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Abstract
In the community of synchrotron radiation facilities, multi-

bend structure becomes the trend of the storage ring design

toward lower emittance. For SOLEIL upgrade project, the

7BA-6BA hybrid structure is one of the current options.

This paper puts the focus on the 7BA section. There are

many degrees of freedom to tweak and many constraints to

follow. Here, the idea is to search and build the linear lat-

tice utilizing Multi-Objective Genetic Algorithm (MOGA),

which is efficient dealing with higher dimension optimiza-

tion problems. Within MOGA, subsidiary matchings are

performed to ensure certain criteria when the new generation

is bred. Delicate designs and manipulations of the objective

functions are needed, in order to have a better convergence

without being trapped in a local minimum. The results will

be shown and discussed.

INTRODUCTION
Pioneered by MAXIV’s upgrade project [1], many

third generation synchrotron light sources propose upgrade

projects toward a diffraction-limited storage ring. Definitely

more bending magnets are needed. In general the preferred

structure is the multi-bend achromat (MBA) lattice.

SOLEIL light source is a state-of-the-art third generation

synchrotron light source. The natural emittance is 3.9 nm-
rad at 2.75 GeV, which is as low as 2.2 times the theoretical
minimal emittance. The lattice features a double bend struc-

ture with 3 types of straight section lengths. It’s a very

compact ring in which straight sections occupy 46% of its

total circumference (∼ 354 m). At first the upgrade project

aims at the emittance < 300 pm-rad. To replace the magnet
sections with a MBA structure in such a compact ring, one

of the biggest challenges comes from the limitation of space.

To design such a complicated linear lattice, it’s better to

dissect the problem into smaller pieces and build the lattice

piecewise. How to appropriately dissect the problem may

be an artisan work. As an example, a systematic strategy is

proposed to search and construct a lower emittance lattice

in the current SOLEIL’s geometric configuration [2]. For

problems with a small degree of freedom, a global scan

is complete and feasible. However, for dimensions higher

than 5, modern fast converging searching algorithms such

as Genetic Algorithm (GA) or the particle swarm method

are necessary.

When facing multiple objectives which in general can

not be optimized simultaneously, some trade-offs have to

be made. The purpose of multi-objective optimization algo-

rithms is to find a set of optimal solutions in the objective
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space so that any good decision lays on it. This optimal set

is called the pareto front.

GA has been proven efficient in dealing with high dimen-

sional optimization problems. MOGA is the multi-objective

version of GA. It has been introduced with success in the

accelerator lattice design community [3–5]. For example,

a MOGA package based on Elegant code for the sextupole

scheme is developed at APS [3]. It finds the pareto front

of dynamic aperture area and Touschek lifetime. The im-

provement of the lifetime has been experimentally verified

at SOLEIL [6].

Lattice with small horizontal emittance and long free

straight sections cannot be fulfilled simultaneously. There-

fore the idea to use MOGA to help the design of the linear

lattice is conceived. The goal of this research is to find the

pareto front of the horizontal emittance v.s. the length of

magnet sections. An in-house MOGA program is developed

to handle the job.

MOGA SETUP
Lattice Structure
The chosen lattice to study is the hybrid 7BA structure.

It is similar to the lattice which is firstly proposed by the

ESRF upgrade project [7] and then adopted by many other

projects [8, 9]. Nevertheless, there are some minor differ-

ences between the chosen lattice and the ESRF’s hybrid 7BA

structure. Instead of longitudinal gradients dipoles, we use

combined function bending magnets. In addition, inspired

by the anti-bends design [10], two small anti-bend are added

in the focusing quadrupoles to further reduce the emittance.

The schematics and the naming convention of half of this

structure are shown in Figure 1. The total bending angle is

11.25◦ and the half straight section length is assumed to be
5 m.

Figure 1: Magnet schematics of the hybrid 7BA lattice.

Lattice Construction Strategy
This lattice features the proper phase advances between

two dispersion humps peaked between Q1 and Q2 for an ef-

fective sextupole scheme. The dispersion humps are formed

by creating larger D1 and D2. These spaces are for defocus-

ing sextupoles, while focusing sextupoles are located in the

hump peak. Although the sextupole pairs are interleaved,
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this feature still gives the pseudo-cancellation of the non-

linear sextupole effects. The third-order resonance driving

terms are naturally small and good dynamic aperture can be

expected.

To construct the optics piecewise, we use three matching

steps on the three sections as shown in Figure 1. Section 1

and 2 form the bending section. The emittance depending

on all bending magnets is determined in the bending section.

The three matching steps are as follows.

1. First, initial twiss parameters at the dispersion hump

are chosen and propagated through Section 1. The

slopes must be matched zero at the symmetric point. In

addition, another strong phase relation (Δφx,Δφz) =
(odd π, integer π)/2 is imposed.

2. Secondly, the same initial twiss parameters are reversely

propagated through Section 2. This section plays the

role of dispersion suppressor. The dispersion and its

derivative must be suppressed for the achromat condi-

tion.

3. Finally, the zero slopes and the desired beta functions

at the center of straight sections can be dealt with by

the quadrupole triplet or doublet in Section 3.

The third matching is tricky. It can be carried out by an-

other external matching program. Not all from the previous

two steps can be matched to a stable solution. These bad

solutions must be removed. The resulting quadrupole triplet

length varies. Assuming they are roughly the same, the

bending section length is equivalent to the magnet section

length.

We’re going to integrate the first two subsidiary matchings

in our MOGA optimization. When a new individual is bred,

the two matchings are performed. They are implemented by

a numerical optimization code called NLopt [11]. Different

methods have been tested and it was found that Augmented

Lagrangian algorithm with Nelder-Mead simplex is efficient

as the subsidiary algorithm.

Variables
There are many variables for this structure. All the lengths,

gradients, and bending angles affect the linear optics. Care-

ful choices of the boundaries are important. Besides, since

we use the optics propagation method to construct the lat-

tice, the initial optics at the dispersion hump can also be

variables. However, due to the constraints of a good lattice,

the degree of freedom is actually less. According to their

different properties, the variables are classified into four

categories.

1. Initial twiss function at the dispersion hump. There are
six of them.

2. Form factor of Section 1. It includes all the lengths
of the magnets and drift spaces in Section 1, plus all

the bending angles. There are totally 16 of them. The

space between the two quadrupoles in the dispersion

hump is assumed 0.4 m. We use the variables in the

first two categories as the MOGA variables.

3. All the gradient components of Section 1. We use
these variables for the first matching, which gives zero

slopes and proper phase advances at the symmetry

point. There are 5 quantities to be matched and 6 vari-

ables are fairly enough.

4. Variables of Section 2. The bending angle of the outer
bending magnet is not an independent variable. It has

the responsibility to make up the total bending angle a

constant. So there are 5 variables in this category.

Design Considerations
A satisfactory solution has the following properties.

1. Small horizontal emittance

2. Shorter bending section

3. Conserved total bending angle

4. Dispersion humps

5. Proper phase advances between humps

6. Zero slopes at the symmetry point

7. Achromat condition

8. Constraint on magnetic field

9. Constraint on maximal beta-function

10. Big beta-function decoupling around the humps

11. Small natural chromaticity

The first two items are the MOGA objectives. Items 3–8

are strong constraints which can be integrated and resolved

by the subsidiary matchings. Item 3 is fixed by removing the

dependency of the outer bending angle. Item 4 is done by

the proper choice of the range of the initial twiss parameters.

With penalty functions being designed properly, item 5 and

6 are resolved by the first matching, while second matching

takes care of item 7. Item 8 can be dealt with by modifying

the MOGA objectives. How to integrate items 5-8 will be

addressed later.

At this moment, Item 9, 10 and 11 are not considered yet.

For further improvement, Item 9 can be resolved by refining

the matching program. Item 10 can be added by adjusting

the objective. And Item 11 can be the third MOGA objective

to be optimized. Moreover, we can combine Item 4, 10 and

11 to calculate the sextupole strengths, as the third MOGA

objective.
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Objectives Design
The MOGA objectives have to be delicately tailored to

handle the criteria 5, 6, 7 and 8. A smart manipulation on

the MOGA objectives improves the convergence. Various

objectives have been tried. Here we’re going to present an

example of an artisan design that works well. The trick is to

use multiple levels of the objectives.

The first level deals with the criterion 8. The objective is a

scalar function defined as a measurement of the excess dipole

field. Its range lies between (2, 3). As the generation evolves,
the algorithm pushes the population toward criterion 8. If

criterion 8 is satisfied, the objective moves to the next level.

The second level takes care of the goodness of matchings

after a new individual is bred. This objective is a scalar

function that measures the goodness of the two matchings.

It is defined as the sum of the twomatching penalties mapped

to the range (1, 2). The penalty functions of the matchings
are designed so that the smaller matching penalty yields a

better matching result. We define the matching with the

penalty < 10−6 as a good matching. As the generation
evolves, the individual with better matching survives. If

both matchings are good, the criteria 5, 6 and 7 are fulfilled,

and the scalar objective enters the final level.

In the first two levels the objective is a scalar function. In

practice, the two objectives are set identical to each other.

The MOGA runs just like a single objective GA. These two

levels provide the selection mechanism which filters out the

infeasible solutions. Criteria 5, 6, 7 and 8 are guaranteed for

individuals whose objectives reach the final level.

The actual MOGA is carried out in the final stage. In

this level the scalar objective splits into two. They are also

scaled to (0, 1). They represent the actual quantities we care
about: the emittance and the length of the bending sections.

As the generation evolves, the algorithm picks and keeps the

dominated solutions.

In many situations the objectives involve treating un-

bounded quantities. For example, the emittance can vary

in a wide range. These quantities need a special treatment.

An useful technique is to rescale the unbounded quantity to

be bounded by a s-function. As an example of s-function,

a standard logistic function defined as f (x) = 1/(1 + e−x)
maps x from (−∞,∞) to (0, 1).

SIMULATION RESULTS
Based on the framework defined by GAlib [12], a in-house

MOGA program is developed to handle the job. The sorting

algorithm is SPEA2 [13]. The data are stored in memory in

SQLite3 format to improve the efficiency by saving DISK

I/O time. As a reference, it takes about 28 hours for a single

modern CPU to finish an iteration of 500 generations with

the population of 300. The simulation result is shown in

Figure 2. The objectives converge to level 3 quickly in a few

ten generations. The pareto front and its improvement can

be clearly observed. We pick four cases in the pareto front

and compare their results in Figure 3.

In the pareto front the horizontal phase advances between

the humps (Δφx) found by the algorithm are always 3π. How-
ever the vertical phase advances (Δφz) can be π, 2π, and
even 3π. As the generation evolves, the algorithm pushes
the pareto front to lower emittance. The solutions with

higher Δφz gradually replace the cases with lower Δφz in
the pareto front. Their nonlinear optimization is undergoing.

In reality the phase difference doesn’t have to be strictly

(odd π, integer π). How much the criterion 5 can be relaxed
needs further investigations.
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Figure 2: The objectives of every 100 generations: Horizon-

tal emittance versus half length of the bending section.
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Figure 3: Optical functions obtained fromMOGA for several

cases of the pareto front.

CONCLUSION
This study demonstrates an approach to use MOGA to

search linear lattices of the specific hybrid 7BA structure.

To fulfill the design criteria, proper subsidiary matchings

and the careful design of the objectives are necessary. The

chosen objectives are the horizontal emittance and the bend-

ing section length. A pareto front is found for the decision

making. Thorough explorations must include the matching

in the straight section and the nonlinear properties. If be-

ing handled well, other lattice structures can be studied in a

similar way.
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