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Abstract
In this paper we present a methodology to infer the state of

the plasma in an ECR source without using any sensor that
modifies its behavior. For this purpose, machine learning
techniques are explored. In a first stage a characterization
experiment is carried out in which the different states of the
plasma are detected, using clustering algorithms. Subse-
quently, a supervised learning paradigm is adopted to train a
neural network that is capable of determining the state of the
plasma at different working states. The control data: deliv-
ered RF power and gas flow, together with the data that can
be measured without altering the plasma: incident power,
reflected power and plasma luminosity, are provided to the
system as an input, in order to achieve the state detection.
Moreover, good results can also be achieved without mea-
suring luminosity, which cannot be easily measured when
the ECR source is the start of an injector. This methodol-
ogy has been applied to a low-power ECR source in which
low-density hydrogen plasmas are generated at the IZPILab
laboratory of the University of the Basque Country.

INTRODUCTION
Electron cyclotron resonance ion sources (ECRIS) are

now widely utilized for ion production in both basic research
and industrial applications due to their dependability and
ability to generate multiply charged ion beams from most
stable elements. This widespread adoption is attributed to
their consistent performance and versatility across various
fields [1].

These sources generate plasma that undergoes state
changes over time, necessitating precise measurements to en-
able effective operation. Furthermore, it is crucial to perform
these measurements non-intrusively to avoid interference
with the plasma dynamics. This necessity forms the pri-
mary motivation for developing the methodology presented
in this paper, which aims to infer the state of the plasma in
an ECRIS source without employing any sensors that could
alter its behavior. This is achieved through the application
of advanced Machine Learning (ML) techniques.

Ion Source Operational Details
The source designs and implementations used for the

experiments are comprehensively described in Ref. [2].
These designs are tailored for low current industrial and
bio-applications, leveraging Electron Cyclotron Resonance
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(ECR) principles. The main design parameters are summa-
rized in Table 1. Although the table specifically references
H2, the ion source is versatile and can operate with other
gases, such as Helium, Nitrogen, or any other elemental gas
for ion production.

Table 1: Main Design Parameters of PIT30 Ion Source

ECRIS parameters
Microwave frequency 3 GHz
Microwave power <500 W
Gas mass flow <5 sccm (H2)
Magnetic field 110 mT
Extraction voltage ≤30 kV
Beam current <50 µA (H+)
Beam emittance <0.2 mm mrad

Figure 1 depicts a CAD-rendered cross-sectional drawing
of the proposed plasma chamber, assembled from standard
components. This chamber is configured as a circular waveg-
uide, and for the chosen operating frequency, the smallest
commercial diameter suitable as a resonant cavity within the
CF flange system was DN 63. To produce the required mag-
netic field within the chamber for electron resonance, perma-
nent magnets were utilized. The magnetic field strength was

Figure 1: Cross section of a CAD drawing of the pro-
posed plasma chamber made from standard CF components.
(1) gas inlet, (2) RF port, (3) magnetic structure, (4) plasma
chamber, (5) extraction electrodes, (6) turbo-molecular
pump port, (7) pressure sensor, (8) Faraday cup/scintillator
screen port. The entire assembly shown is 600 mm long.

determined using the equation for the resonant frequency
of a free electron in a magnetic field (𝐵 = 2𝜋 𝑓 𝑚

𝑒
), where 𝐵

represents the magnetic flux density, 𝑓 is the frequency of
the microwaves, and 𝑚 and 𝑒 are the mass and charge of the
electron, respectively. For the intended 3 GHz microwaves,
this results in an approximate field of 110 mT. To achieve
this, a Halbach array consisting of eight permanent magnet
bars was designed to create an axial magnetic field aligned
with the plasma chamber.
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In this source, both the power of the signal transmitted to
the chamber (or RF power) and the gas flow can be adjusted.
The signal power can be varied using a signal generator
capable of producing a variable power signal of up to The
hydrogen flow is regulated by a flow controller, allowing
independent control of the hydrogen flow up to 5 sccm (stan-
dard cubic centimeters per minute under conditions of 273 K
temperature and 1.01 bar pressure).

Plasma Chamber Dynamics
The gas transferred to PIT30 is molecular hydrogen (H2).

In the processes that take place in the hydrogen plasma, in
addition to protons (H+), other ionic species such as H+

2 and
H+

3 are generated. Figure 2 shows the surfaces that define
the ionic densities as a function of the two variables (RF
power and gas density), and Fig. 3 shows the regimes in
which each species is predominant. We consider the plasma
has changed its state when the predominant species in the
plasma changes.

Figure 2: Density of H+ (blue), H+
2 (red), and H+

3 (green) as
a function of power density and neutral gas density.

Experimental Data Insights
The dataset used to initially train the algorithms consists

of gas and power sweeps in the accelerator source, so that
for an introduced power, two gas sweeps were performed, as
shown in Fig. 4. Each measurement was always taken in the
steady-state regime, thus avoiding introducing noise into the
measurements. The following measurements were taken:
Time (s) : Time in seconds, referring to the time interval

of each measurement.
Reflected (W) : Reflected power in watts, indicating the

amount of power that is not transferred to the plasma
and is reflected back to the power source.

Figure 3: Map of the regions where each species predomi-
nates. Blue where protons predominate, red where H+

2 pre-
dominates and green where H+

3 predominates.

Figure 4: Representation of the acquired data.

Forward (W) Forward power in watts, measuring the
amount of power emitted by the power source towards
the plasma.

Adaptation (W) Adaptation of the signal injected into the
source.

Noise (W) : Noise in watts, quantifying the random pertur-
bation affecting the measurement signals.

Gasflow (sccm) Gas flow in standard cubic centimeter per
minute, specifying the volume of gas passing through
the system per unit of time.

Rfpower (W) RF power in watts, referring to the radio fre-
quency power used in the source.

Frequency (Hz) Frequency in Hertz, describing the oscil-
lation rate of the injected signal.

Luminosity (u a.) Measured luminosity of the plasma com-
ing from the source, measured in arbitrary units.

If the cross-correlation of these data is studied, it is ob-
served that there is a positive correlation (0.67) between the
beam luminosity and the adaptation at the source input. This
relationship will be useful later, as it implies that analyzing
changes in one of the variables is almost equivalent to ana-
lyzing changes in the other, allowing us to eliminate one of
the variables without losing significant information. Since
luminosity is not always an accessible variable (especially
in accelerators where the particle source is already fully
integrated), this information suggests that substituting lumi-
nosity with adaptation could enable non-intrusive operations
in the accelerator.
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Figure 5: Detected jumps (in red) with configuration 1.

IDENTIFYING PLASMA STATE JUMPS
As previously explained, we designed a method that de-

tects changes in the plasma state of the ion source and clas-
sifies them into one of three possible states. Therefore, the
main challenge involves two tasks: detecting these changes
and classifying them.

The easiest way to find state transitions is to analyze
luminosity as a function of time. Whenever the plasma
changes state, a sudden change in beam luminosity is ob-
served. Therefore, the analysis of luminosity growth pro-
vides the necessary information to locate these transitions.

Firstly, an algorithm is proposed that performs linear re-
gressions for every interval of 𝑛 points. The slope of this
line is proportional to the average growth of luminosity in
that interval. Next, the difference in growth between con-
tinuous intervals is calculated and compared to the average
difference of their neighbors, thereby avoiding issues due to
isolated very high or low values. This allows us to identify
regions where abrupt changes in growth occur compared
to the local growth rate. Finally, the intervals that meet the
requirements are selected.

As explained earlier, luminosity and adaptation are cor-
related variables; therefore, substituting one for the other
allows for a similar analysis of plasma behavior. From now
on, configuration 1 will refer to the use of luminosity as the
variable, while configuration 2 will indicate that luminosity
has been substituted by the adaptation. In Fig. 5 and Fig. 6,
the results of this method in detecting state changes with
configuration 1 and configuration 2, respectively are shown.

TECHNIQUES FOR CATEGORIZING
PLASMA TRANSITIONS

Once the state changes are detected, we will attempt to
classify them into one of three possible states using various
algorithms: k-means, Random Forest and neural networks.
We will then compare their performance, using the F1-score,
to determine the most effective approach.

𝑘-means
Initially, the 𝑘-means clustering algorithm is applied [3],

utilizing features derived from windows of points around

Figure 6: Detected jumps (in red) with configuration 2. The
adaptation is shown in black, and the noise in blue.

each identified jump. The variables and parameters used
to train the 𝑘-means algorithm include: Adaptation, Lumi-
nosity, Maximum Luminosity Change, Mean Gas Change,
Gas Flow, and RF Power. The optimal number of clusters
is four, although initially a classification into three groups
was considered. This additional fourth cluster has proven
crucial for capturing false positives within the datasets.

The results presented in Fig. 7 effectively illustrate the
ability of the 𝑘-means algorithm to accurately identify and
classify jumps in configuration 1.

Figure 7: Final result of the 𝑘-means algorithm in classifying
the detected jumps in configuration 1. False positives are
shown in green.

Figure 8 displays the results applied to configuration 2. Al-
though not as precise as when luminosity is included among
the variables, due to the correlation between adaptation and
luminosity, the algorithm still manages to detect and classify
the majority (78.3 %) of the jumps adequately.

Random Forest
After experimenting with the 𝑘-means algorithm [4], we

opted to try a supervised learning approach using the Ran-
dom Forest algorithm to classify the data.

To optimize the model’s performance, it was configured
with the following parameters: number of trees set to 10,
maximum depth of the trees set to 5, and the criterion for
the quality of the splits set as Gini.
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Figure 8: Final result of the k-means algorithm in classifying
the detected jumps in configuration 2.

To test de performance a cross-validation was conducted.
This process involved dividing the complete dataset into five
folds. The model was trained and evaluated five times, each
time with a different fold designated as the test set and the
remaining as training sets. An F1-score result of 98 % was
achieved with configuration 1 and 97 % with configuration 2.

Neural Networks
Finally, the use of neural networks [5] is proposed as

a solution to the classification problem. Various types of
networks have been explored, with sequential networks and
Recurrent neural networks (RNN) proving to be the most
effective.

To train the sequential network, the data were split into
training and test sets, using 20 % of the data for testing.
After experimenting with various configurations, the highest-
performing network was set up as follows: a flattening layer,
followed by a first dense layer with 512 neurons using the
ReLU activation function. The second and third dense layers
have 256 and 128 neurons, respectively. The output layer
uses the softmax activation function. A F1 Score of 76 %
was achieved with configuration 1, and a F1 Score of 64 %
with configuration 2.

The RNN model was reconfigured to simplify its structure
and adjust its performance. The updated features of the
model are as follows: An LSTM layer with 200 hidden units
that processes input sequences, where each sequence consists
of 1000 time steps, each with 10 features. Additionally, there
is a dense output layer with 3 units, utilizing the softmax
activation function. A F1 Score of 53.1 % was obtained with
luminosity, and an F1 Score of 53.9 % was obtained without
luminosity.

Clearly, the sequential network is much more accurate
than the RNN. However, we can see that this network
achieves very similar results when classifying points with
and without luminosity, indicating that with more data, it

could be a good solution for performing non-intrusive clas-
sification.

Table 2: Comparison of the F1-scores of all Algorithms

Random Forest Sequential NN RNN
Config. 1 98 % 76 % 53 %
Config. 2 97 % 64 % 54 %

CONCLUSION
In this paper, a method has been designed to detect state

changes in the plasma of a particle accelerator source. The
use of ML has been explored to achieve an automatic identi-
fication of the injector’s state. Two alternative methods have
been developed to detect plasma state transitions, including
the possibility of doing so without using luminosity, since
obtaining measurements of this variable is very challeng-
ing once the accelerator is fully completed. Additionally, it
has been verified that the unsupervised learning algorithm
k-means is effective in classifying state transitions when lu-
minosity is included, though it is not very accurate when this
information is unavailable. Therefore, the use of a Random
Forest algorithm has been proposed for these cases. More-
over, neural networks have also been proposed as a solution
to the problem and the best architectures have been studied
to achieve the most effective classification. Table 2 shows a
quick comparison of the F1-scores of all the algorithms.
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