Family at PKU
- 2. Why Named as Microwave Driven Ion Source
- 3. The LINAC Commissioning Results of PT Facility
- 4. CW/pulsed Proton Injector for AB-BNCT Machine
- 5. Summary and Outlooks

> RF

 \cap

北京大学

2. Why Named as Microwave Driven Ion Source: *Hybrid Discharge Heating Mode(HDH)(1)*

🛞 北京大学

venbin Wu. Shixiang Peng*, J. Appl. Phys. 132, 083305 (2022)

《恭

Microwave Driven Ion Source: Hybrid Discharge Heating Mode (HDH)(2)

北京 War G. A Being etc. The improvement scheme of proton naction by 追え必ずen gas mixing within a miniaturized 2.45 GHz ECR ion source[J].

Global model on H^+ , H_2^+ and H_3^+ generation (1)

Faradav

Cup

ACCT

1) Three phase of hydrogen plasma

80 H^{*} RF Power: 1600W(Peak) Voltage: 30 kV 70 Gas flow: 1.30 sccm 60 Peak Current: 34 mA ε_{norms} : 0.1 π ·mm·mrad 50 相对高度 $H^{+}91\%$ 40 $H_{2}^{+}6\%$ 30 $H_{3}^{+}3\%$ 20 10 H Λ PE -10 1000 1500 2000 2500 3000 磁场强度 (Gs)

3) MMIS application

北京大学

W. B. Wu, S.X. Peng, RSI 90 101501(2019)
 S.X. Peng, RSI 90 123305(2019)
 W. B. Wu, S.X. Peng, Vacuum, 182, 109744(2020)

Global model on H^+ , H_2^+ and H_3^+ generation (2)

- Advantages: It can increase a large number of particle types and processes without significantly increasing the amount of calculation, and establish the causal relationship between the input parameters and the spatial average physical quantities.
- Disadvantages: It can not provide the spatial dynamic behavior of plasma; dissociation degree depends on the input initial measurement data.

Operation pressure(10⁻³Pa)

•	Theory improvement	Add four excited state, n=2, 3, 4, 5		•	Experime	ental resul simulatic	lts (dot) on ones) Vs ; (curve
No.	Processes	Description	Reaction	30				· · · · · · · ·
			energy(eV)					
1	$e + H_2 \rightarrow 2H + e$	Dissociation	10	25 -				
2	$\mathrm{H} + \mathrm{H} + \mathrm{wall} \longrightarrow \mathrm{H_2} + \mathrm{wall}$	H wall recombination						
3	$e + H \rightarrow H^+ + 2e$	H ionization	13.6	20 -				
4	$e + \mathrm{H}_2^+ \rightarrow \mathrm{H}^+ + \mathrm{H} + e$	Dissociative excitation	2.4					
5	$e + H_2 \rightarrow H_2^+ + 2e$	Molecular ionization	15.4	ू 15 -				
6	$e + \mathrm{H}_2^+ \rightarrow \mathrm{H} + \mathrm{H}^*$	Dissociative recombination	0	D D				
7	$\mathrm{H}_{2}^{+} + \mathrm{H}_{2} \longrightarrow \mathrm{H}_{3}^{+} + \mathrm{H}$	${\rm H_3^+}$ ion formation		10	X			
8	$e + \mathrm{H}_3^+ \longrightarrow 2\mathrm{H} + \mathrm{H}^+ + e$	Dissociative excitation	14	•	-			
9	$e + \mathrm{H}_3^+ \rightarrow 3\mathrm{H}$	Dissociative recombination	0	5				
10	$e + \mathrm{H}_2 \longrightarrow \mathrm{H}^+ + \mathrm{H} + 2e$	Dissociative ionization	18	•				
11	Dissociative	14.7	0					
	$e + \Pi_2 \rightarrow 2\Pi + 2e$	ionization				• • • • • • • • •	• • • • • • •	<i>t)</i> Vs s (curve)
12		Dissociative	14	0.001	0.01	0.1	1	1
$e + H_2 \rightarrow H^2 + H^2 + e$		excitation				Pressure (Pa	.)	

1. R. K. Janev, W. D. Langer, and K. Evans, Jr., Elementary Processes in Hydrogen-Helium Plasmas: Cross Sections and Reaction Rate Coefficients, (Springer-Verlag Berlin Heidelberg, 1987.)

2. S. X. Peng^{1,†}, T. H. Ma, W. B. Wu, B. J. Cui, A. L. Zhang, Y. X. Jiang, Z. Y. Guo, J. E. Chen, New Progress of the Miniaturized Microwave Ion Source at Peking University. SAP2023, Xichang, Si chuan, 2023.7.9-12.

🛞 北京大学

3. T. H. Ma, S. X. Peng, et al., Under review.

@ 北京大学

Outline

- 1. 2.45GHz Microwave Driven Ion Source Family at PKU
- 2. Why Named as Microwave Driven Ion Source
- 3. The LINAC Commissioning Results of PT Facility
- 4. CW/pulsed Proton Injector for AB-BNCT Machine
- 5. Summary and Outlooks

3. The LINAC Commissioning Results of PT Facility

The Schematic View of this 7 MeV LINAC

🚳 北京大学

Content		Parameters	Unit
Ion type		H^+	
Energy		30± 0.1	keV
Peak Current	Ion source	20~30	mA
	LEBT	>18	mA
Beam stability(LEBT)		±1	mA
Emittence (RMS, Norm)		≤0.2	π mm·mrad
Repeat frequency		0.5~10	Hz
Pulsed Length		40~100	μs
Raise edge		≤2.0	μs

Proton Injector structure: PKU **SMIS** source + a solenoid.

The PT SMIS source test

Source body

Integrated source

- Ion Source; PKU SMIS
- Size: \$\\$200 mm \times 150 mm
- Beam ability:10 mA to 90 mA with duty factor of 3%-20% (100 Hz).
- Its rms emittance is $\sim 0.1\pi \cdot \text{mm} \cdot \text{mrad}$.
- H⁺ faction: >90%.

RF Power: SAIREM GMP 30K SM

> The PT Injector Test Results

Kicker off

25mA/30kV

Raise edge: 2.47us

Raise adge: 1.99µs.

2.45 GHz microwave generator & Kicker power Supply: Xian SIGNUM Company

Kicker on

25mA/30kV

21

The PT LINAC Test Results

2023.4.14

I_{FC2}=14.4mA@7MV > 12mA@7MV!

NO SPARK appears up to now!

Outline

- 1. 2.45GHz Microwave Driven Ion Source Family at PKU
- 2. Why Named as Microwave Driven Ion Source
- **3. The LINAC Commissioning Results of PT Facility**
- 4. CW/pulsed Proton Injector for AB-BNCT Machine
- 5. Summary and Outlooks

The schematic view of **AB-BNCT**(Boron Neutron Capture Therapy)

The total length of acceleration section (RFQ+ DLT) is 6.1 m when the output energy reached 3.0 MeV with the operation frequency of 165 MHz.

Parameter at the entrance of RFQ

Content	Parameter	Method		
Particle	Proton	H ₂		
Operation mode	CW (rare) Pulse: 1~500Hz, 200Hz specific, 0.5%~100%, pulse length >200 μs	CW & Long Pulsed: Microwave power Short Pulse: Plus Chopper		
Energy	40 keV	Well water-cooled three- electrod extraction system		
Beam Current	> 30 mA			
Normalized rms emittance at LEBT exit	< 0.20 π mm⋅mrad	PKU standard PMECR ion		
H+ fraction	> 80%			
Stability	24h			
Twiss parameter at RFQ entrance	α=1.484, β=5.622cm/rad			
Mismatching degree of TWISS parameter	< 30%	Two solenoids LEBT + SCC		
Raise/Full edge	<1ms			

A Photo of AB-BNCT H⁺ Injector

The Performance of AB-BNCT SMIS

> The Performance of PMECR Ion source at 200 Hz

Duty factor[%]	Total Current[mA]	H ⁺ faction[%]	Emittance[<i>π</i> ⋅mm⋅mrad]
10	62	91	0.092
100Hz/10%	60	91	0.094
20	61	90	0.093
30	66	86	0.103
40	64	94	0.103
50	61	85	0.105
55	62	87	0.105
60	58	83	0.107
70	56.6	86	0.106
75	53.6	86	0.106
80	51	84	0.106
85	50	83	0.107
90	51	85	0.106
95	51	87	0.110
100	58	85	0.112

> The Performance of PMECR Ion source at 200 Hz

Duty Factor: 20%, I_T: 61mA, H⁺: 90%

Duty Factor: 60%, I_T: 53mA, H⁺: 83%

Duty Factor: 80%, I_T: 51mA, H⁺: 85%

Duty Factor: 95%, I_T: 51mA, H⁺:87%

CW beam, I_T: 58mA, H⁺:88%

An example of species measurement results, 200Hz / 70%

Operation Parameter:

Gas flow: 2.7sccm Peak RF power: 1470W Yellow line: Microwave signal Green line: Total current Blue line: Ion species **Result:**

Total current: 56.6mA(above) $H^+:H_2^+:H_3^+ = 85.4\%:11.9\%:2.7\%$ H^+ current: 48mA

🛞 北京大学

Accessory for LEBT tests

lit-grid

EMU (Slit-grid emittance measurement unit).

Total beam current
Beam profile
Emittance
TWISS parameters

🛞 北京大学

Beam currents before/after RFQ entrance plane(H⁺ Injector)

https://www.conveyi.com/en/

RF power	1250W/	200Hz/ 10%	800W/200Hz/ <mark>90%</mark>			
Gas Inlet	1.3	8 sccm	1.8 sccm			
Voltage PE/SE	40k	V/-2kV	40kV/-2kV			
Slolenoids	1#: 140A	2#: 186A	1#: 140A	2#: 186A		
Steering Mangnet	1#: 2#: 0A 2A	3#: 0A 4#: 0A	1#: 0A 2#: 3A	3#: 0A 4#: 0A		
	FC1 76 mA		FC1	44 mA		
Current	ACCT	58 mA	ACCT	30 mA		
	FC2	58 mA	FC2	29 mA		
rms emittance	0.1029 :	π mm×mrad	$0.1156 \pi \text{ mm} \times \text{mrad}$			
Twiss at EMU	α ₂ -5.587		α_2	-5.267		
	β_2 0.7032 m/rad		β_2	0.688m/rad		
Twiss at RFQ	α_1	1.285	α_1	1.128		
entrance	eta_1	0.05788 m/rad	β_1	0.08971m/rad		
Mismachting degree	12.7%		18.	2%		

NO SPARK comes up untill now!

Outline

- 1. 2.45GHz Microwave Driven Ion Source Family at PKU
- 2. Why Named as Microwave Driven Ion Source
- **3. The LINAC Commissioning Results of PT Facility**
- 4. CW/pulsed Proton Injector for AB-BNCT Machine
- 5. Summary and Outlooks

5. Summary and Outlooks

March 2023

DTL:14.4mA/7MV!

The results is much better than the machine wanted 12mA.

June 2024

RFQ:33mA/1.8MV!

The results is much better than the machine wanted 20 mA.

Near future A New more Compact CW Ptoton Injectors will be built for dynamitron type LINAC for BNCT.

https://www.conveyi.com/en/

PKU 2.45GHz Microwave Driven Permanent Magnet Ion Source Family

umn antenna

