

INTERNATIONAL WORKSHOP ON ECR ION SOURCES

SIMULATION OF X-RAY EMISSION INDUCED BY ELECTRONS IMPINGING THE PLASMA CHAMBER WALLS OF THE ASTERICS ECRIS

T. Thuillier¹, B. Cheymol¹, A. Cernuschi¹, M. Kusulja¹, C. Peaucelle¹, E Lagorio¹, F. Vezzu¹, D. Simon², T. Cadoux², H. Felice², M. Dubois³, F. Lemagnen³, D. Goupillière⁴

ECRIS24, TUB2, Tue. 17 Sept. 2024, Darmstadt, Germany

OUTLINE

- NEWGAIN Project and ASTERICS Ions Source
- Goal of the Bremsstrahlung study
- Methodology
- Results for the hot electron population
- Results for the x-ray Bremsstrahlung emission
- X-ray Shielding

NEWGAIN: NEW GAnil INjector

- Ongoing Project to design and build a second heavy ion injector with M/Q=7 for the SPIRAL2 accelerator at GANIL, Caen, France
- French multi-laboratory collaboration
- Project Timeline : 2023-2030

ASTERICS Ion Source

Parameter	Value
ECR frequency	28 GHz
Max Axial Mirror Peak Field	3.7–0.1–2.5 T
Radial Peak Field	2.4 T
Chamber length	600 mm
Chamber radius	91 mm
Chamber volume	15.6 liter
ECR Length @ Bmin=0.3 T	220 mm
ECR volume @ Bmin=0.3 T	1.9 liter
Cooling power@ 4.2 K	9 W
SC Cable	NbTi
Beam requirement #1	10 рµА U ³⁴⁺
Beam requirement #2	15 μΑ Ni,Ti,Ca

ECRIS24, TUB2, Tue. 17 Sept. 2024, Darmstadt, Germany

Status of the SC Magnet project @ CEA

- Superconducting NbTI cable delivered by FURUKAWA (JPN)
 - 43 km for the solenoids
 - 20 km for the sextupole
- SC Magnet Call for Tender issued in July 2024
- Delivery expected in 2028

Racetrack coil built for practising in 2023

Cable delivered @ CEA in 2024

Status of the Ion Source and Platform Design

- Platform Footprint under consolidation
 - 2 HV platform islands
 - LEBT@HV
 - HV platform: 30 to 45 kV
 - Limited ceiling heigth prohibits use of a 4T overhead crane (4.5 m)
 - Source to be rolled to its final position and lifted with hydraulic actuators

Status of the Ion Source and Platform Design

LPSC.

- ASTERICS Mechanics under consolidation
 - Injection assy mounted on a movable/alignable cart
 - Endoscope port added to make online video of the plasma
 - 18+28 GHz feed, 1 RF spare port
 - 2 motorized oven ports feed, with transfer airlock, pointing toward the plasma
 - 1 biased disk
 - Al plasma chamber mounted on a movable/alignable cart
 - 2 mm Ta shield
 - Kapton foil multilayer HV insulation
 - Easy dismount flange access @ extraction

Surface Bremsstrahlung x-ray Investigation

- Motivations
 - Workers Radiation protection
 - Improve knowlege of ECRIS Physics
- Objective
 - Provide a dose mapping in the source cave
 - Try and error to define the most compact x-ray shielding
- Methodology
 - Monte Carlo code of electron population in ASTERICS to output the electron density and velocity distribution hitting the plasma chamber walls
 - Input the electron information into Fluka code to study x-ray propagation inside and outside of the source

Monte Carlo Electron Simulation

- 1.25x10⁶ electrons generated
- 2 Magnetic confinement studied :
 - 3.7-0.3-2.2 T ; Radial : Br=2.4 T
 - 3.7-0.8-2.2 T ; Radial : Br=2.4 T
- 7 kW 28 GHz RF planar travelling wave, circular polarisation
- Frozen ions with a fixed charge state distribution
- Coulomb and electron Impact collisions
- Density = 15 % cut off @ 28 GHz
- Server with 80 cores
- 1 ms confinement time limit
- Initial electrons started in the ECR zone, @ low energy, random direction

See complementary presentation by Andrea Cernuschi (# TUC2)

ECRIS24, TUB2, Tue. 17 Sept. 2024, Darmstadt, Germany

Monte Carlo Result: EEDF@Wall

- Different EEDF temperature at different walls
- Maxwell-Boltzmann fit of high energy electrons
- Wall EEDF Temperature :
 - Temperature higher where B_{wall} is minimum
 - Temperature lower where B_{wall} is maximum
- Note EEDF hump @15-20 keV for B_{min}=0.8 T
- T@wall increases with B_{min}

Axial profile	\mathbf{T}_{inj}	\mathbf{T}_{rad}	\mathbf{T}_{ext}
3.7-0.3-2.2 T	19.8 ± 1.6	41.7 ± 1.5	44.0 ± 7.4
3.7-0.8-2.2 T	36.0 ± 8.6	52.0 ± 3.1	63.2 ± 7.9

Monte Carlo Results: Angle of Impact @ Wall

- θ = angle between $\vec{v_e}$ and surface normal \vec{n}
- $dN/d\theta_{ini}$ flatest distribution
- $dN/d\theta_{ext}$ peaked $\theta_{ext} > 80^{\circ}$
- $dN/d\theta_{rad}$ peaked $\theta_{rad} \sim 60-70^{\circ}$
- large θ values are expected to affect the x-ray creation at wall

3.7 - 0.8 - 2.2 T

Fluka Geometrical Model

- Source with representative geometry and material modelled
 - SC magnet
 - yoke
 - Vacuum chambers
 - Extraction electrodes
 - Solenoids
 - Various shields
 - 28 GHz waveguide

Fluka primary electron model

- MC output used for the electron distribution at wall
- MC output used for the electron velocity direction at wall
- Fluyka study split into 3 simulations: Injection wall, Radial wall, Extraction wall
- The direct use of the MC calculated temperature@Wall results in a very very low fraction of xray exiting the source (only hot electron energy tail contributes) and a huge, unpractical, computational time.
 - = > MC output temperature was abandonned for this study
 - EEDF manually adjusted with a single Maxwell-Boltzmann (MB) function with temperature as a free parameter
- Forced EEDF MB temperature considered:
 - $kT_e = 50 \text{ keV for } B_{min} = 0.3 \text{ T}$
 - $kT_e = 120 \text{ keV}$ for $B_{min} = 0.8 \text{ T}$
 - +20% over-estimation with respect to the worst spectral temperature ever recorded in ECRIS

X-Ray Fluence and Yield

- Radial X-ray fully stopped in the hexapole
- Very strong x-ray diffusion
 - Surface hit interplay
- Many electrons bounce
 - Mitigated by a virtual inner gas volume to stop them

Yield of e- exiting the 1st wall layers (AI)

Axial profile	photon/e ⁻	%Inj	%rad	%ext
3.7-0.3-2.2 T	$5.7 10^{-5}$	15%	60%	25%
3.7-0.8-2.2 T	1.610^{-4}	27%	11%	62%

ECRIS24, TUB2, Tue. 17 Sept. 2024, Darmstadt, Germany

GRENOBLE | MODANE

kT=50 keV => 100000 \sim 50 µSv/h / kW e⁻ 500 500

~1 mSv/h / kW e⁻

X-Ray dose in the cave per kW of e⁻ without shielding

Dose dramatically increases with kTe

1000

0

X [cm]

-500

-1000

-1500

-1200 -1000

In the corridor:

GRENOBLE | MODANE

X-Ray shielding study

- Stopping efficiently the x-rays requires a general external 3 cm Pb thickness
 - Heavy and deemed un-practical for source maintenance
- Investigation of compact screens located inside the source to try to reduce the shilding system complexity outside

Dose After Shielding per kW of e⁻

Max Dose accepted by the safety 7.5 µSv/h

Conclusions

- Different EEDF temperature at different plasma chamber walls
 - EEDF Temperature Higher when local B is lower
 - EEDF temperature Lower when local B is higher
- High Angle of incidence of electron on the walls
- Increase Bmin favors e- losses to the extraction and axial x-ray emision
- Many electrons are bouncing
- The radial x-rays are fully stopped in the cryostat and the source yoke
- At T=120 keV, the dose without shielding is > 1 mSv/h /kW of e⁻ at 5 m
- Adding shields inside the source allows to significantly reduce the need for shielding outside
- 3 cm Pb as minimum required outside the source if no internal shielding is installed

https://doi.org/10.1016/j.gloenvcha.2008.05.001

THANK YOU FOR YOUR ATTENTION

