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Abstract

We consider some aspects of the relations between slice

and projected beam parameters.

INTRODUCTION

Connections between properties of a set of particles and

properties of its subsets are of certain interest in several ar-

eas of the beam physics. One uses, for example, the con-

cept of multibunch emittance in an accelerator operating

not with the single bunch but with the bunch train, or the

concept of slice and projected emittances in the design and

optimization of SASE FEL performance. Rather general

relationships between slice and projected beam quantities

were calculated in [1] on the basis of some results of the

theory of conditional probability and with main attention

paid to the case of a particle beam which can be described

by continuous density function. In this paper, we limit our

considerations to the situation when the original beam is

separated into finite set of sub-beams, which makes the con-

cepts of aligned and granulated beams almost obvious. We

also avoid usage of the theory of conditional probability (at

least in explicit form) so that all our calculations can be el-

ementary checked.

ORIGINAL BEAM, ALIGNED BEAM AND

GRANULATED BEAM

We describe a particle beam in the n-dimensional phase

space z = (z1, . . . , zn)⊤ by means of the non-negative in the

distribution sense density function (distribution function)

ρ(z) satisfying the normalization condition

∫

ρ(z) dz = 1, (1)

and say that the beam is decomposed into m portions (slices)

if there are m given non-negative in the distribution sense

functions ρk (z) such that

wk =

∫

ρk (z) dz > 0, k = 1, . . . ,m, (2)

and

ρ(z) = ρ1(z) + . . . + ρm (z). (3)

With each beam portion we associate the slice distribu-

tion function

ρ̂k (z) =
1

wk

ρk (z) (4)

and position of the slice centroid
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z̄(k)
= 〈z〉k =

∫

z ρ̂k (z) dz. (5)

With these notations ρ(z) can be rewritten in the form

ρ(z) = w1 ρ̂1(z) + . . . + wm ρ̂m (z), (6)

and for position of the beam centroid one obtains

z̄ = 〈z〉 =
∫

zρ(z) dz = w1z̄(1)
+ . . . + wm z̄(m) . (7)

Separation of the particle beam into slices naturally leads

to the concepts of aligned and granulated beams, which are

defined as follows.

Aligned Beam

Aligned beam is the beam that would be obtained if all

slice centroids would be aligned to the same value, which,

without loss of generality, we will take equal to zero.

The distribution function ρa (z) of the aligned beam can

be expressed through the slice distribution functions and po-

sitions of the slice centroids as follows

ρa (z) = w1 ρ̂1

(

z + z̄(1)
)

+ . . . + wm ρ̂m
(

z + z̄(m)
)

, (8)

and the centroid of the aligned beam coincides with the ori-

gin of the coordinate system

〈z〉a =
∫

zρa (z) dz = 0n .
1 (9)

Granulated Beam

Granulated beam is the beam that would be obtained if all

charge within each slice would be concentrated at the loca-

tion of the corresponding slice centroid, and its distribution

function is given by the expression

ρg (z) = w1δ
(���z − z̄(1) ���

)

+ . . . + wmδ
(���z − z̄(m) ���

)

, (10)

where δ is the Dirac delta function.

Note that centroids of the original and granulated beams

are equal to each other

〈z〉g =
∫

zρg (z) dz = w1z̄(1)
+ . . . + wm z̄(m)

= z̄. (11)

1 Here and later on notations 0k and 1k stay for the k-dimensional vectors

with all components equal to zero and to one, respectively.
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DECOMPOSITION OF THE COVARIANCE

MATRIX OF THE ORIGINAL BEAM

By definition, the beam (covariance) matrix is the matrix

of the second-order central moments of the beam distribu-

tion. Let Σ be the beam matrix of the original beam

Σ =

〈

(z − 〈z〉) · (z − 〈z〉)⊤
〉

, (12)

and let Σa , Σg and Σk be the beam matrices of the aligned

beam, of the granulated beam and of the k-th beam slice,

respectively. Then, taking into account (6), (8) and (10),

one obtains the following decomposition formulas

Σ = Σa + Σg (13)

and

Σa = w1Σ1 + . . . + wmΣm . (14)

2D PROJECTED PARAMETERS

Let Σ̃ be the 2 × 2 principal submatrix of the matrix Σ

whose entries are in the intersection of rows and columns

specified by indices i and j. The quantity

ǫ =

√

det(Σ̃), (15)

where the symbol
√

denotes the principal square root,

is called the (2D) projected emittance, and if ǫ is positive,

then one can also define the (projected) Twiss parameters

(β,α,γ) by means of the equality

Σ̃ = ǫ

(

β −α
−α γ

)

. (16)

Introducing by analogy submatrices Σ̃a , Σ̃g and Σ̃k ; their

emittances ǫa , ǫg and ǫk ; and, if possible, their Twiss pa-

rameters, let us consider in the following subsections rela-

tions between them coming from the basic formulas (13)

and (14).

Aligned Beam

Connection of the projected emittance of the aligned

beam with the properties of the beam slices can be obtained

using formulas (14) and (34), and linearity of the trace func-

tion

ǫ2a = det
(

Σ̃a

)

= det
(

w1Σ̃1 + . . . + wm Σ̃m

)

=

1

2

m
∑

k,l=1

wkwl

[
tr

(

Σ̃k

)

tr
(

Σ̃l

)

− tr
(

Σ̃k Σ̃l

)]
. (17)

As the next step, the formula (17) can be transformed into

the following useful form

ǫ2a =



m
∑

k=1

(wk ǫk )



2

+

1

2

m
∑

k,l=1

wkwl

[
det

(

Σ̃k + Σ̃l

)

− (ǫk + ǫ l )
2
]
. (18)

Because all matrices Σ̃k are symmetric and positive semi-

definite, all the terms in the sums (17) and (18) are non-

negative (see appendix for explanation).

Let us assume that all slice projected emittances ǫk are

positive. Then one can define the slice Twiss parameters

(βk ,αk , γk ) and transform (17) and (18) into equalities

ǫ2a =

m
∑

k,l=1

mp (βk , βl ) (wk ǫk ) (wl ǫ l ) , (19)

ǫ2a =



m
∑

k=1

(wk ǫk )



2

+

m
∑

k,l=1

[
mp (βk , βl ) − 1

]
(wk ǫk ) (wl ǫ l ) , (20)

where

mp (βk , βl ) =
βkγl − 2αkαl + γk βl

2
(21)

is the betatron mismatch parameter.

The first addend in the equality (20) is the mean slice

emittance squared, and one sees that ǫa will be larger than

the mean slice emittance if and only if there are at least two

slices which are mismatched with respect to each other.

Note that the Twiss parameters of the aligned beam are

connected with the slice Twiss parameters as follows

βa =
1

ǫa

m
∑

k=1

wk ǫk βk , (22a)

αa =
1

ǫa

m
∑

k=1

wk ǫkαk , (22b)

γa =
1

ǫa

m
∑

k=1

wk ǫkγk . (22c)

Granulated Beam

Let us introduce special notations (x,p) for the coordi-

nates on the plane of interest (zi , z j ), and let

x = (x1, . . . , xm )⊤, (23a)

p = (p1, . . . ,pm )⊤ (23b)

be the notations for the projections of the slice centroids

onto this plane. Then

ǫ2g = 〈(x − x̄)2〉g〈(p − p̄)2〉g
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− 〈(x − x̄) (p − p̄)〉2g =
1

2

m
∑

k,l=1

wkwl

·
[

(xk − x̄)(pl − p̄) − (xl − x̄)(pk − p̄)
]2
, (24)

where

x̄ = 〈x〉g = w1x1 + . . . + wm xm , (25a)

p̄ = 〈p〉g = w1p1 + . . . + wmpm . (25b)

There is not much to say, in general, when ǫg is positive,

besides that in this case the Twiss parameters of the gran-

ulated beam (βg , αg , γg) can be defined. The situation

becomes more interesting, if ǫg = 0.

The projected emittance of the granulated beam is zero if

and only if the vectors x − x̄ · 1m and p− p̄ · 1m are linearly

dependent, i.e. all points (xk ,pk ) are on the same straight

line passing through the point ( x̄, p̄) or, in other words, there

exists an angle φ such that

cos(φ) (x − x̄ · 1m ) + sin(φ) (p − p̄ · 1m ) = 0m . (26)

With (26) satisfied, the matrix Σ̃g takes on the following

important for the further consideration special form

Σ̃g = 〈(x − x̄)2
+ (p − p̄)2〉g

·
(

sin2(φ) − cos(φ) sin(φ)

− cos(φ) sin(φ) cos2(φ)

)

(27)

where

〈(x − x̄)2
+ (p − p̄)2〉g

=

m
∑

k=1

wk

[
(xk − x̄)2

+ (pk − p̄)2
]
. (28)

Original Beam

The projected emittance of the original beam can be con-

nected with the properties of the matrices Σ̃a and Σ̃g using

equality (35)

ǫ2 = ǫ2a +
[
tr

(

Σ̃a

)

tr
(

Σ̃g

)

− tr
(

Σ̃a Σ̃g

)]
+ ǫ2g . (29)

Because

tr
(

Σ̃a

)

tr
(

Σ̃g

)

− tr
(

Σ̃a Σ̃g

)

≥ 2ǫaǫg , (30)

the projected emittance of the original beam can never be

smaller than the sum ǫa + ǫg . In general, ǫ can be positive

even if both emittances ǫa and ǫg are equal to zero, but it is

somewhat exceptional situation which seems to be weakly

related to reality. So, in the following we will assume that

ǫa > 0.

If ǫg is also positive, then (29) turns into equation

ǫ2 = ǫ2a + 2mp (βa , βg )ǫaǫg + ǫ
2
g

= (ǫa + ǫg )2
+ 2[mp (βa , βg ) − 1]ǫaǫg , (31)

from which one sees that the mismatch between the Twiss

parameters of aligned and granulated beams is the source

of an additional (for the fixed ǫg value) increase of ǫ with

respect to the sum ǫa + ǫg .

If ǫg is equal to zero, then (29) turns into the equality

ǫ2 = ǫ2a + ǫa 〈(x − x̄)2
+ (p − p̄)2〉g

·
[
βa cos2(φ) − 2αa cos(φ) sin(φ) + γa sin2(φ)

]
. (32)

Because the matrix Σ̃a is positive definite, the multiplier in

the brackets in (32) is positive for an arbitrary value of the

angle φ, which means that the projected emittance of the

original beam will be equal to the projected emittance of

the aligned beam if and only if all projections of the slice

centroids onto the plane (x,p) are perfectly aligned, i.e. if

and only if

〈(x − x̄)2
+ (p − p̄)2〉g = 0. (33)

APPENDIX

In this appendix we list properties of the 2 × 2 real ma-

trices, which are needed for the better understanding of our

calculations.

If A is an arbitrary 2 × 2 matrix, then

det(A) = 1
2

[
tr2 (A) − tr

(

A2
)]
. (34)

If A and B are arbitrary 2 × 2 matrices, then

det(A+B) = det(A)+det(B)+ tr(A) tr(B)− tr(AB). (35)

If determinants of the 2 × 2 matrices A and B are non-

negative, then

tr(A) tr(B) − tr(AB) − 2
√

det(A)
√

det(B)

= det(A + B) −
[√

det(A) +
√

det(B)
]2
. (36)

If 2 × 2 matrices A and B are symmetric positive semi-

definite, then expressions on the both sides of the equality

(36) are non-negative due to Minkowski determinant theo-

rem.
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