

Advanced RF Design and Tuning Methods of RFQ for High Intensity Proton Linacs

Alain C. France, CEA / Saclay

IPAC 2014, Dresden

Contents

- **1. Introduction and Theoretical Framework**
- 2. End and Coupling Circuits Tuning
- 3. Stability Design, Tuning and Measurement
- 4. Voltage and Frequency Tuning
- 5. RF Power Coupling
- **6. Final Comments**

1. Introduction and Theoretical Framework

Our RFQ Projects for High Intensity Linacs

The Loaded Lossless 4-Wire Transmission Line Model (TLM)

Axial region: $H_z \approx 0$, TEM 4-wire line 4 capacitances between adjacent electrodes C_1 to C_4 (F/m) 2 capacitances between opposite electrodes C_a , C_b (F/m) fundamental TEM relation: $v^2 L_s C = I$

Quadrants are $\lambda/4$ resonators complement with 4 inductances L_1 to L_4 (H.m)

Transmission line equation (dim. 3, since three cuts make the system of conductors simply connected) :

$$\boxed{-\frac{\partial}{\partial z}\left(C\frac{\partial v}{\partial z}\right) + \frac{1}{v^2}L v = \frac{\omega^2}{v^2}C v}$$

The TLM Canonical Basis {Q,S,T}

$$-\frac{\partial}{\partial z} \left(C_{Q} \frac{\partial U}{\partial z} \right) + \frac{1}{v^{2}} L_{Q} U = \frac{\omega^{2}}{v^{2}} C_{Q} U$$

For an ideal (quaternary-symmetric) RFQ: C_Q & L_Q are diagonal Q, S & T are decoupled

TLM Boundary Conditions

arbitrary reciprocal lossless circuits, defined in {Q,S,T} basis by their admittance matrixes (which are assumed to exist)

circuit theory: admittance matrixes
$$y_a y_{ci} y_b$$

$$I(a) = -y_a U(a) \qquad \begin{vmatrix} I(c_i^-) \\ -I(c_i^+) \end{vmatrix} = y_{c_i} \begin{vmatrix} U(c_i^-) \\ U(c_i^+) \end{vmatrix} \qquad I(b) = +y_b U(b)$$

$$\boxed{I(a) = -y_a U(a)} \qquad \begin{vmatrix} Q^- & Q^- & Q^+ & Q^- & Q^+ \\ -I(c_i^+) \end{vmatrix} = y_{c_i} \begin{vmatrix} U(c_i^-) \\ V(c_i^-) \end{vmatrix} = y_{c_i} \begin{vmatrix} Q^+ & Q^- & Q^-$$

TLM Properties (1/3)

The TLM takes the form of a vector regular Sturm-Liouville problem

Linear operator
$$\mathcal{L}$$
:Eigenvalue problemU satisfies boundary conditions, $\mathcal{L} U = -C_Q^{-1} \frac{\partial}{\partial Z} (C_Q \frac{\partial U}{\partial Z}) + \frac{1}{v^2} C^{-1} L_Q U$ $\mathcal{L} U = \frac{\omega^2}{v^2} U$

 $\ensuremath{\mathcal{L}}$ is un-bounded, with bounded compact inverse, and is self-adjoint for the inner-product

 $\langle u, v \rangle = \int_{\Omega} v^* C_Q u \, dz$ (with given boundary conditions)

three subsets Q, S and T of countable eigenpairs

$$\left\{ \left. \omega_{Q_{i}}, V_{Q_{i}}(z) = \left| \begin{array}{c} V_{Q_{i},Q}(z) \\ V_{Q_{i},S}(z) \\ V_{Q_{i},T}(z) \end{array} \right| \right\} \quad \left\{ \left. \omega_{S_{j}}, V_{S_{j}}(z) = \left| \begin{array}{c} V_{S_{j},Q}(z) \\ V_{S_{j},S}(z) \\ V_{S_{j},T}(z) \end{array} \right| \right\} \quad \left\{ \left. \omega_{T_{k}}, V_{T_{k}}(z) = \left| \begin{array}{c} V_{T_{k},Q}(z) \\ V_{T_{k},S}(z) \\ V_{T_{k},T}(z) \end{array} \right| \right\}$$

TLM Properties (2/3)

TLM Properties (3/3)

First-order perturbation analysis reveals **dual bases** for parameter perturbation functions and resulting voltage perturbation functions. Example:

capacitance perturbations

$$C_{1} = C_{QQ} + C_{SQ} + C_{SSTT}$$

$$C_{2} = C_{QQ} - C_{TQ} - C_{SSTT}$$

$$C_{3} = C_{QQ} - C_{SQ} + C_{SSTT}$$

$$C_{4} = C_{QQ} + C_{TQ} - C_{SSTT}$$

$$\left| \begin{array}{c} \Delta C_{QQ} \\ \Delta C_{SQ} \\ \Delta C_{TQ} \end{array} \right| = \sum_{\delta=0}^{\infty} p_{QQ\delta} C_{Q\delta} + \sum_{\alpha=0}^{\infty} p_{SQ\alpha} C_{S\alpha} + \sum_{\beta=0}^{\infty} p_{TQ\beta} C_{Tk}$$

eigenpair perturbation with duality relations

$$\Delta \lambda_{Q_n} , \Delta V_{Q_n} = \sum_{\substack{i=0\\i\neq n}}^{\infty} c_{Q_i} V_{Q_i} + \sum_{j=0}^{\infty} c_{S_j} V_{S_j} + \sum_{k=0}^{\infty} c_{T_k} V_{T_k}$$
$$\frac{\Delta \lambda_{Q_n}}{c_{Q_i} (\lambda_{Q_n} - \lambda_{Q_i}) = p_{QQ_i}} c_{S_j} (\lambda_{Q_n} - \lambda_{S_j}) = p_{SQ_j} c_{T_k} (\lambda_{Q_n} - \lambda_{T_k}) = p_{TQ_k}$$

 $\left\{ \begin{array}{l} c_{Q_i}, c_{S_j}, c_{T_k} \end{array} \right\}_{0 \leq i,j,k \leq \infty} \ \text{ is the spectral analysis of } \Delta V_{Q_n}$

Effects of Modulations on Line Parameters

ESS RFQ 2D/3D simulations

un-modulated 2D / un-modulated 2D / modulated 3D

Effects of Modulation Style LINAC4 RFQ 2D/3D simulations (Comsol)

 \rightarrow un-modulated profile of LINAC4 electrodes is constant

- \rightarrow 3 simulations:
- in green : un-modulated electrodes
- in red : sine modulation
- in blue : 2-term potential modulation

 \rightarrow the sine modulation induces too much detuning for reasonable slug dimensions. RFQ cross-section could not be kept constant.

2. End and Coupling Circuits Tuning

End and Coupling Circuits Tuning

End circuit s matrix (ex. in
$$z = a$$
)

$$\begin{vmatrix} \partial U_Q / \partial z \\ \partial U_S / \partial z \\ \partial U_T / \partial z \end{vmatrix} = -\begin{vmatrix} s_{QQ} & s_{QS} & s_{QT} \\ s_{SQ} & s_{SS} & s_{ST} \\ s_{TQ} & s_{TS} & s_{TT} \end{vmatrix} \begin{vmatrix} U_Q \\ U_S \\ U_T \end{vmatrix}$$

$$= 0 \qquad = 0$$
(since $U_T(z) = U_S(z) = 0 \quad \forall z \text{ in the tuned RFQ}$)

$$\boxed{s_{QQ} = -\frac{1}{V(a)} \frac{\partial V(a)}{\partial z}}$$

V(z) = specified voltage

Coupling circuit s matrix (in z = c)

$$\begin{vmatrix} \partial U_Q^- / \partial z \\ - \partial U_Q^+ / \partial z \end{vmatrix} = \begin{vmatrix} s_e^- + s_c & -s_c \\ - s_c & s_e^+ + s_c \end{vmatrix} \begin{vmatrix} U_Q^- \\ U_Q^+ \end{vmatrix}$$
coupling coefficient
$$\begin{bmatrix} s_c = \frac{\omega^2}{\nu^2} \frac{C_c}{4C} \\ \end{bmatrix}$$

$$U_Q^- = U_Q^+ \text{ in the tuned RFQ} \quad s_e^- = -s_e^+ = \frac{1}{V(c)} \frac{\partial V(c)}{\partial z}$$

$$\begin{bmatrix} s_{\Sigma\Sigma} = \frac{1}{2} (s_e^- - s_e^+) = \frac{1}{V(c)} \frac{\partial V(c)}{\partial z} \\ \end{bmatrix} \text{ tuning}$$

$$\begin{bmatrix} s_{\Delta\Sigma} = -\frac{1}{2} (s_e^- + s_e^+) = 0 \\ \end{bmatrix} \text{ matching}$$

tuning : adequate voltage slope across boundary *matching* : continuous voltage across boundary

Tunable Devices for End and Coupling Circuits

adjustable thickness

IPHI input end-plate IPHI coupling-plates #1 and #2

adjustable "quadrupole" rods

IPHI output end-plate LINAC4 input and output plates SPIRAL2 input and output end-plates ESS input and output end-plates

The Excitation Set Method

Use M linearly independent pairs $\{\partial U/\partial z, U\}$ to estimate unknown coefficients of s matrixes. Excitations are obtained with M preset tuner positioning at some distance from boundary. M = 5 for end circuits; M = 11 for coupling circuits (number of bead-pulls is M).

Example: IPHI coupling circuit #2

IPHI and LINAC4 Realized Boundary Conditions

legend: good / not good, don't know why / fair, know why. s parameters in m ⁻¹ ("V/m/V")					
		expected	tuning (aluminum)	tuned (copper)	
IPHI					
input end-circuit	SOO	0.0	-5.46 10 ⁻³	$-3.04 \ 10^{-2}$	
	$\sigma(s_{QQ})$		$1.55 \ 10^{-2}$	3.01 10 ⁻²	
coupling-circuit #1	$\mathbf{S}\Sigma\Sigma$	$+7.91 \ 10^{-2}$	$+7.33\ 10^{-2}$	$+9.45 \ 10^{-2}$	
	$S_{\Delta\Sigma}$	0.0	$+9.29\ 10^{-3}$	-9.59 10 ⁻²	
	Cc	1.1 pF	0.71 pF	0.53 pF	
coupling-circuit #2	$\mathbf{S}_{\Sigma\Sigma}$	$1.30 \ 10^{-1}$	$+1.07 10^{-1}$	$+1.20\ 10^{-1}$	
	$S_{\Delta\Sigma}$	0.0	$+1.82\ 10^{-2}$	$+2.39\ 10^{-3}$	
	Cc	1.1 pF	0.93 pF	0.95 pF	
output end-circuit	SQQ	2.11 10 ⁻²	n/a	$+2.85\ 10^{-2}$	
	$\sigma(s_{QQ})$		n/a	$1.67 \ 10^{-2}$	
LINAC4					
input end-circuit	SOO	0.0	$+2.78\ 10^{-2}$	$+6.26\ 10^{-2}$	
	$\sigma(s_{QQ})$		$7.00\ 10^{-2}$	$2.41 \ 10^{-2}$	
output end-circuit	SQQ	0.0	n/a	-7.67 10 ⁻²	
	$\sigma(s_{QQ})$		n/a	2.97 10 ⁻²	

3. Stability Design, Tuning and Measurement

Stability Analysis

"stability" w.r.t. undesired perturbations under operation

 $\text{compare RFQ designs with the noms } \left\|h_{Qn,Q}\right\| \coloneqq \sup_{z_0 \in \Omega} \ \sup_{z \in \Omega} \ \left|h_{Qn,Q}(z,z_0)\right|, \ \left\|h_{Qn,S}\right\|, \ \left\|h_{Qn,T}\right\|$

these functions depend on
$$\frac{1}{\lambda_{Q_n} - \lambda_{Q_i}}, \frac{1}{\lambda_{Q_n} - \lambda_{S_j}}, \frac{1}{\lambda_{Q_n} - \lambda_{T_k}}$$
 i.e. on quadratic differences $f_{Q_n}^2 - f_{Q_i}^2, f_{Q_n}^2 - f_{S_j}^2, f_{Q_n}^2 - f_{T_k}^2$, and are infinite when an eigenmode coincides with Q_n .

IPHI Stability

legend: unsegmented / segmented, specification / segmented, realized

Eigenfrequencies and quadratic frequency separations (QFS) in MHz.

IPHI Impulse Error Functions

LINAC4 Stability

Rods (mm)	53.0 / 55.7	53.0	53.0 / 53.0 after slug tuning	
	specification	prior to		
	Comsol + TLM	measured	TLM (measured s)	measured
Q 0 "Q _n " Q 1	345.32 [0.00] 348.82 [+49.3]	345.50 [0.0] 348.69 [+47.0]	345.33 [0.0] 348.84 [+49.3]	352.13 [0.0] 355.31 [+47.5]
D 1 Q 0 "Q _n " D 2	338.45 [-68.5] 345.32 [0.0] 348.42 [+46.4]	338.50 [-69.2] 345.50 [0.0] 347.88 [+40.6]	338.06 [-70.5] 345.33 [0.0] 347.96 [+42.7]	344.63 [-72.3] 352.13 [0.0] 353.50 [+31.2]

ESS Stability Design

 $\|\|h_{Qn,S/T}\|$ vs. end boundary condition parameter $s_{S/T}$ and RFQ length ℓ

optimal RFQ length
$$\ell^* = \sqrt{\kappa^2 + \kappa + \frac{1}{2}}\sqrt{(1+r)/r} \frac{\pi v}{\omega_{Q_0}}$$
 $s_{S/T} = 0, \kappa \in \mathbb{N}$

usual values w/o dipole rods

CW linacs

Sensitivity to Perturbations under Operation

: deformations due to RF heating / water cooling combination

low duty cycle linacs : thermal expansions due to water temperature variations

- \rightarrow spectral contents of perturbation is important
- \rightarrow in general alternating water flow direction from one module to the next is better

apply perturbation – capacitance basis function with adequate spectral index – peak value of relative perturbation = 0.001 arb.

calculate peak value of resulting voltage perturbation

		IPHI	LINAC4	SPIRAL2	ESS
num	ber of modules	6	3	5	5
sup	$\Delta V_{Qn,Q}$ / $V_{Qn,Q}$	$5.34\ 10^{-3}$	5.53 10 ⁻³	3.36 10-4	$4.48\ 10^{-3}$
sup	$\Delta V_{Qn,S/T}$ / $V_{Qn,Q}$	5.22 10-4	7.88 10 ⁻³	3.18 10 ⁻⁴	$5.84 \ 10^{-3}$

Measured Voltage Stability of LINAC4 (1/2)

Voltage monitoring:

pickup loops inserted in 16 slug tuners (4 quadrants in 4 cross-sections) calibration: low RF power, nominal water temperatures, reference = bead-pull values voltage reconstruction: TLM and sampling therory

Temperature variations:

water temperatures in the 3 RFQ modules are controled independently 5 temperature distributions: O 26.0 – 26.0 – 26.0 (nominal)

A 25.5 - 26.0 - 26.5B 26.5 - 26.0 - 25.5C 26.5 - 26.0 - 26.5D 25.5 - 26.0 - 25.5

3 RF powers 38 kW, 100 kW, 430 kW (PD = 250 μ s, PRI = 1.2 s)

Measured Voltage Stability of LINAC4 (2/2)

4. Voltage and Frequency Tuning

The Voltage & Frequency Tuning Loop (1/3)

Idea: apply 1st-order perturbation theory to TLM to build dual bases:

- a discrete basis of tuner command functions

(tuner position or equivalently inductance perturbation)

- a truncated basis of voltage eigenfunctions
 - \rightarrow both are calculated with given boundary conditions, which should be tuned first

The Voltage & Frequency Tuning Loop (2/3)

The Voltage & Frequency Tuning Loop (3/3)

working conditions

Voltage sampling:

- magnetic field samples (bead-pull) should reside far enough from local perturbations
- tune vacuum ports in electrically neutral position prior to braze if possible (Linac4)
- full-rank sampling
- output of filter banks free from aliasing

Inductance sampling:

- full-rank sampling (include RF ports in tuning devices set)

Tuner efficiency:

- use 3D simulation to determine individual tuner slope $\partial L/\partial h$ for TLM
- derive capacitance vs. intervane gap fcn. from simulations
- transform mechanical tolerance into capacitance error polyhedron
- use TLM + linear programming (Danzig) to determine worst tuning case

Tuning loop:

unbiased

- equivalent to fixed-point iteration of the operator $A = I G K H^{-1}$ (with all the convergence properties of fixed-point iterations!)
- converges iff A is a contraction, here satisfied iff eigenmodes are identically sorted for the ideal and the true RFQs according to eigenvalue order
- convergence is monotonic if A is diagonal, but may be non-monotonic otherwise

IPHI and LINAC4 Tuning

IPHI					
voltage peak relative errors (%):	Q	S	Т		
dummy RF ports, un-tuned	90	17.6	14.5		
adjustable slugs, RF ports, tuned	0.78	0.28	0.63		
copper slugs	3.97	1.32 2.07			
tuner positions (mm):					
specified	+1.0 / +19.0				
specified, with safety margin	-5.0 / +25.0				
tuned RFQ	-1.7 / +12.5				
LINAC4					
voltage peak relative errors (%):	Q	S	Τ		
dummy RF port, un-tuned	5.55	5.53	7.19		
adjustable slugs, RF port, tuned	0.70	1.48	3.07		
copper slugs	0.63	3.45	2.29		
tuner positions (mm):					
specified	-4.0 / +30.0				
tuned RFQ		+9.0 / +12.1			

IPHI Voltage Tuning

spectral coefficients vs. tuning step index in initial pre-tuning sequence

5. RF Power Coupling

The Structure of the 4×4 Scattering Matrix

in the case of ideal, quaternary-symmetric RFQ

A Few Essential S-matrix Properties

- 1. quarter-wave transformers my be represented by K-inverters with excellent accuracy in the complex plane (10⁻⁸ in simulations)
- 2. S-parameters of asymmetric RFQ may be represented by S-parameters of quaternary-symmetric RFQ with very small errors in the complex plane (10⁻⁴ ~ 10⁻³ in measurements, even smaller in simulations)
 → electrical asymmetries are non-observable in standard VNA measurements
- 3. Q₀, ω₀ and total coupling coefficient are correctly estimated, but partial coupling coefficients have to be corrected for voltage asymmetries (derived from bead-pull measurements)

$$\beta_{i} \rightarrow \beta_{i} \left(\frac{u_{i}^{2}}{\beta} \sum_{j=1}^{4} \frac{\beta_{j}}{u_{j}^{2}} \right)^{-1}$$

4. multiport matching: total power reflection coefficient is $\Gamma^2 = (a^*S^*Sa)/(a^*a)$: the 4-port circuit is matched when the excitation vector a is an eigen-vector a_1 corresponding to the smallest eigenvalue λ_1 of S^*S . $\rightarrow a_1$ and $\lambda_1(\omega)$ also give estimates of Q_0 , ω_0 , β and β_i 's, without reference to the matrix structure

The IPHI 4-Port Scattering Matrix

under vacuum

	ω_0	Q_0	β_1	β_2	β_3	β_4	β
matrix reconstruction	352.1421	6875	0.2679	0.2795	0.3123	0.2782	1.1379
with correction			0.2693	0.2837	0.3107	0.2741	
multiport matching	352.1422	6786	0.2797	0.2979	0.3218	0.2988	1.1982

Final Comments

- the TLM creates accurate and invertible bridges between 3D simulations, electromagnetic specifications and measurable/observable quantities
- IPHI and Linac4 are accurately tuned
- thermal stability of Linac4 is experimentally demonstrated to be in agreement with design
- the sophistication of the electromagnetic perturbation analysis deserves an improvement of the way mechanical tolerances are specified

Thank you for attention !