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1. Introduction and Theoretical Framework 
 
 
 
 



 

                                      Our RFQ Projects for High Intensity Linacs 
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IPHI  352.2 MHz  6.0 m  100 mA  CW  3 MeV   

3 coupled segments of  

2 brazed modules each  
Status: tuned, start commissioning 2014 Q3 

96 tuners 
 

4 iris + qwt 
 

LINAC4  352.2 MHz  3.0 m  80 mA  7.5%  3 MeV   

1 segments of 3 brazed modules  
 Status: operational 

32 tuners 
 

1 iris + qwt 
 

SPIRAL2  88.05 MHz  5.0 m  5 mA  CW  3 MeV   

1 segment of 5 bolted modules 

 Status: start tuning 2014 Q3 
  

40 tuners 
 

4 loops 
 

ESS  352.2 MHz  4.5 m  62.5 mA  4%  3.6 MeV   

1 segment of 5 brazed modules                                        

Status: design completed 2014 Q3 

2 loops 
 

60 tuners 
 



                              The Loaded Lossless 4-Wire  

                            Transmission Line Model (TLM)  
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Axial region: Hz  0,  TEM 4-wire line  
4 capacitances between adjacent electrodes C1 to C4   (F/m) 

2 capacitances between opposite electrodes Ca, Cb   (F/m) 

fundamental TEM relation: 2 Ls C  =  I 

Quadrants are /4 resonators    
complement with 4 inductances  L1 to L4   (H.m) 

Transmission line equation (dim. 3, since three cuts make the system 

of conductors simply connected) : 
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                               The TLM Canonical Basis {Q,S,T}          
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For an ideal (quaternary-symmetric) RFQ: 

    CQ & LQ are diagonal 

    Q, S & T are decoupled 
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Quadrupole-like subspace Dipole-like subspace (dim. 2) 
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                               TLM Boundary Conditions 
arbitrary reciprocal lossless circuits, defined in {Q,S,T} basis                                   
by their admittance matrixes (which are assumed to exist)  
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                                       TLM Properties (1/3) 
 

The TLM takes the form of a vector regular Sturm-Liouville problem 

 

 

 

 

 

  

  

 

 

 

 

 

 

 
 

L is un-bounded, with bounded compact inverse, and is self-adjoint for the inner-product 
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 three subsets Q, S and T of countable eigenpairs 
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                                     TLM Properties (2/3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

for an ideal (quaternary-symmetric) RFQ 
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the plot shows the 6 first eigenfunctions of 
the Q subset for IPHI 
 

"Qn" 

segment #1  segment #2  segment #3  

cc  #2  cc  #1  

# of voltage nodes in segment #3  

state of coupling-circuit #2 (''–'' = inverting)  

# of voltage nodes in segment #2  

state of coupling-circuit #1 (''–'' = inverting)  

# of voltage nodes in segment #1  

eigenfrequency  

Mode designators 

"Qn"  is the nickname for the accelerating mode; here 
"Qn" is Q  0+0+0 



                                     TLM Properties (3/3) 

 
 
First-order perturbation analysis reveals dual bases for parameter perturbation functions 
and resulting voltage perturbation functions. Example:  
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                      Effects of Modulations on Line Parameters 
                                                         ESS RFQ 2D/3D simulations 
                                      un-modulated 2D / un-modulated 2D / modulated 3D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

parallel capacitance: C < 0.01 pF/m 

 negligible effect 

one simulation cell= one half-period 

diagonal capacitance:  C < 0.8 pF/m 

 strong impact on dipole eigen-
frequencies, hence on stability 

the two diagonal capacitances Ca and 
Cb oscillate about a mean value from 
one cell to the next 



                                 Effects of Modulation Style 
                                             LINAC4 RFQ 2D/3D simulations (Comsol) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 un-modulated profile of LINAC4 electrodes 
is constant 
 
 

 3 simulations: 
– in green  : un-modulated electrodes   
– in red  : sine modulation 
– in blue  : 2-term potential modulation 
 

 the sine modulation induces too much 
detuning for reasonable slug dimensions. 
RFQ cross-section could not be kept constant.  



 
 
 
 
 
 
 
 
 
 

2. End and Coupling Circuits Tuning 
 
 
 
 
 
 
 
 



                             End and Coupling Circuits Tuning  
                                                       
 
                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T

S

Q

TTTSTQ

STSSSQ

QTQSQQ

T

S

Q

U

U

U

sss

sss

sss

z/U

z/U

z/U









= 0 = 0 

z

)a(V

)a(V
1sQQ 

























Q

Q

cec

cce

Q

Q

U

U

sss

sss

z/U

z/U

C4

C
s c

2

2

c




(since UT(z) = US(z) = 0  ∀z in the tuned RFQ) 

coupling coefficient 

UQ
– = UQ

+ in the tuned RFQ 
z

)c(V

)c(V
1ss ee 


 

V(z) = specified voltage  

z

)c(V

)c(V
1)ss(

2
1s ee 


 



0)ss(
2
1s ee  


matching 

tuning 

End circuit s matrix (ex. in z = a) Coupling circuit s matrix (in z = c) 

tuning : adequate voltage slope across boundary 
 matching : continuous voltage across boundary 
 



                    Tunable Devices for End and Coupling Circuits 

 
 
 

  
adjustable thickness adjustable "quadrupole" rods 

  
            IPHI input end-plate 

IPHI coupling-plates #1 and #2 
               IPHI output end-plate 
         LINAC4 input and output plates 
       SPIRAL2 input and output end-plates 
              ESS input and output end-plates 

 



                                            The Excitation Set Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Use M linearly independent pairs {U/z,U} to estimate unknown coefficients of s matrixes. 

Excitations are obtained with M preset tuner positioning at some distance from boundary.  

M = 5 for end circuits; M = 11 for coupling circuits (number of bead-pulls is M).   

Example: IPHI coupling circuit #2   

data fit  

state equation: non-inverting branch in red  matching and tuning conditions 



                 IPHI and LINAC4 Realized Boundary Conditions 

 
 

legend: good / not good, don't know why / fair, know why. s parameters in m–1 ("V/m/V") 

  expected tuning (aluminum) tuned (copper) 

IPHI     
    input end-circuit sQQ 0.0 –5.46 10–3 –3.04 10–2 

 (sQQ)  1.55 10–2 3.01 10–2 

    coupling-circuit #1 s +7.91 10–2 +7.33 10–2 +9.45 10–2 

 s 0.0 +9.29 10–3 –9.59 10–2 

 Cc 1.1 pF 0.71 pF 0.53 pF 

    coupling-circuit #2 s 1.30 10–1 +1.07 10–1 +1.20 10–1 

 s 0.0 +1.82 10–2 +2.39 10–3 

 Cc 1.1 pF 0.93 pF 0.95 pF 

    output end-circuit  sQQ 2.11 10–2 n/a +2.85 10–2 

 (sQQ)  n/a 1.67 10–2    

LINAC4     
    input end-circuit sQQ 0.0  +2.78 10–2 +6.26 10–2 

 (sQQ)   7.00 10–2 2.41 10–2 

    output end-circuit  sQQ 0.0 n/a –7.67 10–2 

 (sQQ)  n/a 2.97 10–2 

 



 
 
 
 
 
 
 
 
 
 
 
 

3. Stability Design, Tuning and Measurement 
 
 
 
 
 
 
 
 
 
 
 



                                                          Stability Analysis 
                                   "stability" w.r.t. undesired perturbations under operation 
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                                        IPHI Stability 
                             legend: unsegmented / segmented, specification / segmented, realized 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mode des. specification prior to slug tuning after slug tuning 

Q  0–1–0 348.18  [–42.0] 349.55  [–25.1] 351.25  [–24.5] 

Q  0+0+0  "Qn" 350.71  [  0.00] 350.45  [    0.0] 352.10  [    0.0] 

Q  1–1–1 353.69  [+47.8] 354.65  [+54.4] 356.40  [+55.2] 

D  1+1+1 347.67  [–46.1] 348.10  [–40.5] 349.30  [–44.3] 

Q  0+0+0  "Qn" 350.71  [    0.0] 350.45  [    0.0] 352.10  [    0.0] 

D  2–2–2 363.16  [+94.3] 362.60  [+93.1] 364.30  [+93.5] 

Eigenfrequencies and quadratic frequency separations (QFS) in MHz. 

 

sharp optimum 
Cc = 1.1 pF 

smooth optimum 

sS/T = 0 

 

without dipole rods, and  0 
with dipole rods 
  

1s,s,s,s,s,s TeTeSeSeTTSS 

Note that a short rod (ℓ < 0/2 ) is  

capacitive, hence its admittance is 

positive, and it may only increase s. 

When ℓ  0/2, s = , and the RFQ 

end is a short-circuit.  

  



                                IPHI Impulse Error Functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q perturbation, specified Q perturbation, achieved 

D perturbation, specified D perturbation, achieved 



                                          LINAC4 Stability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rods (mm) 53.0 / 55.7 53.0 / 53.0 53.0 / 53.0 

          specification                                     prior to slug tuning                                after slug tuning      

 Comsol + TLM measured  TLM (measured s) measured 

Q 0  "Qn" 345.32  [  0.00] 345.50  [    0.0] 345.33  [    0.0] 352.13  [    0.0] 

Q 1 348.82  [+49.3] 348.69  [+47.0] 348.84  [+49.3] 355.31  [+47.5] 

D 1 338.45  [–68.5] 338.50  [–69.2] 338.06  [–70.5] 344.63  [–72.3] 

Q 0  "Qn" 345.32  [    0.0] 345.50  [    0.0] 345.33  [    0.0] 352.13  [    0.0] 

D 2 348.42  [+46.4] 347.88  [+40.6] 347.96  [+42.7] 353.50  [+31.2] 
 

(very) smooth optimum 

sS/T ≤ –0.3 

 

– measured s parameter in dipole 
subspace not in agreement with 
calculated value, but in agreement 
with measured spectra  

– rod length is chosen smaller than 

optimum for sQQ = 0 to save dipole 

stability 



                                       ESS Stability Design 

                          || hQn,S/T || vs. end boundary condition parameter sS/T  and RFQ length ℓ 
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                     Sensitivity to Perturbations under Operation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 IPHI LINAC4 SPIRAL2 ESS 

number of modules 6 3 5 5 

sup    VQn,Q / VQn,Q  5.34 10–3 5.53 10–3 3.36 10–4 4.48 10–3 

sup   VQn,S/T / VQn,Q 5.22 10–4 7.88 10–3 3.18 10–4 5.84 10–3 

CW linacs  : deformations due to RF heating / water cooling combination 

low duty cycle linacs  : thermal expansions due to water temperature variations  

       spectral contents of perturbation is important  

       in general alternating water flow direction from one module to the next is better 

 

apply perturbation  –  capacitance basis function with adequate spectral index 

                               – peak value of relative perturbation = 0.001 arb.   

calculate peak value of resulting voltage perturbation 

 

IPHI 

water loop #1 water loop #2 water loop #3 



                         Measured Voltage Stability of LINAC4 (1/2) 

 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Voltage monitoring: 

    pickup loops inserted in 16 slug tuners (4 quadrants in 4 cross-sections)  

    calibration: low RF power, nominal water temperatures, reference = bead-pull values 

    voltage reconstruction: TLM and sampling therory  

 

 

Temperature variations: 

    water temperatures in the 3 RFQ modules are controled independently 

    5 temperature distributions:   O   26.0  –  26.0  –  26.0   (nominal) 

                                                   A   25.5  –  26.0  –  26.5 

                                                   B   26.5  –  26.0  –  25.5 

                                                   C   26.5  –  26.0  –  26.5 

                                                   D   25.5  –  26.0  –  25.5 

    3 RF powers 38 kW, 100 kW, 430 kW (PD = 250 s, PRI = 1.2 s)  



                      Measured Voltage Stability of LINAC4 (2/2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

expected 

measured, 38 kW measured, 100 kW 

measured, 430 kW 



 
 
 
 
 
 
 
 
 
 
 

4. Voltage and Frequency Tuning 
 
 
 
 
 
 
 
 
 
 



                     The Voltage & Frequency Tuning Loop (1/3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Idea: apply 1st-order perturbation theory to TLM to build dual bases: 

    – a discrete basis of tuner command functions  

             (tuner position or equivalently inductance perturbation) 

    – a truncated basis of voltage eigenfunctions 

        both are calculated with given boundary conditions, which should be tuned first  

 
IPHI's 6 first tuner 
command functions in 
Q subset. 

dim. = 25 (tuning 
devices in 25 cross-
sections) 

spectral coefficients of 
voltage perturbation 
resulting from each 
command function 

 

"Qn" : frequency tuning  

Q 0–0–0 

Q 0–1–0 

Q 0+0+0 

Q 1–1–1 

Q 1+1–1 

Q 1+1+1 



                      The Voltage & Frequency Tuning Loop (2/3) 
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tuner positions voltage vector function 
 

noise reduction 
FIR filters 



                     The Voltage & Frequency Tuning Loop (3/3) 
                                                           working conditions 
 
Voltage sampling:   
        – magnetic field samples (bead-pull) should reside far 

enough from local perturbations  
        – tune vacuum ports in electrically neutral position prior 

to braze if possible (Linac4)  
        – full-rank sampling  
        – output of filter banks free from aliasing 
 

Inductance sampling: 
        – full-rank sampling (include RF ports in tuning devices set) 
 

Tuner efficiency: 
        – use 3D simulation to determine individual tuner slope L/h for TLM 
        – derive capacitance vs. intervane gap fcn. from simulations  
        – transform mechanical tolerance into capacitance error polyhedron      
        – use TLM + linear programming (Danzig) to determine worst tuning case  
 

Tuning loop: 
        – unbiased 

        – equivalent to fixed-point iteration of the operator A = I – G K H–1 (with all the convergence properties of 

fixed-point iterations!) 

        – converges iff A is a contraction, here satisfied iff eigenmodes are identically sorted for the ideal and the true 

RFQs according to eigenvalue order 

        – convergence is monotonic if A is diagonal, but may be non-monotonic otherwise 

 = ℓ/(T + ) 

  

  –0.7 ~ –0.5 

  0.15 ~ 0.25 

LINAC4 polyhedron 



                                   IPHI and LINAC4 Tuning 
 
 
 
 

IPHI    

voltage peak relative errors (%): Q S T 

dummy RF ports, un-tuned 90 17.6 14.5 

adjustable slugs, RF ports, tuned 0.78 0.28 0.63 

copper slugs 3.97 1.32 2.07 

tuner positions (mm):  

specified +1.0 / +19.0  

specified, with safety margin –5.0 / +25.0 

tuned RFQ –1.7 / +12.5 

LINAC4    

voltage peak relative errors (%): Q S T 

dummy RF port, un-tuned 5.55 5.53 7.19 

adjustable slugs, RF port, tuned 0.70 1.48 3.07 

copper slugs 0.63 3.45 2.29 

tuner positions (mm):      

    specified –4.0 / +30.0  

tuned RFQ +9.0 / +12.1 
 
 

 



                                    IPHI Voltage Tuning           
                           spectral coefficients vs. tuning step index in initial pre-tuning sequence 
                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                    
                             
 
 
 
 
 
 
 
 
 

5. RF Power Coupling 
 
 



 

                     The Structure of the 4  4 Scattering Matrix 

                                          in the case of ideal, quaternary-symmetric RFQ 
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                           A Few Essential S-matrix Properties 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. quarter-wave transformers my be represented by K-inverters with excellent accuracy in the complex 
plane (10–8 in simulations) 

  
2. S-parameters of asymmetric RFQ may be represented by S-parameters of quaternary-symmetric RFQ 

with very small errors in the complex plane (10–4 ~ 10–3 in measurements, even smaller in simulations) 

       electrical asymmetries are non-observable in standard VNA measurements  
 

3. Q0, 0 and total coupling coefficient are correctly estimated, but partial coupling coefficients have to be 

corrected for voltage asymmetries (derived from bead-pull measurements) 
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4. multiport matching:  total power reflection coefficient is 2 = (aSSa)/(aa) : the 4-port circuit is matched 

when the excitation vector a is an eigen-vector a1 corresponding to the smallest eigenvalue 1 of SS.  

      a1 and 1() also give estimates of Q0, 0,  and i's, without reference to the matrix structure   

  
  
 



                             The IPHI 4-Port Scattering Matrix 

                                                                    under vacuum 
 

 0 Q0 1 2 3 4  

matrix reconstruction 352.1421 6875 0.2679 0.2795 0.3123 0.2782 1.1379 

with correction   0.2693 0.2837 0.3107 0.2741  

multiport matching 352.1422 6786 0.2797 0.2979 0.3218 0.2988 1.1982 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transmission to adjacent quadrants (i,j)  { (1,2) (1,4) (2,3) (3,4) }: 

    S-parameter reconstruction error    |Re si,j|,  |Re si,j| < 2 10–3 

    polar angle error                                           |i,j – 0| < 0.8° 

    phasor closure error                      |arg(1,42,3/1,23,4)| < 0.8° 

Transmission to opposite quadrant  (i,j)  { (1,3) (2,4) }:  

    S-parameter reconstruction error    |Re si,j|,  |Re si,j| < 2 10–3 

    offset function                                               |Hi,j – H0| < 2 10–3 

    phasor closure error                      |arg(1,32,4/1,23,4)| < 3.2°  

 S-matrix reconstruction errors 

RFQ = 1.17 to 1.18 MW      Beam = 0.3 MW 

ideal  = 1.254 to 1.257 

estimated  = –26 dB (reconstructed matrix) 
                    = –32 dB (multiport matching)   

 Estimated power budget 

 multiport matching 
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                                          Final Comments 

 
 

 
 
 
 

– the TLM creates accurate and invertible bridges between 3D simulations, 
electromagnetic specifications and measurable/observable quantities 

 
– IPHI and Linac4 are accurately tuned 
 
– thermal stability of Linac4 is experimentally demonstrated to be in agreement 

with design 
 
– the sophistication of the electromagnetic perturbation analysis deserves an 

improvement of the way mechanical tolerances are specified  
 
 
 



 
 
 
 
 
 
 
 
 
 
 

      Thank you for attention ! 
 
 
 
 
 
 
 
 
 
 
 
 


