MOPIK —  Posters Monday 2   (15-May-17   16:00—18:00)
Paper Title Page
MOPIK003 Improvement of the Photoemission Efficiency of Magnesium Photocathodes 500
 
  • R. Xiang, A. Arnold, P.N. Lu, P. Michel, P. Murcek, J. Teichert, H. Vennekate
    HZDR, Dresden, Germany
  • P. Patra
    IUAC, New Delhi, India
 
  Funding: The work is supported by the European Community under the FP7 programme (EuCARD-2) and by the German Federal Ministry of Education and Research (BMBF) grant 05K12CR1.
To improve the quality of photocathodes is one of the critical issues in enhancing the stability and reliability of photo-injector systems. Presently the primary choice is to use metallic photocathodes for the ELBE SRF Gun-II to reduce the risk of contamination of the superconducting cavity. Magnesium has a low work function (3.6 eV) and shows high quantum efficiency (QE) up to 0.3 % after laser cleaning. The SRF Gun II with an Mg photocathode has successfully provided electron beam for ELBE users. However, the present cleaning process with a high intensi-ty laser (activation) is time consuming and generates unwanted surface roughness. This paper presents the investigation of alternative surface cleaning procedures, such as thermal treatment. The QE and topography of Mg samples after treatment are reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK004 Demonstration of an All-Optically Driven Sub-keV THz Gun 503
 
  • W.R. Huang, K.-H. Hong, F.X. Kärtner, E.A. Nanni, KR. Ravi
    MIT, Cambridge, Massachusetts, USA
  • A-L. Calendron, H. Cankaya, A. Fallahipresenter, F.X. Kärtner, X. Wu
    CFEL, Hamburg, Germany
  • D. Zhang
    DESY, Hamburg, Germany
 
  Funding: European Research Council under the European Union Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 609920
Intense ultrashort THz and optical pulses with single-cycle pulse duration became possible after the recent advances in ultrafast technologies. Using such ultrashort pulses for electron acceleration offers advantages in terms of higher thresholds for material breakdown which opens up a promising path towards increased acceleration gradients. In addition, using optically generated THz pulses enable inherently synchronized acceleration schemes, since accelerating field and particle injecting field are excited by a single seed laser. In this contribution, we present the first experimental demonstration of laser-driven THz acceleration of electrons initially at rest. It is shown that strong-field, single-cycle THz fields accelerate electrons with peak energies of up to 0.8 keV in an ultracompact THz gun with bunch charge of 40 fC. The achieved energy spreads are as low as 5.8%.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK005 Compact Electron Injectors Using Laser Driven THz Cavities 506
 
  • M. Fakhari, A. Fallahipresenter, F.X. Kärtner, N.H. Matlis, A. Yahaghi
    CFEL, Hamburg, Germany
  • R.W. Aßmann, U. Dorda, K. Galaydych, B. Marchetti, G. Vashchenko, T. Vinatier, D. Zhang, C. Zhou
    DESY, Hamburg, Germany
 
  We present ultra-small electron injectors based on cascaded cavities excited by short multi-cycle THz signals. The designed structure is a 3.5 cell normal conducting cavity operating at 300 GHz. This cavity is able to generate pC electron bunches and accelerate them up to 250 keV using less than 1 mJ THz energy. Unlike conventional RF guns, the designed cavity operates in a transient state which, in combination with the high frequency of the driving field, makes it possible to apply accelerating gradients as high as 500 MV/m. Such high accelerating gradients are promising for the generation of high brightness electron beams with transverse emittances in the nm-rad range. The designed cavity can be used as the injector for a compact accelerator of low charge bunches.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK006 Characterization of the Electron Beam from the Thz Driven Gun for AXSIS 509
 
  • G. Vashchenko, R.W. Aßmann, U. Dorda, K. Galaydych, B. Marchetti, T. Vinatier
    DESY, Hamburg, Germany
  • M. Fakhari, A. Fallahi, F.X. Kärtner, N.H. Matlis
    CFEL, Hamburg, Germany
  • W. Qiao, C. Zhou
    University of Hamburg, Hamburg, Germany
 
  Funding: The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 609920
The AXSIS (Attosecond X-ray Science: Imaging and Spectroscopy) project aims for development of a compact, fully coherent, THz-driven, attosecond X-ray source. A compact THz driven gun was developed, produced and tested as a source of the ultra-short electron bunches required for the project. To characterize the low energy, low-charge beam produced by such a gun tailored diagnostic devices were developed and commissioned at a test-stand chamber in CFEL (DESY). Results of the first experiments on the production and characterization of the electron beam are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK007 THz Driven Electron Acceleration with a Multilayer Structure 512
 
  • D. Zhang, M. Fakhari, W. Qiao, C. Zhou
    DESY, Hamburg, Germany
  • F. Ahr, A-L. Calendron, H. Cankaya, M. Fakhari, A. Fallahi, F.X. Kärtner, F. Lemery, N.H. Matlis, X. Wu
    CFEL, Hamburg, Germany
  • W.R. Huang, F.X. Kärtner
    MIT, Cambridge, Massachusetts, USA
  • C. Zhou
    University of Hamburg, Hamburg, Germany
 
  We present first results in THz-based electron acceleration using a novel multilayer structure which we dub a Butterfly LINAC. THz-based accelerators are mm-scale devices that bridge the gap between micron-scale, ultra-compact devices such as laser-plasma accelerators (LPAs) and dielectric laser accelerators (DLAs) and meter-scale conventional accelerators. These intermediate-scale devices are promising because they combine many of the benefits of LPAs and DLAs, such as intrinsic synchronization and high acceleration gradients with the benefits of conventional accelerators such as high charge capacity, tunability as well as the robustness, stability and simple fabrication of static, macroscopic acceleration structures. The Butterfly LINAC allows optimization of electron acceleration using transversely-coupled single-cycle THz pulses by phase-matching electrons with the driving field. Proof-of-concept experiments will be described demonstrating 10 keV energy gain of a 55 keV source, in good agreement with simulation. Scalability of this device to the MeV level and applicability towards free electron lasers and ultrafast electron diffractometers will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK008 Numerical Studies on a Modified Cathode Tip for the ELBE Superconducting RF Gun 515
 
  • E.T. Tulu, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • A. Arnold
    HZDR, Dresden, Germany
 
  Future light sources such as synchrotron radiation sources driven by an Energy Recovery Linac (ERL), Free Electron Laser (FEL) or THz radiation sources have in common that they require injectors, which provide high-brilliance, high-current electron beams in almost continuous operation. Thus, the development of appropriate highly brilliant electron sources is a central factor. A promising approach for this key component is provided by superconducting radiofrequency photoinjectors (SRF guns) [*]. Since 2007, the free-electron laser FELBE at HZDR successfully operates such a SRF gun under real conditions and equipped with all components [**]. Nevertheless, there are limitations caused by multipacting which should be overcome in order to further improve the gun [***]. One aspect in order to reach this aim lies in studying various modifications of the cathode tip [****]. This contribution will present the effectiveness of isosceles triangular grooves with respect to MP.
* Arnold, et al., NIM A, 593, 57, (2008).
** J. Teichert, et al., 2008 NSS/MIC, Dresden, Germany.
*** J. Teichert, et al., J. Phys.: Conf. Ser. 298(2011), 012008.
**** E. T. Tulu, et al., IPAC2014, p652, Dresden, Germany.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK009 Characterization of Cold Model Cavity for Cryocooled C-Band 2.6-Cell Photocathode RF Gun at 20 K 518
 
  • T. Tanaka, K. Hayakawa, Y. Hayakawa, K. Nakao, K. Nogami, T. Sakaipresenter, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, D. Satoh, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
 
  Funding: This work was partly supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cryocooled C-band 2.6-cell photocathode RF electron gun has been studied at Nihon University in cooperation with KEK. The cold model cavity with an input coupler was completed in spring 2016. The RF characteristics measured at room temperature were in agreement with the prediction by the CST Studio simulation. The RF characteristics at 20 K have been measured using a rather simple cavity-cooling vacuum system that was built by using existing components for tentative experiments. A thin-wall stainless-steel R48 waveguide with copper-plated inner walls has been used for the RF power transmission from the room-temperature input port to the 20-K cooled coupler waveguide. The unloaded Q-value of 73000 has been obtained by the reflection coefficient measurement at 20 K, which is in agreement with the result of the CST Studio simulation using the cavity surface resistance predicted by the theory of the anomalous skin effect.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK011 Electron Beam Generation From InGaN/GaN Superlattice Photocathode 522
 
  • N. Yamamoto
    KEK, Ibaraki, Japan
  • M. Hosaka, A. Mano, T. Miyauchi, Y. Takashima
    Nagoya University, Nagoya, Japan
  • M. Katoh
    UVSOR, Okazaki, Japan
 
  GaAs-type photocathode (PC) has been used as electron spin polarization (ESP) sources for various applications. Recently, by using a strain-compensated technique for GaAs/GaAsP, the super lattice (SL) thickness of up to 720 nm could be manufactured and the quantum efficiency (QE) improvements with the thickness increases was observed. In the experiments, the ESP degradation was also observed for the thicker thickness samples than 194nm and we considered that electron spin relaxation during diffusion process in the PC caused the degradation. Therefore, we propose developing fcc-GaN based PCs instead of GaAs because a factor of ten longer spin relaxation time compared with GaAs/GaAsP SL was reported. However an fcc-GaN sample with adequate dimensions for PC applications is not available at present due to manufacturing difficulties. Then at the start of GaN-type PC development, an hcp-GaN sample has been studied. In the study, NEA-activation was made for an InGaN/GaN SL sample and QE, surface lifetime and ESP were measured. The QE and ESP values were 1.3% and 2.1% at the pump laser wavelength of 405nm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK013 Design and Simulation of a C-Band Photocathode RF Gun With a Coaxial Coupler for UEM 525
 
  • T. Chen, Y.J. Pei, Y. Songpresenter
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A ultrafast electron microscope (UEM) has been become much more important research instrument and has been widely used in many fields. As a part of the UEM, a photocathode RF gun working at C-band frequency of 5712MHz is being developed, which provides electron beam with high qualities for UEM. This paper presents the physics and structure design, including optimization of cavity shape parameter for improving shunt impedance and Q factor. We adopt a novel coaxial coupler, which could decrease the multipole field and decrease the focusing coil size, build better accelerating field in the RF gun. In this paper, we discussed the simulation process and results of the RF gun, especially the design of the coaxial input coupler was described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK015 Improvement of Electron Intensity Reduction System at SLRI Beam Test Facility 528
 
  • K. Kittimanapun, N. Chanlek, P. Klysubunpresenter, S. Krainara, S. Supajeerapan
    SLRI, Nakhon Ratchasima, Thailand
 
  Funding: This work is partly supported by the National Science and Technology Development Agency (NSTDA) under contract FDA-C0-2558-855-TH.
Synchrotron Light Research Institute (SLRI) has been commissioning an additional experimental station, a Beam Test Facility (BTF), to the SLRI accelerator complex. SLRI BTF was constructed to provide electron test beams with energy ranging from 40 MeV up to 1.2 GeV and with tunable electron intensity from a few to millions of electrons per burst. In order to obtain low intensity of test beams, an approach using a metal target together with an energy selector has been employed. A combination of a target chamber installed at the high energy beam transport line and the existing 4-degree bending magnet that is used as an energy selector first produced low intensity test beams. However, the test beam profile was not well determined due to the insufficient bending angle of the energy selector and high primary beam energy. Another approach mounting a target chamber at the low energy beam transport line and using the synchrotron booster as an energy selector was implemented to avoid such problems. Once in operation, the facility will have the potential to service calibration and testing of high energy detectors as well as beam diagnostic instrumentations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK016 Sub-Picosecond Beam Production for External Injection Into Plasma Experiments 531
 
  • O. Mete Apsimon, R. Apsimon, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work has been funded by STFC.
Applications of plasmas in accelerators benefit from short probe bunches comparable to plasma wavelength due to currently achievable plasma wake profiles. In plasma acceleration case, high capture efficiency within a narrow energy spectrum can be achieved when a sub-picosecond to femtosecond witness bunch injected behind the driver pulse at the high electric field region. A start-to-end simulation study was performed for parametric optimisation of an rf photoinjector to provide a short witness bunch for plasma applications in accelerators. An rf photoinjector is a laser-driven, high brightness and robust electron source that can provide stability and flexibility provided by today's advanced laser and rf technologies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK017 Simultaneous Generation of Drive and Witness Beam for Collinear Wakefield Acceleration 535
 
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • M.E. Condepresenter, D.S. Doran, W. Gai, J.G. Power
    ANL, Argonne, Illinois, USA
 
  Funding: This work is supported by Department of Energy, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357.
Generating the drive and witness bunch for collinear wakefield acceleration (CWFA) requires precise control of the longitudinal bunch shape for each bunch as well as the controlling their separation. The emittance exchange (EEX) beamline and a transverse mask can be used to achieve all of these requirements. First, this EEX-based method can independently control the longitudinal bunch shape of each bunches so that the drive bunch is shaped to generate a high transformer ratio while witness bunch is shaped to suppress its energy spread. Second, the timing jitter between the drive and witness bunch poses a serious limitation to the CWFA scheme but the EEX-based method eliminates this since both bunches are generated at the same time and share the exactly same beamline so there are no relative errors. In this paper, we confirm the feasibility of this EEX-based method for simultaneous generation with simulation for CWFA in a dielectric structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK018 Micro-Scale Electron Beam Generation Using Pyroelectric Crystals 538
 
  • R.B. Yoder, Z. Kabilova
    Goucher College, Baltimore, Maryland, USA
 
  Novel laser-powered acceleration structures currently under development, which have dimensions comparable to optical wavelengths and can be constructed on a silicon wafer, require injection of a sub-micron-scale electron bunch to achieve high-quality, monoenergetic output beams. A potential injection mechanism for such micro-scale beams relies on field emission from a nanotip array, followed by acceleration to near-relativistic energies. We demonstrate field emission of electrons from a lithium niobate crystal during heating and cooling, and describe the production of electrons within a hollow channel along the axis of a lithium niobate crystal. Measurements of emitted beam properties are compared with direct measurements of crystal fields under comparable conditions and modeled mathematically.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK019 Upgrade Options Towards Higher Fields and Beam Energies for Continuous-Wave Room-Temperature VHF RF Guns 542
 
  • F. Sannibale, J.M. Byrd, D. Filippetto, M.J. Johnson, D. Li, T.H. Luo, C.E. Mitchell, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
Science demand for MHz-class repetition rate electron beam applications such as free electron lasers (FELs), inverse Compton scattering sources, and ultrafast electron diffraction and microscopy (UED/UEM), pushed the development of new gun schemes that could generate high brightness beams at such high rates. At the Lawrence Berkeley Lab (LBNL), we proposed a new concept room-temperature RF gun resonating in the VHF frequency range (30-300 MHz) capable of operating in continuous wave mode at the fields required for high-brightness performance. A first VHF-Gun was constructed and tested in the APEX facility at LBNL, which successfully demonstrated all design parameters and the generation of high brightness electron beams. A second version of the APEX VHF-Gun is being built at LBNL for the LCLS-II, the new SLAC X-ray FEL. Recent studies showed that a proposed LCLS-II upgrade and UED/UEM applications would greatly benefit from an increased gun brightness obtained by raising the electric field at the cathode and the beam energy at the gun exit. In this paper, we present and discuss possible upgrade options that would allow extension of the VHF-Gun performance towards these new goals.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK021 Generation of Transversely Segmented Beam Using a Nano-Patterned Photocathode 545
 
  • A. Lueangaramwong, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by US Department of Energy (DOE) contract DE-SC0009656 with Radiabeam Technologies and by NSF grant PHY-1535401 with Northern Illinois University.
Plasmonic photocathodes – nano-patterned photocathodes with periodicity comparable to the excitation laser – have demonstrated enhanced quantum efficiency. In the present paper we present numerical simulations of the beam dynamics associated to the emission process from this type of cathodes and to the subsequent acceleration to relativistic energies by combining WARP and IMPACT-T programs. We especially consider the possibility to transversely image the cathode surface at high energy and enable the generation of transversely segment beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK022 Experimental Investigation of Field-Emission From Silicon Nano-Cone Cathodes 548
SUSPSIK041   use link to see paper's listing under its alternate paper code  
 
  • A. Lueangaramwong, C. Buzzard, V. Korampally, O. Mohsen, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S. Chattopadhyay
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • R. Divan
    Argonne National Laboratory, Argonne, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is supported by the NSF grant PHY-1535401 with Northern Illinois University
Field emission cathode are capable of forming electron beam with extreme brightness via strong-field excitation from applied electrostatic, or electromagnetic (radiofrequency and laser) fields. Our group, in collaboration with the Argonne Center for Nanoscale Material, has recently developed nanocone cathode. The present paper reports on the experimental characterization of these cathodes both configured as a single-cone emitter or as large arrays of tightly-packed emitter. The tests carried in a diode setup are capable of measuring IV characteristic curves and beam distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK023 Cornell Laboratory for High Intensity, Ultra-Bright and Polarized Electron Beams 551
 
  • L. Cultrera, A.C. Bartnik, I.V. Bazarov, C.M. Gulliford, P. Gupta, H. Leepresenter, S.A. McBride, T.P. Moore
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work has been funded by the National Science Foundation (Grant No. PHY-1416318) and Department of Energy (Grants No. DE-SC0014338, No. DE-SC0011643 and No. DE-SC0016203).
We report on the current activities pursued at Cornell University for the production of electron beams tailored to a wide range of applications. We have developed the expertise to grow many different type of high quantum efficiency photocathode belonging to the alkali antimonide family. Those materials are ideal candidates to produce high intensity beam with average currents in the mA range. When operated near threshold at cryogenic temperature in transmission mode they can also generate the electron beams needed to perform ultrafast electron diffraction of bio molecules. We have recently expanded our facility with a Mott polarimeter to include the capability to measure polarization of the electron beam. The photocathode lab is being complemented by a dedicated photo-gun laboratory to test the photocathode properties in a real environment and to perform measurement of the beam properties under new and yet unexplored operating conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK026 Commissioning and Operation of an Ultrafast Electron Diffraction Facility as Part of the ATF-II Upgrade at Brookhaven National Laboratory 554
 
  • M.G. Fedurin, M. Babzien, C. Folz, M. Fulkerson, K. Kusche, J.J. Li, R. Malone, M.A. Palmer, T.V. Shaftan, J. Skaritka, L. Snydstrup, C. Swinson, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US DOE under contract DE-SC0012704.
The Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) is presently carrying out an upgrade, ATF-II, which will provide significantly expanded experimental space and capabilities for its users. One of the new capabilities being integrated into the ATF-II program is an Ultrafast Electron Diffraction (UED) beam line, which was originally deployed in the BNL Source Development Laboratory. Inclusion of the UED in the ATF-II research portfolio will enable ongoing development and extension of the UED capabilities for use in materials research. We describe the design, operation and future plans for the UED beam line at the ATF-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK028 Simulation Study of Halo Collimation in the TRIUMF Ariel Proton Beam Line 557
 
  • F.W. Jones, R.A. Baartman, I.V. Bylinskiipresenter, Y.-N. Rao
    TRIUMF, Vancouver, Canada
 
  Funding: Funded under a contribution agreement with NRC (National Research Council of Canada). Capital funding from CFI (Canada Foundation for Innovation).
The TRIUMF 500 MeV H cyclotron uses stripping foil extraction to drive several proton beam lines serving different experimental programs. As part of TRIUMF's Ariel facility now under construction, a new proton beam line 4-North will be installed to transport up to 100 microamps of 480 MeV protons to an ISOL target station for rare isotope beam production. This beam line has been designed for low-loss (< 1nA/m) operation and provides space for a collimator to remove the beam halo produced by large-angle scattering in the cyclotron extraction foil. We have studied proton loss patterns and collimation efficiency using simulation codes: the older REVMOC program and a fully 3D simulation based on Geant4, with all particle interactions in matter included. Scattering in the foil is treated by a separate iterated single-scatter model. Using these tools we arrive at a prototype design for an effective collimator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK029 Energy Deposition and Activation Studies of the ESSnuSB Horn Station 561
 
  • E. Bouquerel, E. Baussan, M. Dracos
    IPHC, Strasbourg Cedex 2, France
  • N. Vassilopoulos
    IHEP, Beijing, People's Republic of China
 
  Funding: This project is now supported by the COST Action CA15139 Combining forces for a novel European facility for neutrino-antineutrino symmetry-violation discovery (EuroNuNet).
The ESS'SB project foresees the production of a very intense neutrino beam to enable the discovery of leptonic CP violation. In addition to the neutrinos, a copious number of muons that could be used by a future Neutrino Factory and a muon collider will also be produced at the same time. This facility will use the world's most intense pulsed spallation neutron source, the European Spallation Source (ESS) in Lund. Its LINAC is expected to be operational by 2023, producing 2 GeV protons with a power of 5 MW. The primary proton beam line completing the linear accelerator will consist of one or several accumulator rings and a proton beam switchyard. The secondary beam line producing neutrinos and muons will consist of a four-horn target station, a decay tunnel and a beam dump. To detect the produced neutrinos a far megaton scale Water Cherenkov detector will be placed at a baseline of about 500 km in one of the existing active mines in Sweden. The estimation of the energy deposited and the activation within this secondary beam line are discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK030 Design of a Beamline From a TR24 Cyclotron for Biological Tissues Irradiation 564
 
  • E. Bouquerel, T. Adam, G. Heitz, C. Maazouzi, C. Matthieu, M. Pellicioli, M. Rousseau, C. Ruescas, J. Schuler, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  Funding: The PRECy project is supported by the Contrat de Projet Etat-Région (CPER) Alsace Champagne-Ardenne Lorraine.
The PRECy project foresees the use of a 16-25 MeV energy proton beam produced by the recently installed TR24 cyclotron, CYRCé, at the Institut Pluridisciplinaire Hubert Curien (IPHC) of Strasbourg for biological tissues irradiation. One of the exit ports of the cyclotron will be used for this application along with a combination magnet. The platform will consist of up to 3 or 5 experimental stations linked to beamlines in a dedicated area next to the cyclotron vault. One of the beamlines will receive proton beams of a few cm diameter at intensities up to 100 nA. The status of the design of this first beam line is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK031 COSY Extraction Line Characterization and Modeling 567
 
  • B. Lorentz, M. Bai, Y. Dutheilpresenter, R. Tölle, C. Weidemann
    FZJ, Jülich, Germany
 
  COSY is a versatile racetrack-type synchrotron accelerating protons and deuterons in a range of rigidity between 1 T m and 11 T m. Circulating beam can be slowly extracted on a third order resonance and channeled towards different users. New users of the COSY beam have presented new challenges with specific requests, most notably in term of beam shape. This in turn drove a strong interest to develop and improve characterization and modeling methods in the COSY extraction beam line. In this contribution we will present the different beam characterization methods used and their limitations. We will then discuss the modeling of the line and the importance of an accurate and reliable model of the extraction line. Some of the latest beam measurements are presented and compared to modeled results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK032 Commissioning of the AISHa Ion Source at INFN-LNS 570
 
  • L. Celona, G. Castro, F. Chines, G. Costa, S. Gammino, O. Leonardi, S. Marletta, D. Mascali, A. Maugeri, L. Neri, F. Noto, S. Passarello, G. Pastore, A. Seminara, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
  • S. Di Martino, P. Nicotra
    Si.A.Tel SRL, Catania, Italy
 
  At INFN-LNS the commissioning of the AISHa superconducting ECRIS started in November 2016. Highly charged ion beams with low ripple, high stability and high reproducibility are the most important features for the ongoing commissioning. In this work, we will show the preliminary results of a parametric study on the extracted current/beam in order to minimize the emittance and increase the brightness taking advantage by its hybrid magnetic system and by a fine frequency tuning system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK033 The Development of a New Low Field Septum Magnet System for Fast Extraction in Main Ring of J-PARC 573
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • K.J. Kuanjun
    HUST, Wuhan, People's Republic of China
 
  The J-PARC Main Ring (MR) is being upgraded to improve its beam power to the design goal of 750 kW. One important way is to reduce the repetition period from 2.48 s to 1.3 s so that the beam power can be nearly doubled. We need to improve the septum magnets for fast extraction. We are improving the magnets and their power supplies. The present magnets which is conventional type have problem in durability of septum coil by its vibration, and large leakage field. The new magnets are eddy current type. The eddy current type does not have septum coil, but has a thin plate. We expect that there is no problem in durability, we can construct the thin septum plate, the leakage field can be reduced. The output of the present power supply are pattern current which of flat top is 10 ms width, the new one is short pulse which of one is 10 us. The short pulse consists of 1st and 3rd higher harmonic. We can expect that the flatness and reproducibility of flat top current can be improved. The calorific power can be also reduced. This paper will report the field measurement results with the eddy septum magnet systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK034 The New High Field Injection Septum Magnet System for Main Ring of J-PARC 576
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  We are improving the Main Ring (MR) for beam power of 750 kw which is the first goal of J-PARC. The repetition period of the fast extraction must be short to 1.3 second from the current period of 2.48 second for the improvement of the beam power. We exchanged a injection septum magnet which are located at the injection line from RCS to MR and its power supply in summer of 2016. It was necessary to exchange, because the previous injection septum system can not be operated with 1.3 second repetition. The development of the new injection septum magnet and its power supply in which the maximum repetition are 1Hz and the order od the leakage field are 10-4 of the gap field were completed in 2016. In this presentation, we will report the final results of its performance, e.g. the magnetic fields and stability of the output current and field, and the beam performance after installation in MR with the new injection magnet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK035 New Injection Scheme of J-PARC Rapid Cycling Synchrotron 579
 
  • K. Yamamoto, H. Harada, H. Hotchi, J. Kamiyapresenter, P.K. Saha, T. Takayanagi, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • N. Miki, O. Takeda
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
 
  The 3-GeV Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) aims to deliver 1-MW proton beam to the neutron target and Main Ring synchrotron (MR). Present beam power of RCS is up to 500-kW and the higher radiation doses were concentrated in the injection area. These activations were caused by the interaction between the foil and the beam. To reduce the worker dose near the injection point, we have studied new design of the injection scheme to secure enough space for radiation shielding and bellows. In the new system, two of four injection pulse bump magnets are replaced and we are able to ensure the additional 500 mm space at the injection foil .  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK036 Study of the Magnetizing Relationship of the Kickers for CSNS 582
 
  • M.Y. Huang, Y.W. Anpresenter, S. Fu, N. Huang, W. Kang, Y.Q. Liu, L. Shen, L. Wang, S. Wang, Y.W. Wu, S.Y. Xu, J. Zhai, J. Zhang
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11205185)
The extraction system of CSNS mainly consists of two kinds of magnets: eight kickers and one lambertson magnet. In this paper, firstly, the magnetic test results of the eight kickers were introduced and then the filed uniformity and magnetizing relationship of the kickers were given. Secondly, during the beam commissioning in the future, in order to obtain more accurate magnetizing relationship, a new method to measure the magnetizing coefficients of the kickers by the real extraction beam was given and the data analysis would also be processed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK038 Initial Operation of the Low-Flux Proton Beamline at the KOMAC 100 MeV Linac 585
 
  • S.P. Yun, C.R. Kim, D.I. Kim, H.S. Kim, H.-J. Kwon, S.G. Lee, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT and Future Planning of the Korean Government
Korea multi-purpose Accelerator Complex (KOMAC) has been operating 20 MeV and 100 MeV proton beamlines to provide proton beams to users since 2013. The new beamline and target irradiation facility, which is proposed applicable to development of the detector and simulation of the space radiation, have being constructed for low-flux proton utilization at this year. The new beam lines have the 100 MeV of maximum beam energy and 10 nA of maximum beam current. The new beam line was designed to operate with maximum duty 8%, the flux density of proton beam can be reduced to the 1/10,000 by the graphite collimator. The extracted proton beam energy can be adjustable by the double wedge type energy degrader and also, the beam energy can be selected by dipole magnet. In addition to the two sets of the octupole magnets were prepared for uniform beam irradiation with the ± 5% uniformity. In this paper, the initial operation results of the constructed new beam line is be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK039 Transport Channel of Secondary Ion Beam of Experimental Setup for Selective Laser Ionization With Gas Cell Gals 589
 
  • N.Yu. Kazarinov, V. Bashevoy, G.G. Gulbekyan, I.A. Ivanenko, V.I. Kazacha, N.F. Osipov
    JINR, Dubna, Moscow Region, Russia
  • S.G. Zemlyanoy
    JINR/FLNR, Moscow region, Russia
 
  GALS is the experimental setup intended for production and research of isobaric- and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U400M to the Pb target for the production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the channel for the transportation of the ions from the focal plane of the magnet to a particle detector. The results of the simulation of particle dynamics and the basic parameters of the elements of the beam lines are presented in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK040 Value Engineering of an Accelerator Design During Construction 592
 
  • E. Bargalló, M. Eshraqi, M. Lindroos, S. Molloy, D.C. Plostinar, A. Sunesson
    ESS, Lund, Sweden
  • F. Gerigk
    CERN, Geneva, Switzerland
 
  Value engineering is an important part of the process of designing and realising large-scale installations such as high power accelerators. This typically occurs during the later part of the design stage of the system, however such exercises may also be requested by funding bodies at later stages in order to manage project contingency. Naturally, the later this is done, the more challenging it becomes. In this paper we report on a recently concluded Value Engineering effort at the European Spallation Source. The challenges presented by the initiation of such an exercise during the construction phase are discussed. In addition, we present and discuss the various options that we examined, and indicate the philosophy and figures of merit used to narrow down these options. The final conclusion will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK041 Commissioning of the Stripping Foil Units for the Upgrade of the PSB H Injection System 595
 
  • C. Bracco, S. Burger, V. Fortepresenter, B. Goddard, G. Guidoboni, L.O. Jorat, B. Mikulec, A. Navarro Fernandez, R. Noulibos, F. Roncarolo, P. Van Trappen, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The PSB will be extensively upgraded during the next long shutdown of the CERN accelerator complex, to double the brightness of the stored beams. The existing multi-turn injection will be replaced by a charge exchange system designed for the 160 MeV hydrogen ions provided by Linac4. Part of the injection equipment has been temporarily installed along the Linac4-to-PSB transfer line and tested with beam. This allowed to gain experience with the system, test the related diagnostics and benchmark calculations with measurements. An additional permanent stripping foil test stand is also installed right after the Linac and will be used to characterise new foils for possible future applications. The main outcomes, issues and applied or planned mitigations are presented for both installations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK042 Beam-Based Kicker Waveform Measurements Using Long Bunches 599
 
  • V. Forte, W. Bartmann, J.C.C.M. Borburgh, M.A. Fraser, L. Sermeus
    CERN, Geneva, Switzerland
 
  The increased bunch length demanded by the LHC Injectors Upgrade (LIU) project to mitigate emittance growth from space-charge on the PS injection plateau puts strong constraints on the rise-times of the recombination kickers in the transfer lines between the CERN Proton Synchrotron Booster (PSB) and the Proton Synchrotron (PS). A beam-based technique has been developed to validate the waveforms of the recombination kickers. In this paper high-resolution measurements are presented by extracting the intra-bunch deflection along bunches with lengths comparable to or longer than the rise-time of the kicker being probed. The methodology has been successfully applied to the three vertical recombination kickers named BT1. KFA10, BT4. KFA10 and BT2. KFA20, and benchmarked with direct measurements of the kicker field made using a magnetic field probe. This paper describes the beam-based technique, summarises the main characteristics of the measured waveforms, such as rise-time and flat-top ripple, and estimates their impact on beam brightness.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK043 Beam-Based Waveform Measurements of the CERN PS Injection Kicker 603
 
  • V. Forte, W. Bartmann, J.C.C.M. Borburgh, L.M.C. Feliciano, A. Ferrero Colomo, M.A. Fraser, T. Kramer, L. Sermeus
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injectors Upgrade (LIU) project, a beam-based technique has been developed for measuring the waveform the CERN Proton Synchrotron (PS) horizontal injection kicker, named KFA45. The technique avoids the need for tedious magnetic measurements, especially when a spare magnet is presently unavailable and measuring the operational magnet with a magnetic field probe is complicated by integration reasons. In this paper, the technique and results of the waveform measurements are summarised. The results already provide additional information in terms of waveform characterisation for the validation of numerical simulations and are of great interest for the future LIU performance upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK044 The Use of a Passive Scatterer for SPS Slow Extraction Beam Loss Reduction 607
 
  • B. Goddard, B. Balhan, J.C.C.M. Borburgh, M.A. Fraserpresenter, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
 
  A significant reduction in the fraction of protons lost on the SPS electrostatic septum ES during resonant slow extraction is highly desirable for present Fixed-Target beam operation, and will become mandatory for the proposed SHiP experiment, which is now being studied in the framework of CERN's Physics Beyond Colliders program. In this paper the possible use of a passive scattering device (diffuser) is investigated. The physics processes underlying the use of a diffuser are described, and the dependence on the diffuser geometry, material and location of the potential loss reduction on the electrostatic septum (ES) wires is investigated with a semi-analytical approach. Numerical simulations to quantify the expected performance gain for the optimum configuration are presented, and the results discussed in view of the feasibility of a potential realisation in the SPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK045 SPS Slow Extraction Losses and Activation: Challenges and Possibilities for Improvement 611
 
  • M.A. Fraser, B. Balhan, H. Bartosik, C. Bertone, D. Björkman, J.C.C.M. Borburgh, N. Conan, K. Cornelis, R. Garcia Alia, L. Gatignon, B. Goddard, Y. Kadi, V. Kain, A. Mereghetti, F. Roncarolo, P.M. Schicho, J. Spanggaard, O. Stein, L.S. Stoel, F.M. Velotti, H. Vincke
    CERN, Geneva, Switzerland
 
  In 2015 the highest integrated number of protons in the history of the North Area was slow extracted from the CERN Super Proton Synchrotron (SPS) for the Fixed Target physics programme. At well over 1.1019 protons on target (POT), this represented the highest annual figure at SPS for almost two decades, since the West Area Neutrino Facility was operational some 20 years ago. The high intensity POT requests have continued into 2016-17 and look set to do so for the foreseeable future, especially in view of the proposed SPS Beam Dump Facility and experiments, e.g. SHiP*, which are requesting up to 4·1019 POT per year. Without significant improvements, the attainable annual POT will be limited to well below the total the SPS machine could deliver, due to activation of accelerator equipment and associated personnel dose limitations. In this contribution, the issues arising from the recent high activation levels are discussed along with the steps taken to understand, manage and mitigate these issues. The research avenues being actively pursued to improve the slow extraction related beam loss for present operation and future requests are outlined, and their relative merits discussed.
*A. Golutvin et al., ‘‘A Facility to Search for Hidden Particles (SHiP) at the CERN SPS'', CERN, Geneva, Switzerland, Rep. CERN-SPSC-2015-016 (SPSC-P-350), Apr. 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK046 Phase Space Folding Studies for Beam Loss Reduction During Resonant Slow Extraction at the CERN SPS 615
 
  • L.S. Stoel, M. Benedikt, K. Cornelis, M.A. Fraserpresenter, B. Goddard, V. Kain, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The requested number of protons slow-extracted from the CERN Super Proton Synchrotron (SPS) for Fixed Target (FT) physics is expected to continue increasing in the coming years, especially if the proposed SPS Beam Dump Facility is realised. Limits on the extracted intensity are already being considered to mitigate the dose to personnel during interventions required to maintain the extraction equipment, especially the electrostatic extraction septum. In addition to other on-going studies and technical developments, a reduction of the beam loss per extracted proton will play a crucial role in the future performance reach of the FT experimental programme at the SPS. In this paper a concept is investigated to reduce the fraction of beam impacting the extraction septum by folding the arm of the phase space separatrix. Beam dynamics simulations for the concept are presented and compared to the phase space acceptance of the extraction channel. The performance potential of the concept at SPS is evaluated and discussed alongside the necessary changes to the non-linear optical elements in the machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK047 Commissioning and Results of the Half-Sector Test Installation with 160 MeV H beam from Linac4 619
 
  • B. Mikulec, D. Aguglia, J.C. Allica Santamaria, C. Baud, C. Bracco, S. Burger, G. Guidoboni, L.O. Jorat, C. Martin, A. Navarro Fernandez, R. Noulibos, F. Roncarolo, J.L. Sanchez Alvarez, J. Tan, T. Todorcevic, P. Van Trappen, W.J.M. Weterings, C. Zamantzas
    CERN, Geneva, Switzerland
 
  During the Long Shutdown 2 (LS2) at CERN in 2019/20, the Proton Synchrotron Booster (PSB) will undergo a profound upgrade in the framework of the LHC Injector Upgrade (LIU) project involving also the connection to the new Linac4 injector. The 160 MeV Linac4 H' injection entails a complete replacement of the PSB injection section, including a stripping foil system, injection chicane, an H0/H' dump and novel beam instrumentation. The equivalent of half of this new injection chicane was temporarily installed in the Linac4 transfer line to evaluate the performance of the equipment and prepare controls, interlocks and applications for the connection. Outcomes of this so-called Half-Sector Test (HST) are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK048 Experimental Results of Crystal-Assisted Slow Extraction at the SPS 623
 
  • M.A. Fraser, S.S. Gilardoni, B. Goddard, V. Kain, D. Mirarchi, S. Montesano, S. Petrucci, S. Redaelli, R. Rossi, W. Scandale, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
  • F.M. Addesa, G. Cavoto, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • F. Murtas
    INFN/LNF, Frascati (Roma), Italy
 
  The possibility of extracting highly energetic particles from the Super Proton Synchrotron (SPS) by means of silicon bent crystals has been explored since the 1990's. The channelling effect of a bent crystal can be used to strongly deflect primary protons and eject them from the synchrotron. Many studies and experiments have been carried out to investigate crystal channelling effects. The extraction of 120 and 270 GeV proton beams has already been demonstrated in the SPS with dedicated experiments located in the ring. Presently in the SPS, the UA9 experiment is performing studies to evaluate the possibility to use bent silicon crystals to steer particle beams in high energy accelerators. Recent studies on the feasibility of extraction from the SPS have been made using the UA9 infrastructure with a longer-term view of using crystals to help mitigate slow extraction induced activation of the SPS. In this paper, the possibility to eject particles into the extraction channel in LSS2 using the bent crystals already installed in the SPS is presented. Details of the concept, simulations and measurements carried out with beam are presented, before the outlook for the future is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK049 SPS Slow Extracted Spill Quality During the 2016 Run 627
 
  • V. Kain, J. Bauche, P. Catherine, K. Cornelis, M.A. Fraser, L. Gatignon, C.M. Genton, B. Goddard, K. Kahle, M. Magrans de Abril, O. Michels, L.S. Stoel, F.M. Velottipresenter
    CERN, Geneva, Switzerland
 
  The flux of particles slow extracted with the 1/3 integer resonance from the Super Proton Synchrotron at CERN should ideally be constant over the length of the extraction plateau, for optimum use of the beam by the fixed target experiments. The extracted intensity is controlled in feed-forward correction of the horizontal tune via the main SPS quadrupoles. The Mains power supply noise at 50 Hz and harmonics is also corrected in feed-forward by small amplitude tune modulation at the respective frequencies with a dedicated additional quadrupole circuit. In 2016 the spill quality could be much improved with respect to the situation of the previous year with more performant algorithms. In this paper the improved tools are described and the characteristics of the SPS slow extracted spill in terms of macro structure and typical frequency content are shown. Other sources of perturbation were, however, also present in 2016 which frequently caused the spill quality to be much reduced. The different effects are discussed and possible or actual solutions detailed. Finally, the evolution of the spill quality during characteristic periods in the 2016 run is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK050 Reduction of Resonant Slow Extraction Losses with Shadowing of Septum Wires by a Bent Crystal 631
 
  • F.M. Velotti, M.A. Fraser, B. Goddard, V. Kain, W. Scandale, L.S. Stoel
    CERN, Geneva, Switzerland
 
  A new experiment, SHiP, is being studied at CERN to investigate the existence of three Heavy Neutral Leptons in order to give experimental proof to the proposed neutrino minimal Standard Model. High-intensity slow-extraction of protons from the SPS is a pre-requisite for SHiP. The experiment requires a resonant extraction with in a 7.2 s cycle, and about 4·1013 protons extracted at 400 GeV in a 1 s flat-top, to achieve the needed 2·1020 protons on target in five years. Although the SPS has delivered this in the past to the CNGS experiment with fast extraction, for SHiP beam losses and activation of the SPS electrostatic extraction septum (ZS) could be a serious performance limitation, since the target number of protons to resonantly extract per year is a factor of two higher than ever achieved before and a factor of four than ever reached with the third-integer slow extraction. In this paper, a novel extraction technique to significantly reduce the losses at the ZS is proposed, based on the use of a bent crystal to shadow the septum wires. Theoretical concepts are developed, the performance gain quantified and a possible layout proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK052 Generation of Highly-Charged Carbon Ions from Thin Foil Target 635
 
  • T. Kanesue, S. Ikeda, M. Okamura
    BNL, Upton, Long Island, New York, USA
  • Y. Saito
    Sokendai, Ibaraki, Japan
 
  Funding: This work was supported by the U.S. Department of Energy and National Aeronautics and Space Administration.
Generation of highly-charged heavy ions such as fully stripped C6+ of more than hundreds mA of beam current can be possible only with a laser ablation ion source (LIS). Heavy ions are produced from a solid target irradiated by a pulsed high power laser. Recent study showed that only sub-micron range of surface layer contributes for the generation of highly-charged heavy ions. In this paper, we experimentally investigated the difference of the performance of highly-charged carbon ion production from graphite targets of different thickness (25, 70, 254, and 3000 'm) to seek the possibility of a rolled target to overcome the limitation of a target lifetime.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK053 Design Study of High Repetition Rate Laser Ion Source for High Power Beam Production 638
 
  • T. Kanesue, S. Ikeda, M. Okamura
    BNL, Upton, Long Island, New York, USA
  • Y. Saito
    Sokendai, Ibaraki, Japan
 
  Funding: This work was supported by the U.S. Department of Energy and National Aeronautics and Space Administration.
We are studying a laser ion source (LIS) for a high average beam power heavy ion beam production. A LIS is the most intense source of pulsed highly-charged ions using a laser ablation scheme. By increasing the repetition rate, a LIS based heavy ion beam would approach the average beam power based on a low beam current and continuous beam regime. In addition, a high-repetition-rate LIS can be used as a heavy ion source for a medical accelerator with spot scanning technique. This paper will describe the requirements to realize the high repetition rate operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK054 Towards the Low Emittance CANDLE Storage Ring 641
 
  • A. Sargsyan, G.A. Amatuni, V. Sahakyan, V.M. Tsakanov, G.S. Zanyan
    CANDLE SRI, Yerevan, Armenia
 
  Stimulated by the recent approaches and developments in low emittance lattice design and magnet technology a continuous process of CANDLE storage ring lattice improvement has been launched aiming to keep the project competitive in the field. The main goal of the upgrade program is to bring the beam emittances down to sub-nm level, having the condition of cost and performance efficiency. This paper summarizes the results obtained in the above-mentioned direction. The main design characteristics and linear/nonlinear beam dynamics aspects of the obtained new lattices are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK055 Beam by Design: Current Pulse Shaping Through Longitudinal Dispersion Control 644
 
  • T.K. Charles, D.M. Paganin
    Monash University, Faculty of Science, Clayton, Victoria, Australia
  • M.J. Boland
    The University of Melbourne, Melbourne, Victoria, Australia
  • M.J. Boland, R.T. Dowd
    SLSA, Clayton, Australia
 
  Electron beams traversing a dispersive region, such as a bunch compressor and some transport line can form caustic lines and surfaces corresponding to regions of maximum electron density, which influence the current pulse shape. In this paper, we present a technique to manipulate the longitudinal phase space distribution to achieve an arbitrary, desired current pulse shape. We show how sextupole magnets (and in certain circumstances, octupole magnets), placed within a dispersive region can be used to generate the conditions required for a flexible technique of current pulse shaping that avoids truncation through collimation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK056 On the Ariel Pre-Separator 648
 
  • S. Saminathan, R.A. Baartman
    TRIUMF, Vancouver, Canada
 
  Funding: Funded under a contribution agreement with NRC (National Research Council Canada) and Capital funding from CFI (Canada Foundation for Innovation).
Two new independent target ion sources with dedicated pre-separators will be built in the ARIEL facility to triple the radioactive ion beam production at TRIUMF. A compact Nier-Johnson type of pre-separator has been designed to achieve a mass resolving power of 300 in order to minimize the undesired radioactive species contaminating the downstream beamlines. It consists of a 112 degree magnetic and a 90 degree toroidal electrostatic dipole with deflection in opposite direction. It also contains electrostatic quadrupole elements in between the dipoles. The electrostatic dipole compensates the energy dispersion of the magnetic dipole. This allows an achromatic mode of operation resulting in a high mass resolving power downstream to the electrostatic deflector even for beams with a high energy spread. We present the result of beam optics calculations for the ARIEL pre-separator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK057 Strategy of Beam Tuning Implementation for the SARAF MEBT and SC Linac 652
 
  • P.A.P. Nghiem, D. Uriot
    CEA/DSM/IRFU, France
  • B. Dalena, J. Dumaspresenter, N. Pichoff
    CEA/IRFU, Gif-sur-Yvette, France
 
  Beam dynamics of the MEBT and Superconducting Linac in the SARAF accelerator are being finalized. A strategy for beam tuning implementation is applied to this section, leading to specifying the complete set of error tolerances / beam measurements / correctors. A systematic and precise methodology in several steps is applied, leading to fairly distributing the error budget, from which correction schemes are studied, allowing to determine the necessary beam measurements and correctors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK058 Beam Dynamic Studies for the SARAF MEBT and SC Linac 655
 
  • J. Dumas, N. Pichoff, D. Uriot
    CEA/IRFU, Gif-sur-Yvette, France
  • P.A.P. Nghiem
    CEA/DSM/IRFU, France
 
  The SARAF MEBT and Super Conducting Linac (SCL) transport and accelerate deuterons or protons from the RFQ to the final energy. In this report, beam dynamics studies for this section are described. A rational distribution of the different roles of the MEBT leads to defining its necessary quadrupole/rebuncher composition. This allows easy beam re-tuning following changes from the RFQ or the SC Linac. After observing evidences of beam losses mainly due to phase unhooking, efforts have been dedicated to enlarge the SCL longitudinal acceptance. A combination of cavity field phases is found so that the required final beam energy is also fulfilled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK059 Linear and Nonlinear Optimizations of Combined 7BA-6BA Lattices for the Future Upgrade of SOLEIL 659
 
  • A. Loulergue, P. Brunelle, H.C. Chao, A. Nadji, L.S. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Previous MBA studies converged to a combination of 7BA and 6BA structures, in terms of the target horizontal emittance of below 300 pm-rad, where the effect of anti-bends, dipole field values, and straight section lengths were investigated. Inspired by the successful lattice designs elsewhere adopting the interleaved sextupole scheme with dispersion bumps originally developed at the ESRF, the 7BA-6BA structures adopting this scheme are studied in details in parallel to those without it. The former aims at the horizontal emittance in the 200-300 pm-rad range with on and off-momentum dynamic acceptances sufficiently large for off-axis injection and good Touschek lifetime. The latter pursues the lower bound of the reachable horizontal emittance with quadrupole and sextupole strengths in the feasible range with maximum dynamic acceptance. The option of non-standard on-axis injection such as displacing the injected beam longitudinally is envisaged for the latter solutions. In both lattices, the numerical search using MOGA-based codes is employed extensively. The studies focus on the impact of linear optics and straight section lengths on the off-momentum and nonlinear properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK060 Applying MOGA to Search Linear Lattice in Soleil Upgrade Project 662
 
  • H.C. Chao, P. Brunelle, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  In the community of synchrotron radiation facilities, multi-bend structure becomes the trend of the storage ring design toward lower emittance. For SOLEIL upgrade project, the 7BA-6BA hybrid structure is one of the current options. This paper puts the focus on the 7BA section. There are many degrees of freedom to tweak and many constraints to follow. Here, the idea is to search and build the linear lattice utilizing Multi-Objective Genetic Algorithm (MOGA), which is efficient dealing with higher dimension optimization problems. Within MOGA, subsidiary matchings are performed to ensure certain criteria when the new generation is bred. Delicate designs and manipulations of the objective functions are needed, in order to have a better convergence without being trapped in a local minimum. The results will be shown and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK062 Optics Adaptations for Bending Magnet Beam Lines at ESRF: Short Bend, 2-Pole Wiggler, 3-Pole Wiggler 666
 
  • S.M. Liuzzo, N. Carmignanipresenter, J. Chavanne, L. Farvacque, B. Nash, P. Raimondi
    ESRF, Grenoble, France
 
  The ESRF-EBS project foresees the replacement of the existing bending magnets beamlines with different radiation sources: short bend, 2-pole wiggler or 3-pole wiggler. After describing the reasons for this choices the required modifications to the storage ring lattice are described in details for each case. The study of the impact of lattice errors is also addressed, leading to the definition of beamlines' alignment tolerances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK063 Non-Linear Kickers Using Eddy Current Screens and Application to the ESRF 670
 
  • S.M. White, M. Dubrulle, L. Farvacque, P. Henrissat, G. Le Bec, E. Plouviez, P. Raimondi, C. Richard
    ESRF, Grenoble, France
 
  The ESRF storage ring injection and accumulation is performed using standard 4-kickers bump and septum magnet. Sextupoles are located within the injection bump leading to significant bump non-closure during the ramp-up and ramp-down and optics distorsion for both stored and injected beam. Introducing non-linearities in the kickers allows for compensation of the perturbation from these sextupoles. We report on the feasibility of adding eddy current screens to a standard kicker magnet design to generate a non-linear field and its recent application to mitigate the injection perturbations at the ESRF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK065 Status of the Development of a BE-Model-Based Program for Orbit Correction at the Electron Storage Ring DELTA 673
 
  • S. Koetter, B. Riemann, T. Weis
    DELTA, Dortmund, Germany
 
  A new program for orbit correction is currently being developed at the electron storage ring DELTA. Based upon the standard approach of utilizing the linear response of a closed orbit to dipole-field-strength variations, proposed features include a live-updated orbit-response-matrix model and the integration of the Closed-Orbit-Bilinear-Exponential-Analysis algorithm (COBEA) to clean measured orbit-response matrices from noise. This work focuses on the current status of development of the aforementioned program. After an assessment of the situation at DELTA, first measurements are shown along with numerical convergence studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK066 COBEA - Optical Parameters From Response Matrices without Knowledge of Magnet Strengths 676
 
  • B. Riemann, S. Khan, S. Koetter, T. Weis
    DELTA, Dortmund, Germany
 
  This paper presents some results of Closed-Orbit Bilinear-Exponential Analysis (COBEA), an algorithm designed to decompose (coupled) response matrices into betatron tunes and other optical parameters at beam position monitor and corrector positions. The only additional information strictly required by the algorithm is the ordering of monitors and correctors along the storage ring beam path. The presented method is largely lattice-independent, as no magnet strengths or dimensions are needed, and converges in a reasonable time interval due to usage of gradient-based optimization. After describing key features of the algorithm, a set of COBEA results is compared to LOCO results for the storage rings of MLS and BESSY II. The paper is concluded by a brief discussion of further applications, limits and further development of the COBEA algorithm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK067 Figure-8 Storage Ring - Ion Beam Injection into a Closed, Magnetic System 680
 
  • H. Niebuhr, A. Ates, M. Droba, O. Meusel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  To store high current low-energetic ion beams of up to 10 A, a superconducting storage ring (F8SR) based on solenoidal and toroidal magnetic guiding fields is investigated at Frankfurt University. Besides simulations, a scaled down experimental setup with normalconducting magnets was built. Investigations of beam injection into closed, magnetic guiding fields are in progress. Therefore, a new kind of injection system consisting of a solenoidal injection coil and a special vacuum vessel was constructed. It is used to inject a hydrogen beam from the side between two toroidal magnets. In parallel operation, a second hydrogen beam is transported through both magnets to represent the circulating beam. The current status of the experimental setup and first experimental results will be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK068 Beam Dynamics Design Parameters for KONUS Lattices 683
 
  • R. Tiede, H. Hähnel, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  The 'Combined Zero-Degree Structure' ('Kombinierte Null Grad Struktur - KONUS') beam dynamics concept has been successfully applied on several linacs, some of them in routine operation since decades. However, the KONUS lattice parameters optimization is often done in a results-oriented approach, depending on the designers' experience. This paper focuses on the description of the longitudinal beam motion along one KONUS lattice period. A test lattice is used for demonstrating the potential of KONUS lattices with respect to stable, periodic beam motion with emittance growth rates similar to those of conventional designs. The main objective of this ongoing work is to derive more general rules for the parametrization of KONUS lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK069 Approximate Matrices for Modeling the Focusing of the Undulator Periods and Undulator End Fields 686
 
  • V. Balandin, N. Golubeva
    DESY, Hamburg, Germany
 
  We describe procedure for constructing approximate matrices for modeling the focusing of the undulator periods and undulator end fields and discuss applicability of these matrices to the European XFEL undulators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK070 Notes on Relations between Slice and Projected Beam Parameters 689
 
  • V. Balandin, N. Golubeva
    DESY, Hamburg, Germany
 
  We consider some aspects of the relations between slice and projected beam parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK071 Dispersion and Beam Optic Parameter Measurements in the Transport Line (E-Weg) from DESY II to PETRA III 692
 
  • G.K. Sahoo, K. Balewski, H. Ehrlichmann, J. Keil, R. Wanzenberg
    DESY, Hamburg, Germany
 
  The transport line E-Weg extends from the extraction septum in DESY II to the injection septum in PETRA III, and transports electrons at a beam energy of 6.0 GeV. It consists of 3 parts. The first part is in DESY tunnel, the second part is a long drift space in a slanted tube and the third part is in PETRA III tunnel. The vertical plane difference between the tunnels is 1.28 m. The optics was derived from initial values at Transfer Point (UGP) from a previous optics. The total length of the transfer line is about 203 m. Ten screen monitors are used to estimate the profiles of the beam spot for the optics measurements, while 8 BPMs, mostly adjacent to the screens, are used to compare and control the orbits. Two scrapers are installed on either side of the long drift space to trim the beam dimensions in transverse plane. Two FCTs are used to measure the beam current and transfer efficiency. The transverse dispersion and beta functions are measured by extracting the beam from DESY at different energies and analysing the beam profiles at the screen as well as positions at BPMs. The details of such measurements are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK072 Recent Upgrades of the Bunch Arrival Time Monitors at FLASH and European XFEL 695
 
  • M. Viti, M.K. Czwalinna, H. Dinter, C. Gerth, K.P. Przygoda, R. Rybaniec, H. Schlarb
    DESY, Hamburg, Germany
 
  In modern free electron laser facilities like FLASH and European XFEL a high resolution intra train bunch arrival time measurement is mandatory, providing a crucial information for the beam based feedback system. At FLASH and European XFEL a reliable arrival time detection with a resolution better than 0.1% is required for a broad range of bunch charges, from 1 nC down to 20 pC. The system developed is based on electro-optical sampling where an ultra-short pulsed laser is employed. Several bunch arrival time monitors (BAM) were developed and are since 2012 in operation at the FLASH facility. A major upgrade involved the development of new hardware and software based on the MTCA standard. Special operation mode at both facilities includes the possibility to subdivide the bunch train in up to three segments, each with different bunch energy and charge, causing variation of the time jitter within the bunch train itself. A further upgrade includes the measurement of the arrival time and application of delay correction for each of the three segments. In this poster, we describe the development, installation and commissioning of the hardware, firmware and software of the new system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK073 Calibration of Linear Optics of COSY Based on ORM Data 699
 
  • C. Weidemann, M. Bai, Y. Dutheil, F. Hinder, B. Lorentz
    FZJ, Jülich, Germany
 
  The COoler SYnchrotron in Jülich is a well suited accelerator for a precursor experiment on the direct measurement of the Electric Dipole Moment (EDM) of the deuteron (see* and references within). It provides polarized and unpolarized proton and deuteron beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c**, allows for phase space cooling and is highly flexible with respect to ion-optical settings***. Unfortunately, a model independent linear optics measurement is not possible and so far the existing MAD-X model of COSY does not provide an agreement with the actual machine parameters that is required by future experiments, such as the EDM experiment. Significant deviations with respect to the working point and linear optics have been reported****. As shown in*****, a MAD-X based LOCO (Linear Optics from Closed Orbits) algorithm in a C++ program was successfully developed and carefully benchmarked. This contribution presents the application of the new program on measured ORM data and its capabilities in calibrating linear optics as well as reconstructing machine imperfections such as gradient errors of quadrupole magnets and calibration factors of BPMs and steerers.
* D. Eversmann et al., PRL 115, no. 9, 094801 (2015).
** R. Maier, NIM A 390, 1 (1997).
*** C. Weidemann et al., PRSTAB 18, 020101 (2015).
**** D. Ji et al., IPAC16, doi:10.18429/JACoW-IPAC2016-TUPMR026.
***** C. Weidemann et al., IPAC16, doi:10.18429/JACoW-IPAC2016-THPMB009.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK075 Design, Simulation and Compare of Flat Cathode Electron Guns with Spherical Cathode Electron Guns for Industrial Accelerators 702
 
  • M. Nazari, F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • S. Ahmadiannaminpresenter
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Haghtalab
    IPM, Tehran, Iran
 
  In this article, electron guns with flat and spherical cathodes have been designed and simulated for industrial accelerators. After checking the different features of each cathode geometry, there has been discussed about optimum values of this features. The most important features in selecting the best cathode geometry for industrial accelerators are beam waist radius, beam waist position, current density and price. Finally after comparing the different features of both geometries with each other, suitable geometry was selected.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK076 Optimization of Dynamic Aperture with Constraints on Linear Chromaticity 705
 
  • H. Sugimoto, H. Koisopresenter, A. Morita, Y. Ohnishi, K. Oide, D. Zhou
    KEK, Ibaraki, Japan
 
  This paper presents numerical technique to optimize dynamic aperture with constraints on linear chromaticity of optical functions. By solving a set of linear equations at each iteration step of dynamic aperture optimization, the linear chromaticity is kept unchanged. The variable range of tuning knobs is taken into account in order to make the technique applicable to practical use. Numerical simulations assuming the SuperKEKB design lattice are performed, and it is demonstrated that the dynamic aperture obtained with the presented scheme is almost comparable to that without constraints. Luminosity simulations assuming weak-strong model show that the constraints lead to improvements of luminosity performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK077 Impact of Dynamical Stray Fields on CLIC 708
 
  • E. Marín, D. Schulte
    CERN, Geneva, Switzerland
  • B. Heilig
    MFGI, Budapest, Hungary
  • J. Pfingstnerpresenter
    University of Oslo, Oslo, Norway
 
  In this paper we estimate the tolerances of stray-fields variations on the Compact Linear Collider (CLIC), discuss possible sources and propose several solutions. The Beam Delivery System (BDS) is the most sensitive system of CLIC to unwanted magnetic field variations, already variations of 1 nT would reduce the luminosity by 10% at wavelengths comparable to the BDS without considering any correction mechanism. Two sources of magnetic field variations are considered, natural and man-made. Precise magnetic field measurements at Earth's surface under a typical geomagnetic storm are presented. Additionally, stray field measurements have been conducted at CERN, to inspect B-field variations due to technical equipment in an accelerator environment. Different solutions are proposed to minimise the impact of stray fields on the CLIC performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK078 Narrow-Band, Wide-Range Tuneable THz Source Based on the Slotted-Foil Technique 712
 
  • J. Pfingstner, E. Adli, H. Holmestad
    University of Oslo, Oslo, Norway
  • S. Bettoni, S. Reiche
    PSI, Villigen PSI, Switzerland
 
  The FEL user community has expressed a strong interest in a THz source for the excitation of their samples in pump probe experiments. The demanded THz properties are challenging to achieve, as they include a narrow bandwidth of <5-10%, the possibility of frequency tuning between 1 and 20 THz, a THz pulse energy of about 100 uJ, and a fixed phase relation from shot-to-shot. To fulfil these specifications, an accelerator-based source is proposed in this paper. It utilises the slotted-foil technique to create a pre-bunched electron beam that is injected into a helical undulator. Detailed simulation studies presented in this paper show that the corresponding undulator radiation has the demanded properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK079 The Off-Axis Injection Lattice Design of HEPS Storage Ring 716
 
  • Y.M. Peng, D. Ji, Y. Jiao, S.K. Tian, J.Q. Wang, G. Xupresenter
    IHEP, Beijing, People's Republic of China
 
  The dynamic aperture size determines the injection scheme to a large extent. The aim of storage ring design of HEPS is to achieve ultralow emittances on both transverse planes. This will bring very strong lattice nonlinearities. The present nominal design is a hybrid 7BA design with effective dynamic aperture of about 3 mm both in horizontal and vertical plane. Due to the restriction of dynamic aperture of this lattice, on-axis injection is the only choice . But, on-axis injection will bring a very big challenge for injector or injection kicker, if it is feasible to obtain a large dynamic aperture, off-axis injection is a favoured choice. In this paper, we will show the preliminary study of the lattice design with a sufficient dynamic aperture for pulsed multipole injection..  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK080 Research of the Electro-Gravitational Induction by Using COD Signals in Charged Particle Storage Rings 719
 
  • D. Dong
    IHEP, Beijing, People's Republic of China
  • J.Y. Dong
    Binghamton University, State University of New York, Binghamton, New York, USA
 
  Funding: The project was supported by the National Natural Science Foundation of China under Grant No. 11575215, partly.
Form the beam instability in the charged particle storage ring; researchers have known that one kinds of long term beam instability, the period of 12 hours, comes from the gravity changes, the change of acceleration of gravity g, delta g caused by the moon and sun moving relative to the earth, so called the terrestrial tidal forces. Phenomenology, we would say that the gravity changes caused by the moon and sun moving at the storage ring have caused the beam energy changes in the storage ring. If it is true, then it may be the electro-gravitational induction (EGI). In this paper, we will discuss the possibility of EGI, and estimate the maximum value of the gravity coefficient of the induced electromotive force by using the existing beam data from the storage rings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK081 Study of HEPS Performance with Error Model and Simulated Correction 721
 
  • D. Ji, Z. Duanpresenter, S.K. Tian, Y. Wei
    IHEP, Beijing, People's Republic of China
 
  As an important component of physics study on High Energy Photon Source (HEPS), error modelling and simu-lated correction will provide the guideline to restrict the manufacture redundancy of the hardware and estimate the real machine performance. In this paper, we present some work on error effect evaluation and simulated commis-sioning based on a recent lattice design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK082 First Turn Around Strategy for HEPS 724
 
  • Y.L. Zhao, Z. Duanpresenter, D. Ji, Y. Jiao, C. Li
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a 6-GeV, kilometer-scale, quasi-diffraction limited storage ring light source to be built in China[1]. Getting the first turn and approaching the closed orbit is very important in accelerator commissioning. In order to make first turn beam commissioning efficiently, we develop a MATLAB tool based on AT for automatic beam correction and closed orbit searching. The algorithm and simulation results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK085 Linear Optics Calibration at the HLS-II Storage Ring Using Model Independent Analysis 727
 
  • G. Liu, L. Wang, F.F. Wu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Linear optics are the main lattice parameters characterizing the linear properties of storage rings. Especially for beta function and phase advance, they are the basic lattice functions which must be accurately calibrated to ensure high quality operation of the machine. Model Independent Analysis (MIA), which adopts mathematical statistical methods to extract the effective lattice information of storage rings by directly analyzing the turn-by-turn beam-position-monitor (BPM) measurements, has been applied at HLS-II to calibrate the linear optics model of the storage ring. The measurements of the turn-by-turn BPM data with all of the 32 BPMs are reported in this paper. The calibration results of the beta function using MIA are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK087 Development of a Tune Knob for the HLS-II Storage Ring 730
 
  • S.W. Wang, J.Y. Li, W.B. Wu, W. Xupresenter, K. Xuan, X. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A tune knob is a useful tool for lattice setup and machine studies in a storage ring. It is used to adjust the transverse tunes with a small impact on the beam dynamics. A global tune knob is designed for the Hefei Light Source (HLS). In the tune knob, the quadrupoles are grouped into four families and are symmetrically adjusted. Methodical Accelerator Design-X (MAD-X) is used to calculate the coefficients of the tune knob and the Accelerator Toolbox (AT) is used to double check the accuracy of the tune knob. The chromaticity is corrected by the sextupoles in the storage ring. This paper reports preliminary simulation results of the tune knob for HLS. The beta function deviations are also studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK088 Vertical Emittance Reduction in the SSRF Phase II Project 733
 
  • C.L. Li, B.C. Jiang, Z.B. Li, M.Z. Zhang, Q.L. Zhang, W.Z. Zhang
    SINAP, Shanghai, People's Republic of China
 
  The Shanghai Synchrotron Radiation Facility (SSRF) Phase II beamline project (SSRF Phase II) will implement the new lattice with dual-canted insertion devices, superbends and superconducting wiggler. The emittance coupling is one of the most important parameters for the high brightness storage ring light sources. It is often less than 1% in the third-generation storage ring light sources. In this paper, the sensitivity of emittance coupling to magnetic alignment errors in the SSRF Phase II is presented. Sixty skew quadrupole magnets are utilized to correct the emittance coupling with gradient descent algorithm. The emittance coupling obtained in the SSRF Phase II lattice is below 0.3%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK090 Beta Function Measurement in the SOLARIS Storage Ring 736
 
  • A. Kisiel, M.B. Jaglarz, M.P. Kopeć, S. Piela, M.J. Stankiewicz, A.I. Wawrzyniak
    Solaris, Kraków, Poland
 
  One of the most essential lattice function used for transverse beam dynamics studies of the storage rings is a beta function. It characterizes the linear properties of magnets layout and allows to optimize the compatibility of the model and the machine by reducing the beta-beating. Moreover, the calculation of other parameters like transverse beam emittance, dynamic aperture, energy spread and others, requires knowledge of the quantity of beta function along the ring. Various methods of measurement of this function used in Solaris will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK091 Development of Real-Time Charge Integrator for the Irradiation Dose Measurement 739
 
  • H.G. Lim, Y.-S. Cho, Y.S. Hwang, M.H. Jungpresenter, K. R. Kim
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC (KOREA of Multi-purpose Accelerator Complex) operation fund of KAERI by MSIP (Ministry of Science, ICT, and Future Planning).
KOMAC (Korea of Multi-purpose Accelerator Complex, Gyeongju, Korea) has several kinds of facilities using proton beam or ion beam. The KOMAC has provided beam service to user group since 2013. For effective beam service, it is important that irradiation dose at a target should be supplied as much as user requires. To control the irradiation dose of target, a multi-channels charge integrator, Faraday cups, and a beam shutter are used. The amount of irradiation dose is calculated in real time by accumulative charge, which is represented to integration of induced current at each Faraday cup for the target. If the measurements reach to the set value (desired dose), the beam is automatically blocked by beam shutter. Thus, precise measurement of accumulative charge is required. For out purpose, two kinds of real-time charge integrators were implemented with different measuring ranges. In order to verify performance of the integrators, each device's linearity was evaluated after measuring accumulative charge corresponding to dc current. And their measurable range was determined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK092 Computer Modelling of the SC202 Superconducting Cyclotron for Hadron Therapy 742
 
  • O. Karamyshev, V. Malinin, D.V. Popov
    JINR/DLNP, Dubna, Moscow region, Russia
  • Y.F. Bi, G. Chen, K.Z. Ding, Y. Song
    ASIPP, Hefei, People's Republic of China
  • G.A. Karamysheva, N.A. Morozov, E.V. Samsonov, G. Shirkov, S.G. Shirkov
    JINR, Dubna, Moscow Region, Russia
 
  The SC202 superconducting cyclotron for hadron therapy is under development by collaboration of ASIPP (Hefei, China) and JINR (Dubna, Russia). The accelerator will provide about 200 MeV proton beam with maximum current of 1μA in 2017-2018. We have performed simulations of all systems of the SC202 cyclotron and specified the main parameters of magnet, acceleration system and extraction elements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK095 Implementation Issues and First Results of the ESS Beam Current Monitor System 745
 
  • H. Hassanzadegan, M.D. Donna, A. Jansson, H. Kocevar, T.J. Shea
    ESS, Lund, Sweden
  • M. Werner
    DESY, Hamburg, Germany
 
  The BCM system of the European Spallation Source needs to measure several beam parameters including pulse profile, charge, current, pulse width and repetition frequency. Moreover, it will measure differential beam currents using several ACCT pairs along the linac. This is particularly important at low beam energies where BLMs cannot be used for measuring beam losses. Due to the ESS-specific requirements, the BCM software and firmware will be customized. Also, parts of the electronics may need to be customized to be consistent with the ESS standard electronics platform, hence facilitate maintenance and maximize synergy with other systems. Technical challenges include maintaining signal integrity and a fast response despite large variations in the sensor cable length and ambient temperature, as well as minimizing the effect of the ground voltage fluctuations. This paper gives a general overview of the design and focuses on a few technical issues that are particularly important for satisfying the performance requirements. Also, BCM test results in laboratory conditions as well as preliminary results with the ESS ion source will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK096 Predictability of the Beam Quality During RFQ Voltage Tuning 748
 
  • A. Ponton
    ESS, Lund, Sweden
  • A.C. France
    CEA/IRFU, Gif-sur-Yvette, France
 
  It has previously been demonstrated that certain spatial harmonics of the dipolar and quadrupolar components of the RFQ voltage have stronger effects on the beam quality than others*. The study suggested that, during the tuning process to compensate for manufacturing errors, some harmonic contents (other than the first ones) should be minimized. The analysis presented in this paper looks at how we can predict the beam quality knowing the content of each voltage harmonics. We propose also a strategy to minimize the impacts of the voltage errors on the output beam phase space during the tuning phase.
* A. Ponton, A.C. France, Y.I. Levinsen, O. Piquet, B. Pottin, and E. Sargsyan, Voltage Error Studies in the ESS RFQ, in Proc. 7th International Particle Accelerator Conference (IPAC'16), Busan, Korea, May 2016, paper THPMB039, pp. 3320-3323, ISBN: 978-3-95450-147-2
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK097 Vertical Dispersion and Betatron Coupling Correction for FCC-ee 752
 
  • S. Aumon, B.J. Holzer
    CERN, Geneva, Switzerland
  • K. Oide
    KEK, Ibaraki, Japan
 
  The FCC-ee project foresees to build a 100 km e+/e circular collider for precision studies and rare decay observations in the range of 90 to 350 GeV center of mass energy with luminosities in the order of 1035 cm-2s-1. To reach such performances, an extreme focusing of the beam is required in the interaction regions with a low vertical beta function of 2~mm at the IPs. Moreover, the FCC-ee physics program requires very low emittances never achieved in a collider with 1~nm for εx and 2~pm for εy, bringing down the coupling ratio to 2/1000. Thus, coupling and vertical dispersion sources have to be controlled carefully. This paper describes the tolerance of the machine to magnet alignment errors as well as the optics correction methods that were implemented, such as the Orbit Dispersion Free Steering, in order to bring the vertical dispersion to reasonable values. The correction of the betatron coupling, being also a very important source of emittance growth, has been integrated to a challenging correction scheme to keep the vertical emittance as low as possible.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK098 Techniques for Achieving High Reliability Operation of the Spallation Neutron Source High Power Radio-Frequency System 756
 
  • J. Moss, M.S. Champion
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: *ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. This research was supported by the DOE Office of Science, Basic Energy Science, Scientific User Facilities.
The Spallation Neutron Source (SNS) high power radiofrequency (HPRF) system operates with high reliability to support the goals of the SNS user program. In recent operational periods the availability of the HPRF System has exceeded 97 percent while the neutron source availability overall is typically greater than 90 percent. SNS has a unique set of 92 HPRF stations that operate at either 402.5 MHz or 805 MHz with peak output power ranging from 550 kW to 5 MW and average power ranging from 49.5 kW to 450 kW. The HPRF transmitters consist of chassis-mounted power supplies, solid-state amplifiers and other equipment that support the operation of the klystrons that ultimately provide the RF power to the accelerating structures. Management of the operation and maintenance of the HPRF system has increasingly focused on reliability and sustainability in recent years. Techniques for klystron lifetime preservation and optimization of transmitter reliability have been developed and will be described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK099 Tuning-Based Design Optimization of CLIC Final Focus System at 3 TeV 760
SUSPSIK047   use link to see paper's listing under its alternate paper code  
 
  • F. Plassard, A. Latina, E. Marín, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
 
  The tuning aims to mitigate static imperfections of the Final Focus System (FFS) for emittance preservation at the Interaction Point (IP). A simulation campaign on the nominal CLIC FFS at 3 TeV have shown the need of rethink the design in order to ease the tuning of the machine. The goal is to optimize the lattice in order to make the FFS more tolerant to misalignments by reducing the strength of the sextupoles. The tuning efficiency is promoted as figure of merit to find the optimal layout of the FFS. A comparative study of the tuning performances have been performed for two L* options.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK099  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK100 Beam Delivery System Optimization for CLIC 380 GeV 764
 
  • F. Plassard, A. Latina, E. Marín, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Bambade
    LAL, Orsay, France
 
  In the framework of the CLIC rebaselining, the Beam Delivery System (BDS) have been re-optimized for its initial stage at 380 GeV. Two BDS designs with L*=4.3 meters and L*=6 meters have been investigated. The optimization of the lattices and the beam parameters at the interaction point (IP) have been performed by taking into account their energy upgrade to 3 TeV and the tuning feasibility of the BDS in presence of static imperfections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK102 Beam Dynamics Studies of the HIE-ISOLDE Transfer Lines in the Presence of Magnetic Stray Fields 768
 
  • J. Mertens, J. Bauche, M.A. Fraser, B. Goddard, R. Ostojić, J.S. Schmidtpresenter
    CERN, Geneva, Switzerland
 
  The ISOLDE facility at CERN produces radioactive isotopes far from stability for fundamental nuclear physics research. The radioactive beams are accelerated to high-energy using a post-accelerator before being transferred for study in different experiments at the end of a network of High Energy Beam Transfer (HEBT) lines. In the framework of the HIE-ISOLDE project, the energy of post-accelerated beams is to be increased to over 10 MeV/u and new experimental detectors are being proposed for installation to exploit the new energy regime. The stray magnetic fields associated with many of the new detectors will distort the beam trajectories in the HEBT, potentially affecting the transmission of the low intensity beams delivered to the experiments. In this contribution, the influence on the HEBT of the stray field of the proposed ISOL Solenoidal Spectrometer is discussed, correction schemes described and shielding options assessed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK103 Operation with Carbon Stripping Foils at ISIS 771
 
  • H.V. Cavanagh, B. Jones
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS facility at the Rutherford Appleton Laboratory is a pulsed neutron and muon source for physical and life science research. Up to 3·1013 protons per pulse are accelerated to 800 MeV in the 50 Hz rapid cycling synchrotron that serves two spallation neutron targets. Charge exchange injection of 70 MeV H' ions into the synchrotron takes place over 130 turns. For over 30 years ISIS has used 40×120 mm aluminium oxide stripping foils, produced in-house [1]. Recently, foil preparation and installation processes have been simplified with the use of commercially available 40×60 mm carbon stripping foils. This paper summarises operational experiences with diamond-like-carbon (DLC) and graphene foils. Radiological analysis, atomic force microscope (AFM) imaging of foils and off-line irradiation with a 1.5 keV electron gun are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK104 Top-Up Injection With Anti-Septum 774
 
  • C.H. Gough, M. Aiba
    PSI, Villigen PSI, Switzerland
 
  We present a novel improvement for injection into the very restricted machine aperture of future light source synchrotrons. A conventional injection scheme is based on a septum to deflect the injected bunch plus a fast pulsed three or four kicker bump to bring the stored beam close to the septum wall. With the novel improvement, the bump kickers are fitted with a thin wall longitudinal metal plate which screens the injected bunch from deflection without changing the stored beam bump behaviour. This metal screen then forms the final septum, but inverted in function of the conventional approach, hence the name anti-septum. The approach does not remove the need for the main septum magnet, but for modest cost it permits the injected bunch to be brought closer to the stored beam. Application of the anti-septum to the SLS-2 project and simulation results on a prototype are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK105 Preliminary Study of Injection Transients in TPS Storage Ring 777
 
  • C.H. Chen, B.Y. Chen, J.Y. Chen, M.-S. Chiu, S. Fann, C.S. Huang, C.-C. Kuo, T.Y. Lee, C.C. Liang, Y.-C. Liu, G.-H. Luo, H.-J. Tsai, F.H. Tseng
    NSRRC, Hsinchu, Taiwan
 
  An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK106 Effect of Magnetic Element Alignment Errors on Electron Beam Dynamics in the Transportation Channel of the NSC KIPT Neutron Source Driven With Linear Accelerator 781
 
  • A.Y. Zelinsky, P. Gladkikh, A.A. Kalamayko
    NSC/KIPT, Kharkov, Ukraine
 
  In the paper, the results of beam dynamics simulation in the transportation channel of the NSC KIPT neutron source taking into account the errors of the electromagnetic elements alignment are presented. It is show that the values of RMS alignment errors such as 100 mkm in transverse planes and 200 mkrad in angle installations lead to the essential shifts of the beam at a neutron target and, therefore, to the essential beam losses at the vacuum chamber walls. To avoid the losses one should provide additional electron beam correction and to increase the accuracy of the equipment alignment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK107 Injection Efficiency Simulation in the Electron Storage Ring of X-Ray Generator NESTOR 784
 
  • A.Y. Zelinsky, P. Gladkikh, A.A. Kalamayko
    NSC/KIPT, Kharkov, Ukraine
 
  In the paper the results of the beam dynamics and injection efficiency simulation in the storage ring of the X-ray generator NESTOR are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK108 Tuning Simulations for the CLIC Traditional Beam Delivery System 788
 
  • R.M. Bodenstein, P. Burrows
    JAI, Oxford, United Kingdom
  • E. Marín, F. Plassard, R. Tomás
    CERN, Geneva, Switzerland
 
  As the design of the CLIC Beam Delivery System (BDS) evolves, tuning simulations must be performed on each of the proposed lattice designs to see which system achieves the highest luminosity in the most realistic manner. This work will focus on the tuning simulations performed on the so-called Traditional lattice design for the center-of-mass energy of 3 TeV. The lattice modifications required to target the most important aberrations and the latest tuning results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK110 Update on Bmad Simulations From Target to Storage Ring for the New Muon G-2 Experiment at Fermilab 791
 
  • M. Korostelev, I.R. Bailey, A.T. Herrodpresenter, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • I.R. Bailey
    Lancaster University, Lancaster, United Kingdom
  • A.T. Herrodpresenter, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • V. Tishchenko
    BNL, Upton, Long Island, New York, USA
 
  The new muon g-2 experiment at Fermilab (E989) aims to measure the anomalous magnetic moment of the muon to an uncertainty of 140 ppb. The existing accelerator facility at Fermilab is being adapted to the requirements of the g-2 experiment and the baseline lattice design is now established. This paper presents the results of beam simulations and spin tracking carried out using the Bmad software package for the g-2 beam transport system, including a variant which bypasses the delivery ring as proposed for the beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK111 Initial Performance Measurements of Multi-GHz Electron Bunch Trains 795
 
  • D.J. Gibson, R.A. Marshpresenter
    LLNL, Livermore, California, USA
  • Y. Hwang
    UCI, Irvine, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL's compact laser-Compton based x-ray source is currently producing up to 35 keV photons, with the capability to upgrade to 250 keV. Increasing the average brightness of such sources requires increasing the electron beam current. To avoid degradation of the narrow-bandwidth performance of the source, the per-bunch charge shouldn't increase; the effective repetition rate of the electron beams must be raised. It has been proposed* to generate bunch trains of several hundred pulses spaced by the period of X-band RF (~87 ps), which raises questions about beam-loading effects on the energy uniformity of the bunches and wakefield effects degrading the emittance of later bunches, compromising the x-ray quality. As a first test of this concept, we have installed into the electron-generating laser of our system optical pulse-stacking hardware to allow generation of 16-electron-bunch trains. Here we present the current status of our x-ray source, along with initial results using this new multi-bunch train. This includes characterization of collective electron beam energy spread and emittance growth.
* D.J. Gibson, et al., IPAC2012.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK112 High Average Power Deuteron Beam Dynamics 798
 
  • R.A. Marsh, G.G. Anderson, S.G. Anderson, D.L. Bleuel, M.L. Crank, P. Fitsos, D.J. Gibson, M. Hall, M.S. Johnson, B. Rusnak, J.D. Sain, R. Souza, A. Wiedrick
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Lawrence Livermore National Lab (LLNL) is developing an intense, high-brightness fast neutron source to create sub-mm-scale resolution neutron radiographs and images. A pulsed 7MeV, 300μA average-current commercial deuteron accelerator will produce an intense source (1011 n/s/sr at 0 deg) of fast neutrons (10MeV) using a novel neutron target with a small (1.5mm diameter) beam spot size to achieve high resolution. A highly flexible multi-accelerator beamline has been developed allowing for the use of both 4MeV and 7MeV RFQ/DTL deuteron accelerators. TRACE3D has been used to model the beam transport and design the quadrupole lattice and results will be presented including iterated design within beamline mechanical constraints, sensitivities, and multiple use of the magnets. Because of the high power density of such a tightly focused, modest-energy ion beam, intercepting beam diagnostics are extremely challenging, motivating novel concepts and extensions of current techniques to higher average power densities. Full duty factor beamline diagnostics will be discussed including charge, position, emittance via beam-induced fluorescence, and a full power beam dump and Faraday cup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK113 Beam Phase Space Tomography for FXR LIA 801
 
  • Y.H. Wu, Y.-J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Knowing the initial beam parameters entering an accelerator or a downstream beamline allows us to select transport tunes optimized for a desired accelerator performance. In this study, we report unfolding LLNL's FXR [1] beam parameters by using the tomography technique [2, 3] to construct the beam phase space along the accelerator's downstream beamline. The unfolded phase spaces from tomography and simulations are consistent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK114 End-to-End Energy Variation Study for Induction Radiography Accelerator 804
 
  • Y.H. Wu, Y.-J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Energy variation study for beam transport from the entrance of a conceptual induction radiography accelerator to the x-ray target has been reported previously [1]. In this report, we have extended the study upstream to the injector. To achieve minimum emittance growth and to obtain a desired final beam size, we have developed three optimal tunes. Among them, one optimal tune, capable of supressing beam break-up instability and producing acceptable corkscrew motions, is used to study the energy variation effects on radiography performance. The study shows that ±3% energy variation is acceptable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK115 A Design for 10 GeV, High Peak-Current, Tightly Focused Electron Beams at FACET-II 807
 
  • G.R. White
    SLAC, Menlo Park, California, USA
 
  Funding: This work was sponsored by the Department of Energy under Contract Number: DE-AC02-76SF00515
FACET-II will be a new test facility, starting construction in 2018 within the main SLAC Linac. Its purpose is to build on the decades-long experience developed conducting accelerator R&D at SLAC in the areas of advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. The design consists of a 135-MeV high-brightness photo-injector constructed in an off-axis injection line in Sector 10 of the SLAC Linac, two new 4-bend chicane bunch compressors installed in Sectors 11 and 14, with a third compression stage provided by the existing FACET W Chicane in Sector 20. We develop a design to deliver peak currents more than 160 kA to the Sector 20 interaction region at 10 GeV, with 10 'm-rad emittances at 2 nC bunch charge and 1.4 % rms energy spread. The Sector 20 bunch compressor is re-designed for maximum peak current throughput and minimal emittance degradation via CSR, and the FACET-II compression scheme is optimized. We present 6D start-end beam tracking simulations using Lucretia including ISR, CSR, wakefields and space charge effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK117 On the Computation of Phase and Energy Gain for a Thin-Lens RF Gap Using a General Field Profile 810
 
  • C.K. Allen
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC05-00OR22725.
The thin-lens representation for an RF accelerating gap has been well developed and is documented by Lapostolle [5], Weiss [6], Wangler [14], and others [9], [10]. These models assume that the axial electric field is both centered and symmetric so it has a cosine expansion. Presented here is a model that considers general axial fields. Both the cosine and sine transit time factors are required plus their Hilbert transforms. The combination yields a complex Hamiltonian rotating in the complex plane with the synchronous phase. The phase and energy gains are computed in the pre-gap and post-gap regions then aligned with asymptotic values of wave number. Derivations are outlined, examples are shown, and simulations presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK118 Model Based Optics Studies in the MEBT Section of SNS 814
 
  • A.P. Shishlo, A.V. Aleksandrov, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.
The paper presents the beam dynamics studies for the Medium Energy Beam Transport (MEBT) section of the Spallation Neutron Source (SNS) accelerator. The analysis of measurements is based on the PyORBIT linac model. The diagnostics data includes wire scanners' profiles, slit-harp and slit-slit transverse emittances, MEBT re-bunchers calibration data, and bunch length measurements. The MEBT is a matching section between RFQ and a Drift Tube Linac (DTL). It is also a place for beam halo scraping which helps to reduce beam loss in downstream linac sections. The linac simulation code was benchmarked against the diagnostics data.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK119 Beam Dynamics in g-2 Storage Ring 817
SUSPSIK048   use link to see paper's listing under its alternate paper code  
 
  • W. Wu, B. Quinn
    UMiss, University, Mississippi, USA
 
  The muon anomalous magnetic moment has played an important role in constraining physics beyond the Standard Model. The Fermilab Muon g-2 Experiment has a goal to measure it to unprecedented precision: 0.14 ppm. To achieve this goal, we must understand the beam dynamics systematic effects in the muon storage ring. We will present the muon beam dynamics and discuss two specific topics here: the beam resonance which is related to the muon loss and the fast rotation analysis to determine the muon momentum distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK122 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator 820
 
  • N. Tsoupas, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • J.A. Crittenden
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The CBETA project[*] is a prototype electron accelerator for the proposed eRHIC project[**]. The electron accelerator is based on the Energy Recovery Linac (ERL) and the Fixed Field Alternating Gradient (FFAG) principles. The FFAG arcs and the straight section of the accelerator are comprised of one focusing and one defocusing quadrupoles which are designed as Halbach-type permanent dipole magnets with quadrupoles component[***]. We will present the beam optics of the FFAG cell which is based on 3D field maps derived with the use of the OPERA computer code[****]. We will also present the electromagnetic design of the corrector magnets of the cell.
* http://arxiv.org/abs/1504.00588
** http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
*** K. Halbach, Nucl. Instrum. Meth. 169 (1980) pp. 1-10
**** http://www.scientificcomputing.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK123 Beam Dynamics Numerical Studies Regarding CBETA Cornell-BNL ERL 824
 
  • F. Méot, S.J. Brooks, D. Trbojevic, N. Tsoupaspresenter
    BNL, Upton, Long Island, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by New York State Energy Research and Development Authority (NYSERDA)
The Cornell-BNL Electron Test Accelerator CBETA is based on a 36 MeV superconducting linac and on a single 4-pass up/4-pass down linear FFAG return loop, for beam acceleration from 6 to 150 MeV and energy recovery. Numerical beam dynamics simulations have accompanied and eventually validated the quadrupole-doublet FFAG cell technology and parameters, and following that the complete return loop, all along the ERL lattice design process. They are key to assessing and validating the ERL optics and beam behavior over the whole acceleration/ER cycle, and in preparing future machine operation. This paper presents various of these beam dynamics studies, including start-to-end simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK124 A New Method to Tune the Nonlinear Lattice Online 828
 
  • W. Guo, Y. Hidaka, X. Yangpresenter
    BNL, Upton, Long Island, New York, USA
 
  Most nonlinear lattice tuning methods use only part of the optimization constraints, for example, part of the driving terms, nonlinear detuning, lifetime or injection efficiency. Even though some of the nonlinear properties can be improved, it is not guaranteed the nonlinear lattice is fully optimized. In this paper we propose to optimize the nonlinear lattice by correcting the betatron phase advance and detuning of the off-orbit lattices. It is shown that all the leading order optimization constraints are restored in this approach. One advantage of this new method is that the measurement is independent of BPM calibration errors. We succeed in both simulation and experiment in identifying the intentionally added sextupole errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK125 Multi-frequency AC LOCO: A Fast and Precise Technique for Lattice Correction 831
 
  • X. Yang, K. Ha, V.V. Smaluk, Y. Tian, L. Yu
    BNL, Upton, Long Island, New York, USA
 
  We developed a novel technique to improve the precision and shorten the measurement time of the LOCO (Linear Optics from Closed Orbits) method at NSLS-II [1]. This technique named AC LOCO is based on a sine-wave (AC) beam excitation via fast correctors typically installed at synchrotron light sources for the fast orbit feedback. The beam oscillations are measured by beam position monitors. The narrow band used for the beam excitation and measurement not only allows us to suppress effectively the beam position noise and also makes simultaneously exciting multiple correctors at different frequencies (multi-frequency mode) possible. We demonstrated at NSLS-II that the new technique provides better lattice corrections and achieves two minutes measurement time in the thirty-frequency mode.
[1] X. Yang et al., 'Fast and precise technique for magnet lattice correction via sine-wave excitation of fast correctors', Phys. Rev. Accel. Beams, vol. 20, p. 054001, 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK126 Establishing a Project Management Office for the Large Scale Multi Project FAIR 835
 
  • F. Becker, S. Deveaux, A. Fröhlich, G. Hickler, M. Lautenschläger, M. Raponi, B. Schoenfelder, M. Strangmann, N. Winters
    GSI, Darmstadt, Germany
  • J.R. Regler, D. Urner
    FAIR, Darmstadt, Germany
 
  The Facility for Antiproton and Ion Research (FAIR) is a large scale multi project comprising 10 subprojects in the field of accelerators (pLINAC, SIS100, SuperFRS, p-bar Separator, Collector Ring, High Energy Storage Ring), experiments (CBM, APPA, NUSTAR, PANDA) and civil construction. This contribution describes an integrated approach how a controlling type project management office (PMO) was established, meeting the overall requirements for project steering and specific requirements of the subprojects and international partners involved. Major responsibilities of the PMO are project planning, integrated reporting, cost and budget control, risk management, in-kind coordination & procurement, quality assurance & configuration management. Core processes, roles and responsibilities, methodology and interfaces internally and towards the project pillars are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK127 FAIR Risk Management as a Proactive Steering Tool for the Large Scale Multi Project 839
 
  • S. Deveaux, F. Becker
    GSI, Darmstadt, Germany
 
  The Facility for Antiproton and Ion Research (FAIR) is a large scale multi project comprising 10 subprojects in the field of accelerators (pLINAC, SIS100, SuperFRS, p-bar separator, Collector Ring, High Energy Storage Ring), experiments (CBM, APPA, NUSTAR, PANDA) and civil construction. This contribution describes the implementation of a progressive risk management methodology based on a comprehensive assessment on work package level. Complexity factors (number of parts, level of state of the art, level of human interfaces, level of operational complexity) and importance factors (safety, cost, schedule, resources) represent the likelihood of risk occurrence and the eventual value at risk. Relative comparison of the normalized factors together with a supplier assessment enables to derive an event based risk register with a standardized evaluation scheme assigning risk and opportunity classes. This contribution demonstrates the full methodology highlighting some typical examples of the FAIR project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK128 Integrated Project Planning as a Central Steering Tool for the Large Scale Multi Project FAIR 842
 
  • N. Winters, F. Becker, M.V. Ricciardi
    GSI, Darmstadt, Germany
 
  The Facility for Antiproton and Ion Research (FAIR) is a large scale multi project comprising 10 subprojects in the field of accelerators (pLINAC, SIS100, SuperFRS, p-bar, CR, HESR), experiments (CBM, APPA, NUSTAR, PANDA) and civil construction. This contribution describes the fundamental revamp of FAIR integrated project planning. Main objective is to preserve the advantages of a bottom-up planning topology with the actual and detailed level of information keeping the ~400 work package leader's central role as plan owners in their field of responsibility. Simultaneously different project phases (e.g. civil construction, procurement, installation, commissioning) need to be excluded from detailed plans while being re-integrated in the level-1 project master schedule. Additional cost profiles and resource assignment by name allow a progress tracking and flexible project steering.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)