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Abstract 

The thin-lens representation for an RF accelerating gap 
has been well developed and is documented by Lapostolle  
[1], Weiss [2], Wangler [3], and others [4], [5]. These 
models assume that the axial electric field is both 
centered and symmetric so it has a cosine expansion. 
Presented here is a model that considers general axial 
fields. Both the cosine and sine transit time factors are 
required plus their Hilbert transforms. The combination 
yields a complex Hamiltonian rotating in the complex 
plane with the synchronous phase. The phase and energy 
gains are computed in the pre-gap and post-gap regions 
then aligned with asymptotic values of wave number. 
Derivations are outlined, examples are shown, and 
simulations presented. 

BACKGROUND 
Thin Lens 

Let an RF accelerating gap be centered at axial position 
z = 0. In the thin-lens model particle energy W is constant 
upstream and downstream but experiences an impulsive 
energy gain  at z = 0. Hamiltonian dynamics require 
that particle phase  must also experience an impulse  
at z = 0. The objective is to determine the final phase and 
energy ( , ) given an arbitrary longitudinal electric 
field profile ( , ) and initial coordinates ( , ). 

Assuming that the gap axial field  is harmonic, the 
spatial and time dependence can be separated as  ( , ) = ( ) cos ( ) , (1) 
where (⋅) is the profile of the longitudinal electric field 
component. The RF phase is given by ( ) = +  
where = 2  is the RF angular frequency and  is the 
phase at time = 0  when the particle is at = 0 . If = ( ) is the particle position at time  then the phase ( ) seen by the particle can be expressed  

( ) = 2 1( ) + = ( ) + ,         ≈ + , (2) 

where ( ) is the normalized particle velocity, c is the 

speed of light, ( ) = 2 / ( )  is the particle wave 
number, and  is the RF wavelength. The second line 
assumes the particle velocity is constant ̅ producing an 
averaged wave number , accurate when ≪ .  

Laplace Transform and Hilbert Transform 
The two-sided Laplace transform ℒ  of real function f 

is defined [6] ℒ ( ) ( ) ≜ ( )∞

∞

 , (3) 

where AC indicates analytic continuation and = +∈ ℂ  is the complex transform variable. Define ℰ ( ) ≜ ℒ ( ) ( ). From (3) and the Euler identity ℰ ( ) = ( ) − ( ) , (4) 

where ≜ ∫  is the potential across the gap, and  

( ) ≜ 1 ( ) cos∞

∞

 , 
( ) ≜ 1 ( ) sin∞

∞

 , (5) 

are the Fourier transform components of (⋅)  [7][8] 
known as transit time factors in beam physics [4]. 

The Hilbert transform ℋ of real function f is [9] ℋ ( ) ≜ 1 ( )−∞

∞

= 1 ∗ ( ) , (6) 

where PV is the Cauchy principle value. The Hilbert 
transform is the convolution of f(z) with the kernel 1/ . 
By the convolution property of Laplace transform ℒ  [6] ℋ ℰ ( ) = 1 ∗ ℰ ( ) = ℒ sgn( ) ( ) , (7) 

where sgn( ) (signum) is the inverse Laplace transform 
of 1/2 . Now define the quadrature transform ℰ  as ℰ ( ) ≜ ℒ sgn( ) ( ) ( ) . (8) 

The quadrature transit-time factors  and  are defined  

( ) ≜ 1 sgn( ) ( ) cos∞

∞

 , 
( ) ≜ 1 sgn( ) ( ) sin∞

∞

 , (9) 

so that 
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ℰ ( ) = ( ) − ( ) . (10) 

By linearity of ℋ , Eqs. (7), (8), and (9), note ( ) =−ℋ ( )  and ( ) = +ℋ ( ) . In principle  and 
 can be computed from  and  [10]. However, it may 

be more practical to compute them directly from Eqs. (9). 

Pre- and Post- Envelopes 
Define pre- and post-envelopes ℰ  and ℰ  as [9][11] ℰ ≜ 12 (ℰ + ℋ ℰ ) = 12  ℰ − ℰ  , ℰ ≜ 12 (ℰ − ℋ ℰ ) = 12 ℰ + ℰ  . (11) 

Notice ℰ ( ) and ℰ ( ) are the spectra for half-fields  ( ) ≜  ( )     for   < 0 ,   0           for   > 0 , ( ) ≜    0           for   < 0 ,     ( )    for   > 0 ,    
(12) 

That is, ℰ±( ) = ℒ ± ( ). Using Eqs. (4), (10), (11) ℰ ( ) = 2 − − 2 − , ℰ ( ) = 2 + − 2 + , (13) 

where , , ,  are all evaluated at k.  

Since the data for ℰ  and ℰ  exists only on the 
imaginary axis = , the derivatives must be performed 
there. Via the Cauchy-Riemann conditions [12] ℰ ( ) = − 2 − − 2 −  ,ℰ ( ) = − 2 + − 2 +  . (14) 

Quantities ℰ , ℰ , ℰ , and ℰ  determine the dynamics.  

DYNAMICS 

Energy Gain 
The energy gained ( )  by a particle up to axis 

location z is the work done by  up to position ( ) [3]. 
Using the expansion (1) for  and the approximation in 
(2) for particle phase produces ; = ( ) cos +  

∞

. (15) 

where q is particle charge and  is a suitable average 
wave number. Pivoting off the initial energy  for < 0 and final energy  for > 0 the above formula 
yields the following for particle energy ( ) for all z: 

( ) = + cos +
∞

 < 0
− cos +∞  > 0 (16) 

where  and  are the upstream and downstream 
average wave numbers, respectively. Denote by the 
(upstream) energy gain for < 0  and by  the 
(downstream) energy gain for > 0. Then , = ℰ , , = ℰ , (17) 

Phase Jump 
Computation of the phase jump  is more involved. 

The thin-lens phase approximation ( ) is  ( ) ≜ + for    < 0 ,+ for    > 0 , (18) 

where  and  are the pre- and post-gap wave numbers 
(i.e., ± = lim →±∞ ( ) ) , and  and  are the 
(constant) phase values at = 0  and 0 . The desired 
phase jump  is the quantity  = −  which 
realigns the asymptotic expressions in Eqs. (18) on either 
side of = 0. Now define ≜ −  , ≜ −  , (19) 

so that Δ = Δ + Δ .  

A variational technique is used to approximate particle 
phase ( ). Expand wave number  in energy W about 
the asymptotic values  and . Since ( ) is known 
by Eq. (16) a first variation for ( ) is formed. Consider 
first the upstream region < 0. Wave number  can be 
expressed in terms of energy W as  ( ) = +( + 2 ) /  , (20) 

where m is particle mass and ≜ 2 / . Expanding 
about the initial energy  produces ( ) ≈ ( ) + ( ) ( ) −  . (21) 

Note ≜ ( ) and define ≜ − ( ) = 1 1   , (22) 

where  is the pre-gap normalized velocity, and  is 
the pre-gap relativistic factor (  is defined positive). 
Substitute Eq. (16) into (21) then the result into (2) yields ( ) ≈ +− ( ) cos +

∞

, (23) 

valid for < 0 . The asymptotic nature of  requires ( ) − ( ) → 0 as → −∞. Using approximation (23), 
definitions (18), and = −  from (19) 
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≈ − ( ) cos +
∞∞

,
          = − ( ) cos +

∞

, (24) 

where the integration order was changed in the second 
line (note the domain < < 0, −∞ < < 0). Carrying 
out the integration over z 

≈  ( ) ∞

∞

, (25) 

where the half-field  is substituted to extend the limits 
of integration.  Using the Laplace derivative theorem [6] ≈  −ℰ ( )  , (26) 

where  ℰ ( ) ≜ ℰ ( )/ , then evaluated at =  .  
The post-gap phase jump  can be determined with 

an analogous procedure. The results for both regions are , = − ℰ  ,, = − ℰ  . (27) 

Eqs. (17) and (27) form the dynamics of the gap. They are 
coupled through the energy-momentum (i.e., 
wavenumber) relation (20), and definition (22).   

Gap Offsets 
By the shifting property of the Laplace transform any 

offset  of the gap center from the axis origin can be 
represented as a multiplication of the spectrum ℰ ( ) 
and ℰ ( ) by  [6].  

Hamiltonian Dynamics 
Equations (17) and (27) suggest the following complex 

“Hamiltonians” , : ℂ → ℂ (see for example [13]) ( + ) ≜ ( )ℰ ( ) , ( + ) ≜ ( )ℰ ( ). (28) 

For the upstream case the dynamics equations become = +    +  , =  −    +  , (29) 

where = ( ) is the (unknown) energy at the center 
of the gap. For the downstream case we have = +    +  , =  −    +  , (30) 

where = ( ). Equation (16), continuity of energy 
across = 0, appears in this context as  =  + +  + . (31) 

The Hamiltonian imaginary parts contain the dynamics 
while the real parts represent energy conservation. 

SIMULATION 
These techniques have been implemented in the Open 

XAL online model (see [14] for model, [15] for Open 
XAL). Each gap within a cavity contains unique spectra ℰ  and ℰ . The dynamics are computed with algorithms 
based on Eqs. (29), (30), (31). Compared are simulation 
results with the previous acceleration mechanism versus 
the new technique. The previous model was implemented 
according to the gap model described in [1]. Two 
situations are of primary interest, warm structures and 
cold structures. Results from the SNS warm linac did not 
demonstrate any significant differences and are not 
presented. More interesting findings were seen in cold 
structures, a comparison for the SNS medium-beta super-
conducting linac is shown in Figure 1. There the initial 
acceleration falls off in the new model but then 
accelerates more strongly. The final energies are nearly 
equal with the new model yielding a value approximately 
-0.5% of the old model results. However, simulating the 
entire cold linac a difference of -2.4% is observed. The 
super-conducting gaps have more irregular fields and the 
new model can better represent these features. 

 
Figure 1: simulation comparison for medium-beta SCL 

CONCLUSION 
The current model generalizes previous treatments of 

the thin-lens RF accelerating gap. The full compliment of 
four transit-time factors allows the consideration of any 
axial electric field profile and is not restricted to fields 
symmetric about a given axis location. Moreover, the 
spectral analysis provided by the Laplace and Hilbert 
transforms is theoretically compact and more satisfying. 
The gap model was incorporated into the Open XAL 
online model. Each individual gap can be provided with 
unique spectra. When gap geometries are irregular or vary 
within a cavity the new model is useful, for example in 
cold accelerating structures. However, for cavities with 
symmetric, regular geometries the current model offers 
little advantage.  
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