Keyword: quadrupole
Paper Title Other Keywords Page
MOODB102 Multiple Function Magnet Systems for MAX IV dipole, multipole, octupole, sextupole 34
 
  • F. Bødker, C.E. Hansen, N. Hauge, E.K. Krauthammer, D. Kristoffersen, G. Nielsen, C.W.O. Ostenfeld, C.G. Pedersen
    Danfysik A/S, Taastrup, Denmark
 
  Danfysik is currently producing 60 up to 3.3 m long magnet systems consisting of up to 12 multipole magnets integrated into each of the yokes for the bending achromats of the MAX IV 3 GeV storage ring and 12 similar systems for the MAX IV 1.5 GeV storage ring. Each magnet yoke contains combined function soft-end dipole and quadrupole elements which are machined out of one single iron block at tolerances of ± 0.02 mm. In addition, separate, higher order multipole magnets are kinematically mounted into the yokes. The integration of many magnetic elements into single yoke structures enables a compact, low emittance storage ring design. The dipole and quadrupole magnetic elements are magnetically field mapped with high precision on a 3D hall probe measuring bench. Higher order multipoles are measured on a slow rotating coil system developed for that purpose. Much effort has been put into automation in order to quickly perform the very comprehensive measurement program each girder will through.  
slides icon Slides MOODB102 [2.701 MB]  
 
MOPEA003 Status and Very First Commissioning of the ASTRID2 Synchrotron Light Source vacuum, lattice, cavity, booster 64
 
  • S.P. Møller, N. Hertel, J.S. Nielsen
    ISA, Aarhus, Denmark
 
  ASTRID2 is the new 10 nm UV and soft x-ray light source at Aarhus University. It will replace the ageing source ASTRID, which will be used as the full-energy (580 MeV) booster for ASTRID2. An upgrade of the beamlines at ASTRID are presentlytaking place before being transferred to ASTRID2 until the end of 2013. In addition new beamlines and insertion devices are being procured. Presently, ASTRID2 commissioning is alternating with ASTRID operation to continue during 2013. Status in spring 2013 includes operation of most sub-systems resulting in top-up mode operation to 150 mA. The lattice have been qualifies although a re-alignment is planned. The poster will present experiences from the first commissioning and give the status of the project.  
 
MOPEA005 A Linear Beam Raster System for the European Spallation Source? target, linac, optics, beam-losses 70
 
  • H.D. Thomsen, A.I.S. Holm, S.P. Møller
    ISA, Aarhus, Denmark
 
  The European Spallation Source (ESS) will, when built, be the most intense neutron source in the world. The neutrons are generated by a high power (5 MW) proton beam impacting a rotating W spallation target. To reduce the replacement frequency of components subjected to the full beam current, i.e. the proton beam window and the target, means to introduce low peak current densities, i.e. flat transverse beam profiles, are necessary. The relatively long beam pulse duration of 2.86 ms (at 14 Hz) leaves ample time to facilitate a Lissajous-like, linear raster system that illuminates a footprint area by sweeping an only moderately enlarged LINAC beamlet. Although slightly more technically challenging, this method has many advantages over the previously envisaged beam expander system based on non-linear DC magnets. The design, specifications, performance, and benefits of the beam raster system will be described and discussed.  
 
MOPEA007 Study of Lower Emittance Optics Using Multi-Bend-Achromat Lattice at SOLEIL emittance, dipole, optics, lattice 76
 
  • R. Nagaoka, P. Brunelle, X. Gavaldà, M. Klein, A. Loulergue, A. Nadji, L.S. Nadolski, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  In the framework of a future upgrade of the SOLEIL 354 m long and 2.75 GeV storage ring, a series of lattice studies has been launched to aim at reducing by an order of magnitude the current 4 nm.rad horizontal emittance. In this exercise, the main constraint imposed is to leave all the existing 24 straight sections for insertion devices untouched. In the previous study (presented at IPAC 2012), the possibility of using superbends and exploiting their longitudinal dipole field variation was pursued in lowering the emittance, finding solutions with a horizontal emittance in the sub nanometer range. In the present study, the use of MBA (Multi-Bend-Achromat) lattice is explored, which is widely recognized today as the optimal lattice in reaching an ultra-low emittance. The study aims to clarify the adaptability of the MBA and the range of attainable emittance for the SOLEIL ring, in view particularly of the short straight sections existing in half of the original DBA cells in between the dipoles. The possibility of combining the previously obtained superbend solutions with the MBA lattice is also examined.  
 
MOPEA023 Lattice Design for the ILSF Booster Synchrotron booster, sextupole, emittance, damping 121
 
  • E. Ahmadi, H. Ghasem, F. Saeidi
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
 
  ILSF booster synchrotron is a full energy 3GeV injector with the circumference of 192m will be housed in a separate tunnel from storage ring. In order to keep low the emittance, a theoretical minimum emittance lattice in which the dipoles and quadrupoles have sextupole component has been considered for the booster. In this paper, the lattice concept and main features of the booster will be reported. The variation of emittance and beam size during booster ramping is also investigated. Finally the effect of existed eddy current on the chromaticity and dynamic aperture will be presented.  
 
MOPEA024 Effects of Insertion Devices in the High Field Lattice Structure of ILSF Storage Ring dynamic-aperture, insertion, insertion-device, radiation 124
 
  • F. Saeidi, E. Ahmadi, H. Ghasem
    ILSF, Tehran, Iran
  • H. Ghasem
    IPM, Tehran, Iran
 
  We have studied effects of different insertion devices(IDs) in the high filed ILSF storage ring. Radiation from the IDs leads to change emittance and energy spread of the ring and magnetic field of them results to beta-beating, tune shift and shrink of dynamic aperture. This paper describes effects of the IDs on beam parameters of the high field lattice structure of ILSF storage ring and proposes the compensation method of these effects.
farhad.saeidi@ipm.ir
 
 
MOPEA029 Status of UVSOR III injection, undulator, vacuum, sextupole 139
 
  • T. Konomi, M. Adachi, K. Hayashi, M. Katoh, J. Yamazaki
    UVSOR, Okazaki, Japan
  • M. Adachi, M. Katoh
    Sokendai - Okazaki, Okazaki, Aichi, Japan
 
  UVSOR-III is the 750 MeV synchrotron light source. In 2012, three new components were installed in the storage ring. First one is combined function bending magnets to reduce the emittance from 27 nm-rad to 17 nm-rad. These magnets can produce dipole, quadrupole and sextupole fields at the same time. Second ones are an in-vacuum undulator and a beam line. It was installed at 1.5 m straight section, which is the last section reserved for insertion devices. As a result, UVSOR-III is now equipped with six undulators. It would provide soft X-rays to a scanning transmission X-ray microscope (STXM) beam-line. Last one is a newly designed pulse sextupole magnet at the injection point. This is beneficial to the user experiments in the top-up operation mode. Fine machine tuning is in progress.  
 
MOPEA033 Status of Upgrade Project of the 1.2 GeV Booster Synchrotron at Tohoku University booster, alignment, dipole, synchrotron 151
 
  • F. Hinode, H. Hama, S. Kashiwagi, T. Muto, I. Nagasawa, K. Nanbu, Y. Shibasaki, K. Takahashi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  The 1.2 GeV electron synchrotron has been operated for nuclear physics experiment since 1997 in Electron Light Science Centre, Tohoku University, in which the high energy gamma-rays via bremsstrahlung has been supplied for hadron physics. After the Great East Japan Earthquake in March 2011, recovery and reconstruction work of the accelerator complex is in progress vigorously. While the compact 90 MeV linac is newly constructed as the dedicated injector for the synchrotron, old power supplies of synchrotron magnets and also pulsed magnets for beam injection are going to be replaced in the synchrotron. Furthermore replacements of some quadrupole magnets to the combined function magnets with sextupole component are also on going. Modifying the ring optics so as to introduce the horizontal dispersion on the combined magnet position, this replacement work will make it possible to correct the chromaticity. At the present, power supplies and combined magnets have been manufactured and those installations will be completed soon. We will present the current status of upgrade project of the booster synchrotron.  
 
MOPEA036 Transport Line Orbit Correction for CSNS/RTBT alignment, target, extraction, linac 154
 
  • Y. Li, Y.W. An, Z.P. Li, W.B. Liu, S. Wang
    IHEP, Beijing, People's Republic of China
 
  Dipole field kicks arisen from the construction and alignment of the magnets may cause the orbit distortion and reduce the efficiency of beam extraction and striking target in RTBT transport line of CSNS. In this paper, orbit correction is done based on XAL Orbit Correction application with the algorithm modified partially and the result was according with by AT toolbox. Meanwhile, the orbit correction before the target was special considered for the beams striking the target center vertically.  
 
MOPEA047 Ramping of the Solaris Storage Ring Achromat optics, dipole, sextupole, lattice 184
 
  • A.I. Wawrzyniak, C.J. Bocchetta, D. Einfeld, R. Nietubyć
    Solaris, Kraków, Poland
  • D. Einfeld
    MAX-lab, Lund, Sweden
  • R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  Funding: Work supported by the European Regional Development Fund within the frame of the Innovative Economy Operational Program:POIG.02.01.00-12-213/09,
The combined function magnets implemented for the MAX IV and Solaris 1.5 GeV storage ring double bend achromats (DBAs) represents a challenging task in magnetic design. The constituent magnets in the DBA block may be sensitive to saturation effects which must be accounted for, especially in the case of energy ramping, as is the case for Solaris and not for MAXIV, where injection will take place at a beam energy of 0.55-0.6 GeV. The magnetic field distribution was calculated as a function of energy in the range from 0.5 GeV up to 1.5 GeV for the gradient dipole and for the quadrupoles containing a sextupole component. Results show that for the dipole, which generates the strongest field, the relative change of quadrupole strength is lower than 4.10-3. For the quadrupoles the sextupole component is within the relative range of less than 0.7.10-4. The impact on linear and non-linear optics at low energies has been accordingly studied. This is on-going studies and only preliminary results are presented in this paper.
 
 
MOPEA062 Metrology of the NESTOR Facility Equipment target, storage-ring, dipole, survey 222
 
  • O. Bezditko, V.E. Ivashchenko, I.M. Karnaukhov, A. Mytsykov, A.V. Reuzayev, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  Development of X-ray generator NESTOR in the National Science Center Kharkov Institute of Physics&Technology will let significantly extend the scientific program of investigations that are carried out in NSC KIPT, will allow to increase an amount and improve quality of experimental researches in the field of physics and chemistry In this work tolerances for accuracy installation of the lattice elements of the complex are defined. The methods of lattice element position measurement were detected and ways of their realization were defined. These allow to realize the project parameters of NESTOR facility and, first of all, generated X-ray beam intensity.  
 
MOPEA068 Novel Lattice Upgrade Studies for Diamond Light Source lattice, vacuum, dipole, optics 240
 
  • R. Bartolini, C.P. Bailey, M.P. Cox, N.P. Hammond, J. Kay, R.P. Walker
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini, T. Pulampong
    JAI, Oxford, United Kingdom
 
  Many synchrotron radiation facilities are studying lattice upgrades in order to lower the natural emittance and hence increase the radiation brightness. At Diamond we are pursuing a novel alternative, not targeting the minimum possible emittance but instead introducing additional insertion device (ID) straights and hence increasing the capacity of the facility, while still possibly achieving a more limited reduction in emittance. The new scheme involves converting some of the DBA lattice cells into a double-DBA or DDBA, with a new ID straight between the two achromats. This then allows existing or future bending magnet ports (which in Diamond are taken from near the entrance to the second dipole of the DBA lattice) to be served by a much more powerful insertion device. We present here the design concept and preliminary lattice design, and discuss the challenging magnet, vacuum and engineering issues.  
 
MOPEA079 Improving Emittances in Existing Storage Rings by Defocusing Dipoles dipole, emittance, optics, lattice 270
 
  • C.E. Mayes, L. Gupta, G.H. Hoffstaetter, V.O. Kostroun, A.A. Mikhailichenko
    CLASSE, Ithaca, New York, USA
 
  Designs for ultimate storage rings typically employ two strategies to lower the emittances: 1) adding more bending magnets, and 2) using only focusing quadrupole magnets, with additional defocusing in the bending magnets. In an existing storage ring, the first strategy is precluded because the number of bends is typically fixed, but the second strategy could be used at modest expense. With the CESR storage ring as an example, we show how this is possible and propose an optics that reduces its emittance by more than a factor of 20. Furthermore, such an upgrade would could be installed incrementally without any long dark-time period.  
 
MOPFI054 Upgrades for the CERN PSB-TO-PS Transfer at 2 GeV injection, optics, emittance, kicker 404
 
  • W. Bartmann, J. Borburgh, J.R.T. Cole, S.S. Gilardoni, B. Goddard, O. Hans, M. Hourican, L. Sermeus, R. Steerenberg
    CERN, Geneva, Switzerland
  • C.H. Yu
    IHEP, Beijing, People's Republic of China
 
  The CERN PS Booster extraction energy will be upgraded from 1.4 to 2.0 GeV to alleviate the direct space charge tune shift in the PS. The focussing structure of the transfer line will be modified in order to better match the optics between the PSB and the PS. The optics of the PS at injection and, with it, of the transfer line can be adapted to reduce the continuous losses from the already injected and circulating beam bumped towards the septum. Experimental results of the optics optimisation and probing the injection kicker gap will be shown.  
 
MOPFI055 Design Study of a 100 GeV Beam Transfer Line from the SPS for a Short Baseline Neutrino Facility optics, target, dipole, extraction 407
 
  • W. Bartmann, B. Goddard, A. Kosmicki, M. Kowalska, F.M. Velotti
    CERN, Geneva, Switzerland
 
  A Short Baseline neutrino facility at CERN is presently under study. It is considered to extract a 100 GeV beam from the second long straight section of the SPS into the existing transfer channel TT20, which leads to the North Area experimental zone. A new transfer line would branch off the existing TT20 line around 600 m downstream of the extraction, followed by an S-shaped horizontal bending arc to direct the beam with the correct angle onto the defined target location. This paper describes the optimisation of the line geometry with respect to the switch regions in TT20, the integration into the existing facilities and the potential refurbishment of existing magnets. The optics design is shown, and the requirements for the magnets, power converters and instrumentation hardware are discussed.  
 
MOPFI060 Beam Transfer to LHC with the Low Gamma-transition SPS Optics optics, extraction, injection, collimation 419
 
  • G. Vanbavinckhove, W. Bartmann, H. Bartosik, C. Bracco, L.N. Drøsdal, B. Goddard, V. Kain, M. Meddahi, V. Mertens, Y. Papaphilippou, J.A. Uythoven, J. Wenninger
    CERN, Geneva, Switzerland
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  A new low gamma-transition optics with a lower integer tune, was introduced in the SPS to improve beam stability at high intensity. For transferring the beam to the LHC, the extraction bumps, extraction kickers and transfer lines needed to be adapted to the new optics. In particular, the transfer lines were re-matched and re-commissioned with the new optics. The first operational results are discussed for the SPS extraction, the transfer lines and the LHC injection. A detailed comparison is presented between the old and the new optics of the trajectories, dispersion, losses and other performance aspects.  
 
MOPFI061 Concept for Elena Extraction and Beam Transfer Elements extraction, septum, kicker, vacuum 422
 
  • J. Borburgh, B. Balhan, W. Bartmann, T. Fowler, L. Sermeus, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
  • D. Barna
    University of Tokyo, Tokyo, Japan
  • V. Pricop
    Transilvania University of Brasov, Brasov, Romania
 
  In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.  
 
MOPME033 Wire Scanner Emittance Measurement and Software Design at BEPCII emittance, linac, target, EPICS 544
 
  • W. Qiao, Z. Duan, H. Geng, W.B. Liu, Y.F. Sui
    IHEP, Beijing, People's Republic of China
 
  Wire scanners are diagnostic devices to measure the beam profile. Resent years, BEPCII adopts wire scanner measurement system for accurate beam size and emittance measurements. Beam emittance measurements can be performed with no adverse impact on beam and no interruption to normal machine operation. The BEPCII wire scanner system includes sets of four scanners in linac by which the linac output emittance is determined. In order to make the measurement procedure automated and easily accessible to all operators, wire scanner measurement software is developed. The software can obtain real-time signal data from the Experimental Physics and Industrial Control System(EPICS) and emittance calculation, phase chart and optics envelope display will be done. In this paper we describe the construction, performance and uses of BEPCII wire scanners measurement system and software.  
 
MOPME040 Cavity-based Multi-parameter Beam Diagnostics at HLS cavity, emittance, diagnostics, gun 559
 
  • Q. Luo, B.G. Sun
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Natural Science Foundation of China (11005106)
Recent developments of the fourth generation light sources needs precious control of beam parameters, such as beam position, transverse emittance, beam density, bunch length, etc.. Non-destructive on-line beam diagnostic methods are then required. As an example, the cavity beam multi-parameter monitor system designed for the HLS photocathode RF electron gun consists of a beam position monitor, a beam quadrupole moment monitor and a beam density and bunch length monitor. The cavity beam position monitor uses a re-entrant position cavity tuned to TM110 mode as position cavity and cut-through waveguides to suppress the monopole signal. Beam quadrupole moment monitor system consists of a square pill-box quadrupole moment cavity, a cylindrical pill-box reference cavity and a waveguide coupling network. TM0n0 modes of cavity can be used to work out beam density and bunch length simultaneously. To simplify the design and suppress the whole system here, we use the reference cavity of beam position monitor as beam density and bunch length signal pick-up.
 
 
MOPME041 Design and Calculation of the Stripline Beam Position Monitor for HLS II Storage Ring coupling, simulation, storage-ring, impedance 562
 
  • F.F. Wu, C. Cheng, W.B. Li, P. Lu, T.J. Ma, B.G. Sun, H. Xu, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China (10875117, 11005105, 11175173)
According to the requirements of HLS II upgraded, in order to acquire the non-intercepting measurement of beam position and quadrupole component, a new stripline beam position monitor (BPM) was designed for storage ring. The BPM parameters were optimized to acquire impedence matching with characteristic impedance of the external transmission lines and the coupling coefficients between the electrodes were calculated. According to the difference/sum and log-ratio methods, the horizontal and vertical sensitivities, mapping figures and fitting polynomials wered acquired. The results showed that sensitivities using log-ratio method were bigger than those using difference/sum method. The sum signal was also simulated when beam displacement varied from (0 mm, 0 mm) to (5 mm, 5 mm), the result showed that the variation of normalized sum signal was no more than ±6%. The gaussian weighted method of a two-dimensional grid structure was used to simulate the gaussian bunch and simulate the beam transverse quadrupole component changing with position (x, y), the result showed that the beam transverse quadrupole component changed linearly with position combination (x2-y2).
 
 
MOPME043 Calibration of Beam Position Monitors in the Injector of HLS II brilliance, coupling, linac, emittance 568
 
  • J.Y. Zou, J. Fang, W.B. Li, P. Lu, T.J. Ma, B.G. Sun, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by the National Science Foundation of China (11175173, 11105141)
A beam position monitor(BPM) system is being installed to improve the beam position measurement of the injector at the upgrade project of Hefei Light Source (HLS II). The new BPM system is consists of 19 stripline BPMs and 19 Libera Brilliance Single Pass modules. Before installation, the response of the BPMs must be mapped to improve the accuracy of measurement. The theoretical equations of both position and quadrupole component of the BPM are calculated first, using both formula and matlab simulation. A laboratory calibration system is built. The inconsistency of Libera Brilliance Single Pass channels is measured to improve the accuracy of calibration. The calibrating results show the position sensitivity is less than 5% difference compare to the theoretical value, while the quadrupole component sensitivity is less than 10% difference.
 
 
MOPME070 Emittance and Beta Functions Measurements for the MAX IV Linac emittance, simulation, linac, controls 640
 
  • N. Čutić, E. Mansten
    MAX-lab, Lund, Sweden
 
  We plan to determine beam emittance and Twiss parameters for the MAX IV linac using multiple-quadrupoles scans. We investigate the possibility to perform such scans using matching sections' quadrupoles combined with beam profile measurements by fluorescent YAG screens. Beam pipe size, resolution and screen saturation limits and strengths of quadrupoles are taken into consideration. Our approach to this problem using Kalman filter is presented.  
 
MOPWA002 New Purposed High Precision Power Supply For Quadrupole Magnets Of ILSF using Low Resolution Digital PWM power-supply, storage-ring, controls, feedback 664
 
  • M. Jafarzadeh, M. Akbari, J. Rahighi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
 
  A total number of 104 quadrupole magnets, split into 9 families, will be required for the ISLF storage ring lattice. Each quadrupole magnet is connected with its own independent power supply. In new design for quadrupole magnets, the outputs of two synchronized push-pull converters (one for coarse regulation and another for fine current regulation) will be added together before a synchronous rectification. In this manner, there will be no need for extra high-current electronic parts. Another advantage of this design is using a high-voltage inductor on the switching side rather than a high current inductor ion the high current side. The PWM signal to control of buck converter (at the input stage of each unit) will be generated inside a dsPIC .  
 
MOPWA005 Development of a Feedback Control System for Resonant Power Supplies in the J-PARC 3-GeV Synchrotron controls, power-supply, feedback, impedance 672
 
  • Y. Watanabe
    JAEA, Ibaraki-ken, Japan
  • N. Tani
    JAEA/J-PARC, Tokai-mura, Japan
 
  In the J-PARC 3-GeV Synchrotron, dipole magnets and seven families of quadrupole magnets are excited with a DC-biased 25 Hz sinusoidal waveforms using an individual resonant circuits. This paper proposed a feedback system to improve the amplitude and phase stability, specially against variation of capacitance caused by temperature characteristics in the resonant circuits. The control system has been successfully demonstrated and achieved amplitude and phase stability under ±0.005% and ±0.5 uS, respectively.  
 
MOPWA015 The Control Strategy Research on Two Kinds of Topological Pulse Power Supply power-supply, controls, pulsed-power, heavy-ion 693
 
  • C.F. Shi, D.Q. Gao, Y.Z. Huang, H.H. Yan, Z.Z. Zhou
    IMP, Lanzhou, People's Republic of China
 
  This paper introduces a kind of pulsed power supply at HIRFL-CSR,analyzes the ripple and current error of the quadrupole magnet power supply in the operation process, and gives a two-stage topology of pulsed power supply. The control method is simulinked and the results show that the new one can make up for the deficiencies of the existing pulse power supply and the main circuit structure and control method are feasible.  
 
MOPWA028 Power System for Quadrupole Magnets of NSLS-II 3 GeV Booster controls, booster, extraction, injection 723
 
  • D.V. Senkov, A.I. Erokhin, V.V. Kolmogorov, A.S. Medvedko, S.I. Potapov, D.N. Pureskin
    BINP SB RAS, Novosibirsk, Russia
 
  Power system for quadrupole magnets of NSLS-II 3 GeV booster is designed, manufactured and tested in BINP, Russia. The power system consists of 2 parts. The first part is a charging source with a capacitance bank at output. And the second part consists of 3 current sources powered by a capacitance bank. The charging source output voltage is up to 180 V, peak power is 40 kW and average power is 20 kW. Capacitance bank has a 120 kVA storage energy. The second part contains 3 independent current sources with up to 180 A output current each. This report considers the details of current sources design, their parameters and results of inspection test in BINP. Finally, the first results of injection and extraction section commissioning at BNL site are reported.  
 
MOPWA044 TLS Booster Measurement and Observation by New BPM Electronics booster, synchrotron, extraction, kicker 768
 
  • P.C. Chiu, J. Chen, Y.-S. Cheng, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Kuo
    NSRRC, Hsinchu, Taiwan
 
  Taiwan Light Source (TLS) is a 1.5 GeV synchrotron based light source and its booster synchrotron was delivered in 1992. Due to the new project Taiwan Photon Source proceeded at the same site, some up-to-date device are available now before TPS civil construction complete and temporarily adapted for TLS booster to improve its operations. The major parameters of the TLS booster synchrotron are measured. It also provides a chance to experience for the TPS project booster diagnostic.  
 
MOPWA046 The Multi-channel Measuring Data Acquisition Interface for TPS Quadrupole and Sextupole Magnet Power Supplies by using LabVIEW as the Developing Tool power-supply, sextupole, controls, LabView 774
 
  • B.S. Wang, Y.-C. Chien, C.-Y. Liu, K.-B. Liu
    NSRRC, Hsinchu, Taiwan
  • H.P. Tsai
    Chroma ATE Inc., Taiwan
 
  This paper presents an implementation of a multi-channel measuring data acquisition interface of quadrupole and sextupole magnet power supplies (MPS) for Taiwan Photon source (TPS) withLabVIEW as the developing tool. The multi-channel measuring data acquisition interface could reduce quantity of measurement instrument and loading of operator at the MPS acceptance test. The instrument devices of measurement system include a multiplexer 、 a dynamic signal analyzer (DSA) and a multi-channel digital voltage meter (DVM), GPIB is the communication protocol betweenthe multi-channel measuring data acquisition interfaceand instruments. There are threeanalyzing procedure for the output currentof MPSin the default setting of the LabVIEW program, 1) Fast Fourier Transform of output current measured by DSA, 2) long-term stability of output current measured by DVM, 3) the linear error function fitting of output current by LabVEW toolbox;after these three analyzing procedureis completed, the performance of each MPS can be automatically generatedas a Microsoft Word report file.  
 
MOPWA052 Short Range Wakefield Measurements of High Resolution RF Cavity Beam Position Monitors at ATF2 wakefield, cavity, simulation, extraction 792
 
  • J. Snuverink, S.T. Boogert, F.J. Cullinan, Y.I. Kim, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • K. Kubo, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • G.R. White
    SLAC, Menlo Park, California, USA
 
  Cavity beam position monitors (CBPM) have been used in several accelerator facilities and are planned to be used in future accelerators and light sources. High position resolution up to tens of nanometres has been achieved, but short range wakefields are a concern, especially for small beam emittances. This paper presents the wakefield calculations as well as the first measurements of the CBPM-generated short range wakefields performed at the Accelerator Test Facility (ATF2).  
 
MOPWA058 Cavity Beam Position Monitor at Interaction Point Region of Accelerator Test Facility 2 cavity, feedback, optics, focusing 807
 
  • Y.I. Kim, D.R. Bett, N. Blaskovic Kraljevic, P. Burrows, G.B. Christian, M.R. Davis, A. Lyapin
    JAI, Oxford, United Kingdom
  • S.T. Boogert
    Royal Holloway, University of London, Surrey, United Kingdom
  • J.C. Frisch, D.J. McCormick, J. Nelson, G.R. White
    SLAC, Menlo Park, California, USA
  • Y. Honda, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  Nanometre resolution cavity beam position monitors (BPMs) have been developed to measure the beam position and linked to a feedback system control the beam position stability within few nanometres in the vertical direction at the focus, or interaction point (IP), of Accelerator Test Facility 2 (ATF2). In addition, for feedback applications a lower-Q and hence faster decay time system is desirable. Two IPBPMs have been installed inside of IP chamber at the ATF2 focus area. To measure the resolution of IPBPMs two additional C-band cavity BPMs have been installed one upstream and one downstream of the IP. One cavity BPM has been installed at an upstream image point of IP. The performance of the BPMs is discussed and the correlation between IP and image point positions is presented along with a discussion of using these BPMs for position stabilisation at the IP.  
 
MOPWA059 Beam Emittance Measurements and Beam Transport Optimization at the Clatterbridge Cancer Centre emittance, proton, cyclotron, scattering 810
 
  • T. Cybulski, O. Karamyshev, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A. Degiovanni
    TERA, Novara, Italy
  • A. Kacperek, B. Marsland, I. Taylor, A. Wray
    The Douglas Cyclotron, The Clatterbridge Cancer Centre NHS Foundation Trust, Wirral, United Kingdom
  • O. Karamyshev, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Cockcroft Institute, Daresbury, Warrington, WA4 4AD, United Kingdom University of Liverpool, Liverpool, United Kingdom
The QUASAR Group is preparing tests of the high energy physics LHCb VELO detector as a non–invasive online dose monitor at the 60 MeV proton therapy beam at the Clatterbridge Cancer Centre (CCC), UK. The proposed method relies on the cross-correlation between the beam halo signal as measured by VELO and the dose delivered to the patient, linked via the absolute intensity of the beam. In order to estimate the expected halo signal and the total beam intensity, studies into proton beam transport through the whole CCC beam line have been carried out. This required the measurement of beam emittance at several positions of the beam delivery system. Quadrupole scans have been realized using a CsI (Tl) scintillating screen in combination with an 8 bit, 13 Mpixel CCD camera. In this contribution, results from measurements are presented and include a discussion of the effects from dispersion in the beam. Experimental data are compared against earlier measurements performed in 1998 and are used as a basis for suggestions targeting an overall optimization of beam transport at CCC.
* Assessing the Suitability of a Medical Cyclotron as an Injector for an Energy Upgrade, J. A. Clarke et all , CLRC Daresbury Laboratory, Warrington, UK
 
 
MOPWO001 Moment Method Beam Dynamics Code Development: Extended for Radio Frequency Quadrupole Simulations rfq, simulation, multipole, radio-frequency 879
 
  • T. Roggen, H. De Gersem, B. Masschaele
    KU Leuven, Kortrijk, Belgium
  • W. Ackermann, S. Franke, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This research is funded by grant “KUL 3E100118” “Electromagnetic Field Simulation for Future Particle Accelerators”, project FP7-Euratom No. 269565 and the Belgian Nuclear Research Centre (SCK•CEN).
A Radio Frequency Quadrupole (RFQ) enables acceleration of a continuous low-velocity hadron beam, combining velocity independent electric focusing and adiabatic bunching, resulting in high-current compact bunches with nearly 100% capture and transmission efficiency. With virtually no post-construction tuning capabilities, an RFQ design phase requires all transient parameters (machining tolerances, thermo-mechanical deformation factors). This allows the determination of acceptable tolerances on input and output beam characteristics, of major importance in beam availability and beam trip prevention, and makes fast beam dynamics simulation codes incorporating RFQs indispensable. This article presents the implementation and validation of an RFQ beam line element into V-Code, a moment method beam dynamics simulation code. V-Code time integrates the Vlasov equation for an initial particle distribution represented by a discrete set of characteristic moments, accounting for all exerting internal and external forces. V-Code delivers highly accurate beam dynamics results with precision and efficiency advantages in terms of average or rms beam dimensions, projected emittances or total energy.
 
 
MOPWO021 Data Management and Analysis for Beam Dynamics Simulation lattice, simulation, EPICS, site 927
 
  • D. Zyuzin
    FZJ, Jülich, Germany
  • S.N. Andrianov, N.V. Kulabukhova
    St. Petersburg State University, St. Petersburg, Russia
 
  Computer simulation of modern accelerator system is based on a number of specialized computer codes. Complexity of concerned processes and interpretation of simulation results requires comfortable and effective tools to design accelerator structure and beam characteristics, carry out computer experiments, process and visualize data. This paper proposes a prototype system with web-interface which allows the full research cycle: from lattice generation to data visualization. This approach represents a valuable tool for beam physicist providing methods to benchmark simulation engines as well as providing additional instruments for understanding physical processes in accelerator. The corresponding tools were used in application to the spin-orbit motion problems in electrostatic accelerators.  
 
MOPWO027 Improved TEAPOT Method and Tracking with Thick Quadrupoles for the LHC and its Upgrade optics, lattice, insertion, multipole 945
 
  • H. Burkhardt, R. De Maria, M. Giovannozzi, T. Risselada
    CERN, Geneva, Switzerland
 
  The comparison between tracking with thick and thin lens models for the LHC have been studied. A widely-used method to generate thin models is based on the TEAPOT slicing, which, in the original implementation is limited in the number of slices. In this paper an improved method is presented, which overcomes some of the limitations of the original TEAPOT. The performance is analysed and the impact on numerical simulation of the dynamic aperture is evaluated, both for the LHC and its upgrade, HL-LHC.  
 
MOPWO034 Energy Deposition Studies for the Upgrade of the LHC Injection Lines injection, proton, optics, luminosity 963
 
  • A. Mereghetti, O. Aberle, F. Cerutti, B. Goddard, V. Kain, F.L. Maciariello, M. Meddahi
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
  • E. Gianfelice-Wendt
    Fermilab, Batavia, USA
 
  The LHC Injectors Upgrade (LIU) Project aims at upgrading the systems in the LHC injection chain, to reliably deliver the beams required by the High-Luminosity LHC (HL-LHC). Given the challenging beam intensities and emittances, a review of the existing beam-intercepting devices is on-going, in order to assess heat loads and consequent thermo-mechanical stresses. Moreover, the exposure of downstream elements to induced shower radiation is assessed. The study is intended to spot possible issues and contribute to the definition of viable design and layout solutions.  
 
MOPWO063 LHeC IR Optics Design Integrated into the HL-LHC Lattice optics, proton, dipole, radiation 1034
 
  • M. Korostelev, D. Newton, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • O.S. Brüning, R. Tomás
    CERN, Geneva, Switzerland
  • E. Cruz Alaniz, D. Newton, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  The two main drivers for the CDR LHeC IR design were chromaticy and synchrotron radiation. Recently it has been proposed that the LHeC IR proton optics could be integrated into the ATS scheme, which benefits from higher arc beta functions for the correction of chromaticity. In this scenario the distance between the IP and the protron triplet can be increased allowing for a reduction of the IR dipole field and the synchrotron radiation. First feasibility considerations and more in depth studies of the synchrotron radiation effects are presented in this paper.  
 
MOPWO066 GPU-accelerated Spin Dynamics and Analysis for RHIC polarization, solenoid, simulation, proton 1037
 
  • D.T. Abell, D. Meiser
    Tech-X, Boulder, Colorado, USA
  • M. Bai, V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
  • D.P. Barber
    DESY, Hamburg, Germany
 
  Funding: This work supported in part by the US DOE Office No. DE-SC0004432.
Graphics processing units (GPUs) have now become powerful tools for scientific computation. Here we present our work on using GPUs (singly or in parallel) to speed the tracking of both orbital and spin degrees of freedom in particle accelerators. This work includes the development of new spin integrators that are both fast and accurate. We have also developed an integrated set of tools for analysing the results. To demonstrate the utility of these new tools, we use them to study the spin dynamics of protons in the Relativistic Heavy Ion Collider at Brookhaven National Lab.
 
 
MOPWO073 Design and Simulation of an Extraction Section for the University of Maryland Electron Ring extraction, dipole, emittance, simulation 1052
 
  • K.J. Ruisard, B.L. Beaudoin, S. Bernal, J.A. Butcher, I. Haber, R.A. Kishek, T.W. Koeth, D.F. Sutter
    UMD, College Park, Maryland, USA
 
  Funding: Supported by the US Dept. of Energy, Office of High Energy Physics, and by the US Dept. of Defense, Office of Naval Research and the Joint Technology Office.
The University of Maryland Electron Ring (UMER) is a low-energy scaled facility for the study of intense beam dynamics, relevant to higher energy, high intensity accelerators. Many parameters crucial to understanding space charge dominated beam evolution, such as transverse emittance and longitudinal temperature, require the use of turn-by-turn interceptive diagnostics. To meet this need, we plan to implement an extraction section with a fast-pulsed electric-field kicker. This paper presents a suite of simulations used to guide the design process and predict extraction performance, using the WARP Particle-in-cell (PIC) code. Simulations in a transverse slice geometry predict beam trajectory and monitor beam evolution through extraction. After isolating a design based on centroid tracking, extraction acceptance is probed and an analysis proposed to estimate the error tolerances of the new ring elements.
 
 
TUOAB202 ILSF, A Third Generation Light Source Laboratory in Iran storage-ring, synchrotron, dipole, cavity 1137
 
  • J. Rahighi, M.R. Khabazi
    IPM, Tehran, Iran
  • E. Ahmadi, H. Ajam, M. Akbari, S. Amiri, A. Babaei, J. Dehghani, R. Eghbali, J. Etemad Moghadam, S. Fatehi, M. Fereidani, H. Ghasem, A. Gholampour, A. Iraji, M. Jafarzadeh, B. Kamkari, S. Kashani, P. Khodadoost, H. Khosroabadi, M. Moradi, H. Oveisi, S. Pirani, M. Rahimi, M. Razazian, A. Sadeghipanah, F. Saeidi, R. Safian, E. Salimi, Kh.S. Sarhadi, O. Seify, M.Sh. Shafiee, A. Shahveh, A. Shahverdi, D. Shirangi, E.H. Yousefi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The Iranian Light Source Facility (ILSF) project is a first large scale accelerator facility which is currently under planning in Iran. The circumference of the storage ring is 297.6 m with the energy of 3 GeV. The facility will be built on a land of 100 hectares area in the city of Qazvin, located 150 km West of Tehran. The city is surrounded by many universities, research centers and industrial companies. The design and construction of prototype items such as radio frequency solid state amplifier, dipole magnets, highly stable magnet power supplies and girders have already begun. A low field H-type dipole magnet with the central field of 0.5T at the gap of 34mm and length of 500mm was built and tested in site. Also a prototype storage ring quadrupole with a 18 T/m gradient and 233 iron length is in now in fabrication process. Site selection studies, including geotechnical and seismological measurements are being performed. Conceptual Design Report, CDR, as the first milestone of the project has been published on October 2012.  
slides icon Slides TUOAB202 [5.173 MB]  
 
TUPEA051 Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS plasma, laser, instrumentation, proton 1247
 
  • C. Bracco, J. Bauche, D. Brethoux, V. Clerc, B. Goddard, E. Gschwendtner, L.K. Jensen, A. Kosmicki, G. Le Godec, M. Meddahi, C. Mutin, J.A. Osborne, K.D. Papastergiou, A. Pardons, F.M. Velotti, H. Vincke
    CERN, Geneva, Switzerland
  • P. Muggli
    MPI, Muenchen, Germany
 
  The world’s first proton driven plasma wakefield acceleration experiment is presently being studied at CERN. The experiment will use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility are considered: the West Area and the CNGS long baseline beam-line. The previous transfer line from the SPS to the West Area was completely dismantled in 2000 and it would need to be fully re-designed and re-built. For this option, geometric constraints for radio protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the final part of the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.  
 
TUPEA066 Metamaterial-based Accelerating, Bending and Focusing Structures focusing, electron, vacuum, resonance 1286
 
  • I. McGregor
    The University of Liverpool, Liverpool, United Kingdom
  • K.M. Hock
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  We report on the progress of our research into metamaterial-based accelerating, bending and focusing structures at the Cockcroft Institute. The effort during the last year has been directed towards designing and investigating practical RF structures that are suitable for industrial and medical applications. We have shown that, by introducing structures based on metamaterial resonators, RF accelerating structures can be made more compact and higher gradient. This year, we will concentrate on focusing and bending structures.  
 
TUPEA085 Optics Tuning and Compensation in LCLS-II undulator, focusing, lattice, optics 1313
 
  • Y. Nosochkov, T.O. Raubenheimer, M. Woodley
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US Department of Energy contract DE-AC02-76SF00515.
The LCLS-II is a future upgrade of the Linear Coherent Light Source (LCLS) at SLAC. It will include two new Free Electron Lasers (FELs) to generate soft and hard X-ray radiation. The 2.9 km LCLS-II lattice will include 1/3 of the SLC linac located just before the existing LCLS, the 1.2 km bypass line, the bend section, the beam separation and diagnostic regions, and the FEL undulators and dump. The LCLS operation showed that occasionally the beam phase space may be significantly mismatched due to various errors in the beamline. This requires correction to ensure good beam quality in the undulators. Similarly, the LCLS-II must have lattice correction system with a large tuning range to cancel such errors. Since the various LCLS-II regions are connected using matching sections, the latter naturally can be used for correction of the mismatched lattice functions. In addition, the large tuning capability is required to provide a wide range of focusing conditions at the FEL undulators. The compensation and tuning abilities of the LCLS-II lattice have been studied for incoming beam errors equivalent to 160% of beta beat and for a factor of 5 in the range of undulator quadrupole strengths.
 
 
TUPFI001 High Luminosity LHC Matching Section Layout vs Crab Cavity Voltage optics, cavity, injection, luminosity 1328
 
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Chancé, J. Payet
    CEA/DSM/IRFU, France
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 project HiLumi LHC, GA no. 284404, co-funded by the DoE, USA and KEK, Japan.
In the framework of the HL-LHC Upgrade project we present a new possible variant for the layout of the LHC matching section located in the high luminosity insertions. This layout is optimized to reduce the demand on the voltage of the crab cavities, while substantially improving the optics squeeze-ability, both in ATS [1] and non-ATS mode. These new layout will be described in details together with its performance figures in terms of mechanical acceptance, chromatic properties and optics flexibility. [1] S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI014 HLLHCV1.0: HL-LHC Layout and Optics Models for 150 mm Nb3Sn Triplets and Local Crab-cavities optics, injection, sextupole, ion 1358
 
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • M. Korostelev
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The paper presents the latest layout and optics models for the HL-LHC upgrade project. As an evolution from the previous version SLHCV3.1b, it integrates the new Nb3Sn triplet (140T/m, 150mm) with all the additional magnets needed to be compatible with a β* reach of 15cm and beyond. The collision optics implements the ATS* scheme which is able to provide very low value of β* and at the same time warrants outstanding control of the chromatic aberrations within the strength limits of the existing arc sextupole scheme of the LHC. The optics models include the injection and collision optics for proton and ion operations foreseen for the HL-LHC, with improved squeeze-ability of the existing IR2 and IR8 insertions, and all the corresponding optic transitions. An aperture model and a series of optics matched in thin lenses complete the needs for a large range of dedicated beam dynamic studies (dynamic aperture, beam-beam effects, collimation).
* S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI015 Study of the IR2 and IR8 Squeezeability for HL-LHC Upgrade optics, injection, insertion, luminosity 1361
 
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • R. De Maria
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The paper presents the results of the study of different optics configurations which allow to reach smaller beta functions at the IP2 and IP8 in the framework of the HL-LHC project. The variants at collision energies must be compatible with the ATS* scheme which provides small beta function at the IP1 and IP5 or provide low beta function for Alice and LHCb during ion operatations. The ones at injection must satisfy injection transfer lines and aperture constraints. The final goal is to find the overlap between the phase advances of all the configuration for IR2 and IR8 respectively, in order to mainting the LHC working point without rematching the remaining insertions.
* S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI016 Optimization of Triplet Quadrupoles Field Quality for the LHC High Luminosity Lattice at Collision Energy target, lattice, dynamic-aperture, luminosity 1364
 
  • Y. Nosochkov, Y. Cai, M.-H. Wang
    SLAC, Menlo Park, California, USA
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi, E. McIntosh
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404; and by the US DOE contract DE-AC02-76SF00515.
For the high luminosity upgrade of the LHC (HL-LHC), the beta functions at two interaction points (IP) will be significantly reduced compared to the nominal LHC lattice. This will result in much higher peak beta functions in the inner triplet (IT) quadrupoles adjacent to these IPs. The consequences are a larger beam size in these quadrupoles, higher IT chromaticity, and stronger effects of the IT field errors on dynamic aperture (DA). The IT chromaticity will be compensated using the Achromatic Telescopic Squeezing scheme*. The increased IT beam size will be accommodated by installing large aperture Nb3Sn superconducting quadrupoles with 150 mm coil diameter. The field error tolerances in these magnets must satisfy the required acceptable DA while being reasonably close to realistically achievable field quality. Evaluation of the IT field errors was performed for the LHC upgrade layout version SLHCV3.01 with IT gradient of 123 T/m and IP collision beta functions of 15 cm in both planes. Dynamic aperture calculations were performed using SixTrack. Details of the optimization of the IT field errors are presented along with corrections to achieve the field quality specifications.
* S. Fartoukh, “An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
TUPFI017 Evaluation of Field Quality for Separation Dipoles and Matching Section Quadrupoles for the LHC High Luminosity Lattice at Collision Energy dipole, lattice, simulation, dynamic-aperture 1367
 
  • Y. Nosochkov, Y. Cai, M.-H. Wang
    SLAC, Menlo Park, California, USA
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi, E. McIntosh
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404; and by the US DOE contract DE-AC02-76SF00515.
The high luminosity upgrade of the LHC (HL-LHC) lattice requires new larger aperture magnets to be installed in the low-beta interaction regions (IRs). These include Nb3Sn superconducting (SC) triplet quadrupoles, Nb-Ti SC separation dipoles D1 and D2, and SC Q4 quadrupoles. The upgrade significantly reduces the beta functions at these IRs, producing higher beta functions and larger beam size in these magnets, and requiring a larger aperture. The high beta functions also increase the impact of high order field errors in these new magnets on dynamic aperture (DA). Therefore, to maintain an acceptable DA, new specifications for the magnet field quality are required. Since the IR error effects at collision are dominated by the triplets, their field quality has been studied and specified first*. As a next step, the field errors were added to the D1 and D2 dipoles and Q4 quadrupoles while maintaining the triplet errors to specifications. The impact of the errors on DA has been determined in long term tracking simulations using SixTrack. The optimized field error specifications for the D1, D2 and Q4 magnets are presented.
* Y. Nosochkov, Y. Cai, M-H. Wang, S. Fartoukh, M. Giovannozzi, R. de Maria, E. McIntosh, “Optimization of Triplet Field Quality for the LHC High Luminosity Lattice at Collision Energy”, IPAC 2013.
 
 
TUPFI020 Towards a Symmetric Momentum Distribution in the Muon Ionization Cooling Experiment simulation, solenoid, collider, emittance 1376
 
  • O.M. Hansen
    University of Oslo, Oslo, Norway
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • I. Efthymiopoulos, O.M. Hansen
    CERN, Geneva, Switzerland
 
  The Muon Ionization Cooling Experiment (MICE) is under development at Rutherford Appleton Laboratory (UK). It's a proof-of-principle experiment for ionization cooling, which is a prerequisite for a future Neutrino Factory(NF) or a Muon Collider. The muon beam is designed to have a symmetrical momentum distribution in the cooling channel of the NF. In the MICE beamline pions are captured by a quadrupole triplet, then pion momentum is selected by dipole 1 (D1) after which the pions decay to muons in the decay solenoid. After the decay solenoid, the muon beam momentum is selected by dipole 2 (D2), the beam is focused in two quadrupole triplets and is finally characterized by a set of detectors. By doing a D1-scan of the currents, where the optics parameters are scaled according to the pion momentum, from 238-450 MeV/c the muon momentum distribution is changed. In this paper simulation results from G4Beamline and real data from MICE are presented and compared.  
 
TUPFI021 FLUKA Energy Deposition Studies for the HL-LHC luminosity, radiation, shielding, optics 1379
 
  • L.S. Esposito, F. Cerutti, E. Todesco
    CERN, Geneva, Switzerland
 
  The LHC upgrade, planned in about ten years from now, is envisaged to accumulate up to 3000 fb-1 integrated luminosity by running at a peak luminosity of 5 x 1034 cm-2 s−1*. In order to reach such an ambitious goal, the high luminosity insertions need a major redesign implying a 150 mm aperture low-beta Inner Triplet, a superconducting D1 and new quadrupoles in the Matching Section. Energy deposition studies show that degradation of the coil insulator represents the most challenging issue from the radiation impact point of view. We propose a suitable shielding consisting of a beam screen with several mm tungsten absorbers at mid-planes to guarantee not to exceed a few ten MGys. This will also allow a good margin with respect to the risk of radiation induced quenches.
O. Brüning, L. Rossi, "High Luminosity Large Hadron Collider: A description for the European Strategy Preparatory Group," CERN ATS 2012-236.
 
 
TUPFI022 Power Load from Collision Debris on the LHC Point 8 Insertion Magnets Implied by the LHCb Luminosity Increase luminosity, dipole, proton, optics 1382
 
  • L.S. Esposito, F. Cerutti, A. Lechner, A. Mereghetti, A.A. Patapenka, V. Vlachoudis
    CERN, Geneva, Switzerland
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
  • A.A. Patapenka
    JIPNR-Sosny NASB, Minsk, Belarus
 
  LHCb is aiming to upgrade its goal peak luminosity up to a value of 2 1033 cm-2 s−1 after LS2. We investigate the collision debris impact on the machine elements by extensive FLUKA simulations, showing that the present machine layout is substantially compatible with such a luminosity goal. In particular the installation of a TAS (Target Absorber ofSecondaries, installed in front of the final focus Q1-Q3 quadrupole triplet in the LHC high luminosity insertions) turns out not to be necessary on the basis of the expected peak power deposition in the Q1 superconducting coils. A warm protection may be desirable to further reduce heat load and dose on the D2 recombination dipole, due to the absence of the TAN (Target Absorber of Neutrals, present in Point 1 and 5).  
 
TUPFI023 Optics Design and Lattice Optimisation for the HL-LHC optics, luminosity, lattice, cavity 1385
 
  • B.J. Holzer, R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • R. Appleby, S. Kelly, M.B. Thomas, L.N.S. Thompson
    UMAN, Manchester, United Kingdom
  • A.V. Bogomyagkov
    BINP SB RAS, Novosibirsk, Russia
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • B. Dalena
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Faus-Golfe, J. Resta
    IFIC, Valencia, Spain
  • K.M. Hock, M. Korostelev, L.N.S. Thompson, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C. Milardi
    INFN/LNF, Frascati (Roma), Italy
  • J. Payet
    CEA/DSM/IRFU, France
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Cap. Spec. Progr, Grant Agreement 284404.
The luminosity upgrade project of the LHC collider at CERN is based on a strong focusing scheme to reach smallest beam sizes at the collision points. Depending on the available magnet technology (Nb3Sn or NbTi) a number of beam optics has been developed to define the specifications for the new super conducting quadrupoles. In the context of the optics matching new issues have been addressed and new concepts have been used: Quadrupole strength flexibility and chromatic corrections have been studied, as well as the influence of quadrupole fringe fields. The lattice has been optimised including the needs of the foreseen crab cavities and the transition between injection and low β optics had to guarantee smooth gradient changes over a wide range of β* values. Tolerances on misalignments and power converter ripple have been re-evaluated. Finally the combination of the quadrupole strengths in the high luminosity matching sections with those in the neighboring sectors is explained, a key concept of the ATS to reach smallest β* values. This paper presents the results obtained within the HiLumi collaboration Task 2.2 and summarises the main parameters of the project.
 
 
TUPFI027 Energy Deposition Studies for Fast Losses during LHC Injection Failures injection, kicker, proton, alignment 1397
 
  • A. Lechner, A. Alnuaimi, C. Bracco, F. Cerutti, A. Christov, L.S. Esposito, N.V. Shetty, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Several instances of injection kicker magnet (MKI) failures have occurred in the first years of LHC operation, leading to misinjections or to accidental kicks of circulating bunches. In a few cases, MKI modules imparted a partial or an increased beam deflection, resulting in grazing bunch impact on beam-intercepting devices and consequently leading to significant secondary showers to downstream accelerator elements. In this study, we investigate different failure occurrences where miskicked bunches were incident on the injection beam stopper (TDI) and on one of the auxiliary injection collimators (TCLIB), respectively. FLUKA shower calculations were performed to quantify the energy deposition in superconducting magnets. Different sections of the LHC insertion regions 2 and 8 were studied, including the separation dipole and the inner triplet downstream of the TDI as well as matching section and dispersion suppressor adjacent to the TCLIB. The obtained results are evaluated in view of quench and damage limits.  
 
TUPFI039 Optics Performance of the LHC During the 2012 Run coupling, optics, sextupole, octupole 1433
 
  • P. Skowroński, T. Bach, M. Giovannozzi, A. Langner, Y.I. Levinsen, E.H. Maclean, T. Persson, S. Redaelli, T. Risselada, M. Solfaroli Camillocci, R. Tomás, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • M.J. McAteer
    The University of Texas at Austin, Austin, USA
  • R. Miyamoto
    ESS, Lund, Sweden
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
 
  During 2012 the LHC was operating at 4TeV with beta star at ATLAS and CMS interaction points of 0.6m. During dedicated machine studies the nominal LHC optics was also setup with beta star of 0.4m. A huge effort was put into the optics commissioning leading to a record low peak beta-beating of around 7%. We describe the correction procedures and discuss the measurement results.  
 
TUPFI041 Operating the LHC Off-momentum for p-Pb Collisions collimation, optics, proton, alignment 1439
 
  • R. Versteegen, R. Bruce, J.M. Jowett, A. Langner, Y.I. Levinsen, E.H. Maclean, M.J. McAteer, T. Persson, S. Redaelli, B. Salvachua, P.K. Skowroński, M. Solfaroli Camillocci, R. Tomás, G. Valentino, J. Wenninger
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
  • M.J. McAteer
    The University of Texas at Austin, Austin, USA
  • T. Persson
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
  • S.M. White
    BNL, Upton, Long Island, New York, USA
 
  The first high-luminosity p-Pb run at the LHC took place in January-February 2013 at an energy of 4 Z TeV per beam. The RF frequency difference of proton and Pb is about 60 Hz for equal magnetic rigidities, which means that beams move slightly to off-momentum, non-central, orbits during physics when frequencies are locked together. The resulting optical perturbations ("beta-beating") restrict the available aperture and required a special correction. This was also the first operation of the LHC with low beta in all four experiments and required a specific collimation set up. Predictions from offline calculations of beta-beating correction are compared with measurements during the optics commissioning and collimator set up.  
 
TUPFI043 Matching Antisymmetric Arc Optics to Symmetric Interaction Region optics, collider, focusing, hadron 1445
 
  • J.L. Abelleira, F. Zimmermann
    CERN, Geneva, Switzerland
  • J.L. Abelleira
    EPFL, Lausanne, Switzerland
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu- CARD, grant agreement no. 227579.
Considering a generic double-ring collider, we discuss the matching from an antisymmetric optics in the arcs to a symmetric optics in the interaction region (IR) by means of an antisymmetric matching section (MS). As an example, we present an application to the LHC, for which a symmetric IR with extremely flat beams is under study.
 
 
TUPFI044 LHC Optics with Crab-waist Collisions and Local Chromatic Correction optics, sextupole, luminosity, dipole 1448
 
  • J.L. Abelleira, S. Russenschuck, F. Zimmermann
    CERN, Geneva, Switzerland
  • C. Milardi, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu- CARD, grant agreement no. 227579.
We report the status of the optics design for a local chromatic correction with extremely-flat beams at the LHC. Together with a Large Piwinski angle, this optics opens up the possibility of crab-waist collisions at the LHC, for which a new layout of the LHC insertion region (IR) is needed. We present a complete optics and discuss the parameters of the final "double-half" quadrupole.
 
 
TUPFI046 The MICE Experiment solenoid, target, emittance, simulation 1454
 
  • A.P. Blondel
    DPNC, Genève, Switzerland
 
  Ionization Cooling is the only practical solution to preparing high brilliance muon beams for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (UK). It is characterized by exquisite emittance determination by 6D measurement of individual particles, a cooling section comprising 23 MV of acceleration at 200 MHz and 3 liquid hydrogen absorbers totaling 1m of liquid hydrogen on the path of 140-240 MeV/c muons. The beam has already been commissioned successfully and first measurements of beam emittance performed. We are setting up for the final high precision emittance determination and the measurements of cooling in Li Hydrogen. The design offers opportunities to observe cooling with various absorbers and several optics configurations. Results will be compared with detailed simulations of cooling channel performance to ensure full understanding of the cooling process. Progress towards the full cooling experiment with RF re-acceleration will also be reported.
Submitted by the MICE speakers bureau
hoping for a contributed oral
to be give by the spokesperson, prof. A. Blondel
 
 
TUPFI051 Optics Transition between Injection and Collision Optics for the HL-LHC Upgrade Project optics, injection, insertion, luminosity 1460
 
  • M. Korostelev, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • R. De Maria, S.D. Fartoukh
    CERN, Geneva, Switzerland
  • M. Korostelev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
Plans for the luminosity upgrade of the LHC collider at CERN (HL-LHC) are based on implementation of magnets with larger apertures in the interaction regions, together with the ATS [*] technique to reach very low values of the beta function at the collision points. The transition from injection to collision optics will be carried out in two stages, and will involve varying the strengths of the quadrupoles within the straight sections. Solutions for the optics transition have to meet a variety of challenging constraints, including constraints on the phase advances and Twiss parameters throughout the straights involved in the transition, specified minimum and maximum strengths of the quadrupoles, etc. Moreover, to minimize the time taken for the transition, the variation of the quadrupole strengths should be as smooth as possible, especially for the strongest quadrupoles. Avoiding changes of slope as much as possible will also minimize hysteresis effects in the super-conducting matching quadrupoles participating to the process. This paper presents one possible solution for the optics transition, calculated for the HLLHCv1.0 version of the optics and layout of the HL-LHC.
* S. Fartoukh, "An Achromatic Telescopic Squeezing (ATS) Scheme for LHC Upgrade", in proceedings of IPAC11, p. 2088.
 
 
TUPFI061 Preliminary Design of a Higgs Factory μ+μ- Storage Ring dipole, collider, factory, storage-ring 1487
 
  • A.V. Zlobin, Y.I. Alexahin, V.V. Kapin, V.V. Kashikhin, N.V. Mokhov, I.S. Tropin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, and by the US Department of Energy through the Muon Accelerator Program (MAP).
A Muon Collider offers unique possibilities for studying the recently found Higgs boson. Higgs bosons can be produced in reasonable amounts in the s-channel, so that the colliding muon beam energy of just 62.5GeV is required. Precision direct measurements of the Higgs boson mass and width is possible due to absence of brems- and beam-strahlung. At the same time, there are difficulties specific to muon colliders: relatively large beam emittance which necessitates quite small beta-function values (~ a few cm) at the interaction point in order to obtain sufficiently high luminosity, as well as superconducting magnet and detector protection from showers generated by muon decay products. Due to these factors, the required aperture of the final focus quadrupoles is very large (up to 0.5 m) posing challenging engineering constraints as well as beam dynamics issues with fringe fields. The first results of a complex approach to these problems in the Higgs Factory collider design are presented which promise luminosities in excess of 1031 cm-2s−1 with a 4 MW proton driver.
 
 
TUPFI074 Design of the Final Focus of the Proton Beam for a Neutrino Factory target, proton, factory, collider 1517
 
  • J. Pasternak, M. Aslaninejad
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • K. E. Gollwitzer
    Fermilab, Batavia, USA
  • H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
 
  The ~ 8-GeV, 4-MW proton beam that drives a Neutrino Factory has a nominal 50-Hz macropulse structure with 2-3 micropulses ~ 100 ns apart. The nominal geometric beam emittance is 5 micron, and the desired rms beam radius at the liquid-metal-jet target is 1.2 mm. A quadrupole-triplet focusing system to deliver this beam spot is described.  
 
TUPFI079 A Proposed “Delay Line” for Hadron Beams in RHIC dipole, optics, hadron, interaction-region 1532
 
  • N. Tsoupas, V. Litvinenko, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A “delay line” has been proposed to be installed in the Blue ring of the RHIC to accommodate collisions of asymmetric nuclei. The delay line can also be used in the e-RHIC accelerator to accommodate electron hadron collisions at various energies. We will present the layout and the optics of the delay line and we will discuss the energy range that asymmetric collisions can be performed in the RHIC collider.
 
 
TUPME018 Construction of New 90 MeV Injector Linac for the 1.2 GeV Booster Synchrotron at Tohoku University linac, gun, electron, synchrotron 1607
 
  • S. Kashiwagi, H. Hama, F. Hinode, M. Kawai, T. Muto, I. Nagasawa, K. Nanbu, Y. Shibasaki, K. Takahashi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • N.Y. Huang
    NTHU, Hsinchu, Taiwan
 
  The Great East Japan Earthquake (March 11, 2011) has inflicted enormous damage on the accelerator facility of Research Center for Electron Photon Science, Tohoku University. A 300 MeV linac operated for 46 years as an accelerator for radioisotope production and also as an injector of the 1.2 GeV booster synchrotron for nuclear physics experiments. The accelerator will be rebuilt with all the recyclable components. New small linac is constructed as the injector for the booster synchrotron. The injector consists of thermionic rf-gun, two 3m-long accelerating structures, and transport line to the synchrotron. The maximum energy of injector is 90 MeV with beam loading. The detail of the injector linac is introduced in this conference.  
 
TUPME048 Imperfection Tolerances for On-line Dispersion Free Steering in the Main Linac of CLIC linac, wakefield, emittance, simulation 1673
 
  • J. Pfingstner, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  Long-term ground motion misaligns the elements of the main linac of CLIC over time. Especially the misaligned quadrupoles create dispersion and hence the beam quality is decreased gradually due to an effect called chromatic dilution. Over longer time periods, orbit feedback systems are not capable to fully recover the beam quality and have to be supplemented by dispersion correction algorithms. In this paper, such and dispersion correction algorithm is presented, which is an extended version of the well-known dispersion free steering algorithm. This extended algorithm can recover the beam quality over long time scaled without stopping the accelerator operation (on-line). Tolerances for different imperfections of the system have been identified and a strong sensitivity to the resolution of the wake field monitors of the main linac accelerating structures has been identified. This problem can be mitigated by using a local excitation scheme as will be shown in this work.  
 
TUPME051 CLIC Final Focus System Alignment and Magnet Tolerances luminosity, sextupole, feedback, linear-collider 1682
 
  • J. Snuverink, J. Barranco, H. Garcia, Y.I. Levinsen, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
 
  The design requirements for the magnets in the Compact Linear Collider (CLIC) Final Focus System (FFS) are very stringent. In this paper the sensitivity for the misalignment and the magnetic imperfections for the different magnets in the FFS and the crab cavity are presented. Possible mitigation methods are discussed.  
 
TUPME064 Envelope Perturbations in a Space-Charge-Dominated Electron Beam simulation, resonance, space-charge, lattice 1712
 
  • W.D. Stem, B.L. Beaudoin, I. Haber, R.A. Kishek, T.W. Koeth
    UMD, College Park, Maryland, USA
 
  Funding: Supported by the US Dept. of Energy, Office of High Energy Physics, and by the US Dept. of Defense, Office of Naval Research and the Joint Technology Office.
Linear perturbation analysis of the RMS envelope equations predicts a frequency splitting of the transverse envelope resonances with the onset of space charge. These resonances are a potential source of beam degradation for space-charge-dominated particle accelerators and storage rings. We use WARP for both envelope code integration and particle-in-cell (PIC) simulations to predict the behavior of these resonances for an existing alternating gradient lattice storage ring. The focus of these simulations is tailored toward examining physics that is scalable to future high-intensity accelerators. This paper provides detailed simulation results and a design for an experimental demonstration at the University of Maryland Electron Ring (UMER), a high intensity 10 keV electron storage ring.
 
 
TUPME066 CESR Low Emittance Upgrade with Combined Function Bends wiggler, emittance, damping, focusing 1718
 
  • D. L. Rubin, Y. Li, A.A. Mikhailichenko, S. Wang
    CLASSE, Ithaca, New York, USA
 
  Funding: Work supported by the National Science Foundation and Department of Energy under contract numbers PHY-1002467, DMR-0936384 and DE-SC0006505
The Cornell Electron Storage Ring is the laboratory for the CESR Test Accelerator damping ring R&D program, and the source of x-rays for CHESS. A peculiarity of the layout of the storage ring is that horizontal emittance is generated predominantly by the strong bends in the sextant of the ring that was designed with a long straight to accommodate the interaction region required for operation as an electron-positron collider. By reconfiguring that single sextant we reduce the emittance by 60% to 20 nm-rad at 5.3 GeV for x-ray production and with damping wigglers to 1.3 nm-rad at 2.1 GeV for investigations of low emittance phenomena. The 35 meter radius of curvature, 3.2 meter long dipoles are refitted as combined function (vertically focusing) magnets to create simple achromats. The layout can accommodate six, 3 meter long undulators, in addition to the six existing superconducting damping wigglers. With reduced horizontal emittance and energy spread, the reconfiguration enhances the sensitivity of CESR to the emittance diluting effects that are the subject of the CesrTA study. Capability of the x-ray source is significantly improved with six new undulator beam lines.
 
 
TUPWA003 Beam Based Magnet Alignment for Emittance Coupling Minimization sextupole, emittance, storage-ring, coupling 1724
 
  • R.T. Dowd, G. LeBlanc, Y.E. Tan
    ASCo, Clayton, Victoria, Australia
  • K.P. Wootton
    The University of Melbourne, Melbourne, Australia
 
  Magnet misalignments give rise to field terms which can cause coupling between the horizontal and vertical beam motion and therefore emittance coupling. A series of beam based measurements have been developed at the Australian Synchrotron to accurately quantify quadrupole and sextupole alignments errors which cause coupling and where possible, correct them. Results showing an reduction in emittance coupling due to realignments of magnets based on these measurements will be presented. Limitations and general applicability of this method will also be discussed.  
 
TUPWA007 Method and Results of Systematic Beam Matching to a Periodic DTL emittance, DTL, resonance, focusing 1733
 
  • L. Groening, W.A. Barth, P. Forck, I. Hofmann, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • D. Jeon
    IBS, Daejeon, Republic of Korea
 
  Systematic investigations on high current 3d-beam matching to a periodic Alvarez-type DTL are reported. Twiss parameters at the entrance of a matching section to the periodic structure were concluded from transverse and longitudinal measurements. Periodic solutions in 3d were calculated including space charge using the measured rms emittances. The matching was performed by rms beam size tracking and employing a numerical routine to set the matching section, which comprises five quadrupoles and two bunchers. Matching allowed for significant emittance growth reduction and for verification of non-linear beam dynamics effects along the DTL.  
 
TUPWA020 The Implementation of Equipartitioning in the Proton Linac Code PADSC emittance, space-charge, lattice, linac 1766
 
  • Y.L. Zhao, S. Fu, Z. Li
    IHEP, Beijing, People's Republic of China
 
  The high intensity accelerator projects place extremely stringent requirements on particle loss, since even very small losses can lead to unacceptably high levels of radioactivity that can hinder or prevent hands-on maintenance. Such losses are known to be associated with emittance growth and beam halo. Non-equipartitioning contributes a lot for emittance growth and beam halo. The present equipartitioning realization has assumed that the emittance and space charge force are keeping constant, which will induce errors. The implementation in the proton linac code PADSC does equipartitioning optimization according to the real space charge force and emittance in the quasi period lattice.  
 
TUPWA045 Longitudinal Space Charge Effects in the CLIC Drive Beam space-charge, simulation, lattice, luminosity 1811
 
  • R.L. Lillestøl, S. Döbert, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
  • E. Adli, K.N. Sjobak
    University of Oslo, Oslo, Norway
 
  The CLIC main beam is accelerated by rf power generated from a high-intensity, low-energy electron drive beam. The accelerating fields are produced in Power Extraction and Transfer Structures, and are strongly dependent on the drive beam bunch distribution, as well as other parameters. We investigate how longitudinal space charge affects the bunch distribution and the corresponding power production, and discuss how the bunch length evolution can affect the main beam. We also describe the development of a Particle-in-Cell space charge solver which was used for the study.  
 
TUPWA046 Experimental Results from the Test Beam Line in the CLIC Test Facility 3 emittance, simulation, lattice, extraction 1814
 
  • R.L. Lillestøl, S. Döbert, M. Olvegård
    CERN, Geneva, Switzerland
  • E. Adli
    University of Oslo, Oslo, Norway
 
  In the CLIC two-beam scheme, the main beam is accelerated by rf power provided by energy extraction from a secondary drive beam. This energy is extracted in decelerators, and the first prototype decelerator is the Test Beam Line in the CLIC Test Facility 3. The line is currently equipped with 12 Power Extraction and Transfer Structures (PETS), which allows for extracting up to 40% of the beam energy. We correlate the measured deceleration with predictions from the beam current and the rf power produced in the PETS. We also discuss recent bunch length measurements and how it influences the deceleration. Finally we look at the evolution of the transverse emittance.  
 
TUPWA064 Suppression of Halo Formation in FODO Focusing Channel with Nonlinear Focusing multipole, focusing, space-charge, emittance 1850
 
  • Y.K. Batygin, A. Scheinker
    LANL, Los Alamos, New Mexico, USA
 
  Averaging method was applied to analyze focusing properties of a quadrupole FODO channel with inserted multipole lenses. General expression for averaged focusing potential is obtained as a function of position of multipole lenses with respect to FODO quadrupole lenses. Obtained results were applied to the problem of intense beam transport in combined FODO structure. Numerical and analytical treatments of high-brightness beam dynamics with suppressed space-charge induced halo formation are presented.  
 
TUPWA068 Model Independent Beam Tuning simulation, linac, beam-transport, drift-tube-linac 1862
 
  • A. Scheinker
    LANL, Los Alamos, New Mexico, USA
 
  This work presents a new model independent feedback control scheme for optimization and tuning of particle accelerator components, with a simulation demonstrating the method on a low energy, space-charge dominated beam. The scheme presented here does not depend on an accurate model of the system it is stabilizing, and may even be unaware of its control input direction (such as having rotated quadrupole magnets and alignment errors) and this direction may change with time (thermal cycling and hysteresis). Stability properties are demonstrated both analytically and through a simulation in which the current settings of twenty two quadrupole magnets are simultaneously tuned through the transport section of the Los Alamos Linear Proton Accelerator. The controller is unaware of the complex nonlinear beam dynamics, with its only input being the surviving beam current readings along the transport region. Starting with all magnet settings at zero, in which case all of the beam is lost by the end of the transport, the feedback control tunes the magnets resulting in successful transport to the first drift tube linac section.  
 
TUPWO003 CLIC 3 TeV Beam Size Optimization with Radiation Effects radiation, lattice, dipole, photon 1877
 
  • O.R. Blanco, P. Bambade
    LAL, Orsay, France
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Horizontal beamsize contribution due to radiation on bending magnets is calculated using theoretical results and recent improvements in mapclass (Mapclass2). In order to verify the code and validity of its approximations, a simple lattice with no geometrical nor chromatic aberrations, one dipole and a final drift has been used to compare Mapclass2 calculations and Placet tracking results. CLIC 3TeV lattice is optimized including the radiation effects. Current results show that correction of chromatic aberrations impose constraints in radiation improvement.  
 
TUPWO004 Preliminary Design of a 4 MW Proton Beam Switchyard for a Neutrino Super Beam Production Facility target, proton, kicker, dipole 1880
 
  • E. Bouquerel, M. Dracos, F.R. Osswald
    IPHC, Strasbourg Cedex 2, France
 
  Funding: European Commission Framework Programme 7 Design Study: EUROnu, Project Number 212372.
The feasibility of the distribution of 4 MW proton beam power onto a 4-targets horn system for neutrino super-beams production is discussed. A preliminary solution using a pair of bipolar kickers to route the beam onto the targets at a repetition rate of 50 Hz (12.5 Hz per beam line) is proposed. Compensating dipoles would apply symmetry in the system. Magnetic fields induced by these optical elements would not exceed 0.96 T. Studies of the beam envelopes with the code TRANSPORT suggest the use of three quadrupoles per beam line located after the dipoles to focus the 4 mm σ beam onto each target. The length of this switchyard system is estimated to be 29.9 m and 3 m radius.
 
 
TUPWO005 Survey of Beam Optics Solutions for the MLS Lattice optics, emittance, lattice, cavity 1883
 
  • M. Ries, J. Feikes, T. Goetsch, G. Wüstefeld
    HZB, Berlin, Germany
 
  The Metrology Light Source (MLS) is an electron storage ring containing 24 quadrupole magnets which can be powered individually. Fully exploring the capabilities of the machine optics by tracking or experiment would be very time consuming. Therefore the quadrupoles were combined in five families and a numerical brute force approach was used to scan for areas of stable solutions in the scope of linear beam optics. In order to get information on the expected beam lifetimes for each generated optics, a model for the Touschek lifetime was implemented. Simulation results as well as experimental tests of selected optics will be presented.  
 
TUPWO006 Orbit Correction System at the Collector Ring sextupole, closed-orbit, optics, dipole 1886
 
  • A. Dolinskyy, O. Chorniy, O.E. Gorda, A.G. Kalimov, H. Leibrock, S.A. Litvinov, M. Steck
    GSI, Darmstadt, Germany
 
  The CR is dedicated ring for cooling of hot beam coming either from the antiproton separator or SFRS. It is anticipated that the understanding and control of the beam orbits will be important for achieving low beam losses. We describe our plans for measuring and correcting the COD of the CR. The closed orbit of the CR, which is distorted due to magnets misalignments, can reduce the ring acceptance by factor of 2, if a special correction system is not applied. The system, which is developed for the CR should be periodically or manually invoked to correct the global closed orbit and used to adjust the orbit position at some point using local bump. BPM and corrector magnets, which are planned to be used at the CR, are described in this paper. SVD method is used to obtain the corrector strength or corrector factors in global or local orbit correction.  
 
TUPWO009 Decoupling Capabilities Study of the Emittance Transfer Section emittance, solenoid, coupling, stripper 1895
 
  • C. Xiao, O.K. Kester
    IAP, Frankfurt am Main, Germany
  • L. Groening, O.K. Kester, M.T. Maier
    GSI, Darmstadt, Germany
 
  Flat beams are those which feature unequal emittances in the horizontal and vertical phase space. The present paper is on the planning of the experimental proof of principle. Detailed simulations of the experiment, initially based on linear matrix transformations, are performed. The remarkable flexibility of the set-up w.r.t. to decoupling is addressed, as it can provide an one-knob tool to set the horizontal and vertical emittance partitioning. It was found that the decoupling capability of the set-up is remarkably flexible and the impact and discussion of this finding is treated in a dedicated section  
 
TUPWO012 Relations Between Projected Emittances and Eigenemittances emittance, beam-transport, electron, coupling 1904
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  We give necessary and sufficient conditions which two sets of positive real numbers must satisfy in order to be realizable as eigenemittances and projected emittances of a beam matrix. The information provided by these conditions sets limits on what one can to achieve when designing a beam line to perform advanced emittance manipulations (for example, round-to-flat beam transformations).  
 
TUPWO017 Simulation on the Breaking of αx Multiknob Orthogonality in the Presence of Gradient and Coupling Errors and Experimental Investigation coupling, simulation, sextupole, linear-collider 1919
 
  • S. Bai, J. Gao
    IHEP, Beijing, People's Republic of China
  • P. Bambade
    LAL, Orsay, France
  • G.R. White
    SLAC, Menlo Park, California, USA
 
  The ATF2 project is the final focus system prototype for ILC and CLIC linear collider projects, with a purpose to reach a 37nm vertical beam size at the interaction point. In beam tuning towards the goal beam size, the presence of a tilt of the IP Shintake monitor fringe pattern with respect to the x-y coordinate system of the beam can break the orthogonality in the main σ34 and σ32 waist corrections required to reduce the vertical beam size at IP. Concerning the method of doing αx scan and measuring the vertical beam size to diagnose the IPBSM fringe tilt or residual σ13, one thing should be studied is to check what could break the orthogonality of the αx knob other than σ13 and the IPBSM fringe tilt. In this paper, we report on the simulation study that check for the breaking of orthogonality of the αx knob in the presence of gradient and coupling errors; to what extent this breaking of orthogonality can go; and also calculate the IPBSM fringe tilt angle from experiment results.  
 
TUPWO030 Beam-based Alignment Simulation on Flash-I Undulator undulator, simulation, alignment, electron 1940
 
  • D. Gu, Q. Gu, D. Huang, M. Zhang, M.H. Zhao
    SINAP, Shanghai, People's Republic of China
  • M. Vogt, N.J. Walker
    DESY, Hamburg, Germany
 
  In order to ensure the SASE process can take place in the whole FLASH-I undulator section, a straight beam trajectory is mandatory which can only be achieved through beam-based alignment (BBA) method based on electron energy variations. In this paper, a detailed result of simulation is presented which demonstrate that the alignment can be achieved within accuracy of a few 10 μm after several iterations. The influence of Quadrupole and BPM offsets, magnet-mover calibration errors, quadrupole gradient errors are also discussed.  
 
TUPWO033 Effects Estimation of Superconducting Wiggler in SSRF emittance, lattice, dynamic-aperture, optics 1946
 
  • Q.L. Zhang, B.C. Jiang, S.Q. Tian, W.Z. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Superconducting wiggler (SW) may greatly impact on the beam dynamics in a storage ring. The effects of a 4.5T SW has been studied in SSRF including impaction on the emittance and the energy spread. To keep an undegraded storage ring performance, a local achromatic lattice is considered. The combat between the damping effect of the SW and emittance growth of local achromatic lattice is the main concern of this paper. Other effects (tune shift, beta beating, dynamics aperture, etc.) with the SW are also simulated and optimized in this paper.  
 
TUPWO035 Physical Design of Beam Transport Line of a Compact Terahertz FEL lattice, undulator, electron, FEL 1952
 
  • H. Zeng, Q.S. Chen, Q. Fu, B. Qin, B. Wu, Y.Q. Xiong
    HUST, Wuhan, People's Republic of China
  • G. Feng, Y.J. Pei
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The single pass, linac-based compact terahertz source at HUST is now in the physical design stage. To match Twiss parameters and dispersion function of the electron beam at the undulator entrance and get smaller beta function in the whole line, several lattices based on the double bending achromat(DBA) structure were discussed and the optimized design is given with beam dynamics results–calculated by MAD and Trace 3D.  
 
TUPWO042 Modeling Results from Magnetic and Beam Based Measurements of the ALBA Gradient Dipoles dipole, focusing, lattice, storage-ring 1967
 
  • X. Gavaldà
    SOLEIL, Gif-sur-Yvette, France
  • G. Benedetti, J. Marcos, Z. Martí
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA lattice is a DBA-like structure where most of vertical focusing is provided by gradient dipoles. In the first year of machine operation, the model parameters describing the focusing strength of the 32 dipoles have been calibrated by fitting the measured closed orbit response matrix. The mean k-value obtained from this analysis differs by -0.3% with respect to the value taken from the magnetic measurements previous to the magnet installation, while the k variation within the 32 dipoles is of the same order of magnitude. The optics results (tunes, beta beating, dispersion) obtained with the beam based model are compared with the predicted ones from the magnetic measurement model.  
 
TUPWO047 Preliminary Results of Linear Optics From Orbit Response in the CERN PSB dipole, optics, booster, coupling 1973
 
  • M.J. McAteer, C. Carli, B. Mikulec, R. Tomás
    CERN, Geneva, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
 
  Funding: This research project is supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2011-289485-OPAC)
Future operations for the CERN accelerator complex will require the PS Booster to deliver higher intensity beam without increasing emittances, and having an accurate knowledge of the machine’s lattice imperfections will be necessary. We present preliminary results of the analysis of orbit response measurements in the PS Booster to determine the linear optics and to identify field errors in each of the machine’s four rings.
 
 
TUPWO049 Automatic Correction of Betatron Coupling in the LHC using Injection Oscillations coupling, injection, controls, betatron 1979
 
  • T. Persson, T. Bach, D. Jacquet, V. Kain, Y.I. Levinsen, E.H. Maclean, M.J. McAteer, P.K. Skowroński, R. Tomás, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • R. Miyamoto
    ESS, Lund, Sweden
 
  The control of the betatron coupling at injection and during the energy ramp is critical for the safe operation of the tune feedback and for the dynamic aperture. In the LHC every fill is preceded by the injection of a pilot bunch with low intensity. Using the injection oscillations from the pilot bunch we are able to measure the coupling at each individual BPM. The measurement is used to calculate a global coupling correction. The correction is based on the use of two orthogonal knobs which correct the real and imaginary part of the difference resonance term f1001, respectively. This method to correct the betatron coupling has been proven successful during the normal operation of the LHC. This paper presents the method used to calculate the corrections and its performance.  
 
TUPWO050 Commissioning and Operation at β* = 1000 m in the LHC optics, proton, scattering, insertion 1982
 
  • H. Burkhardt, T. Persson, R. Tomás, J. Wenninger
    CERN, Geneva, Switzerland
  • S. Cavalier
    LAL, Orsay, France
 
  We have developed a special optics with a β* of 1000 m for two interaction regions (IR1 and IR5) in the LHC, to produce very low divergence beams required for elastic proton-proton scattering. We describe the design, commissioning and operation of this optics in the LHC. The β* of 1000 m was reached by de-squeezing the beams using 17 intermediate steps beyond the β* of 90 m, which had been the previous highest β* value reached in the LHC. The optics was measured and the beta beating globally corrected to a level of 10 per cent.  
 
TUPWO051 Geometry and Optics of the Electrostatic ELENA Transfer Lines optics, extraction, proton, ion 1985
 
  • G. Vanbavinckhove, W. Bartmann, F. Butin, O. Choisnet
    CERN, Geneva, Switzerland
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
  • D. Barna, H. Yamada
    University of Tokyo, Tokyo, Japan
 
  The future ELENA ring at CERN will decelerate the AD antiproton beam further from 5.3 MeV to 100 keV kinetic energy, to increase the efficiency of antiproton trapping. At present there are four experimental areas in the AD hall which will be complemented with the installation of ELENA by additional three experiments and an additional source for commissioning. This paper describes the optimisation of the transfer line geometry, ring rotation and source position. The optics of the transfer lines and error studies to define field and alignment tolerances are shown, and the optics particularities of electrostatic elements and their optimisation highlighted.  
 
TUPWO060 Flat Electron Bunch Compression at the Advanced Superconducting Test Accelerator emittance, simulation, cathode, solenoid 2003
 
  • C.R. Prokop, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • P. Piot, Y.-E. Sun
    Fermilab, Batavia, USA
 
  Funding: This work is supported by LANL LDRD #20110067DR and by the U.S. DOE contracts DE-FG02-08ER41532 and DE-AC02-07CH11359.
The generation of flat beam using round-to-flat beam conversion of an incoming canonical-angular-momentum dominated electron beam could have important application in the field of advanced acceleration techniques and accelerator-based light source. In this paper we explore the temporal compression of flat beams and especially compare the resulting phase space dilutions with the case of round beam. Finally, we propose and detail a possible experiment to investigate the flat-beam bunch compression at the Advanced Superconducting Test Accelerator currently in construction at Fermilab.
 
 
TUPWO064 Online Optimization Algorithms for Accelerators and Experimental Results injection, coupling, optics, simulation 2012
 
  • X. Huang, W.J. Corbett, J.A. Safranek, J. Wu
    SLAC, Menlo Park, California, USA
 
  Online optimization of accelerators is becoming increasingly more important as accelerator systems become more and more complex. Online accelerator optimization is generally a multi-variant nonlinear problem with considerable noise. Efficiency and robustness are critical for online applications. Therefore optimization algorithms require special considerations. In this study we evaluate the viability of several online optimization algorithms for both ring and linac machines. Numerical simulations and experimental tests are presented to investigate performance of the algorithms.  
 
TUPWO068 Performance Improvements of the SLAC Linac for the FACET Beam linac, emittance, klystron, injection 2021
 
  • F.-J. Decker, N. Lipkowitz, E. Marín, Y. Nosochkov, J. Sheppard, M.K. Sullivan, Y. Sun, M.-H. Wang, G.R. White, U. Wienands, M. Woodley, G. Yocky
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S.Department of Energy, Contract DE-AC02-76SF00515.
Two thirds of the SLAC Linac is used to generate a short, intense electron beam for the FACET experiments. The emittance growth along the Linac is a major concern to finally get small spot sizes for these experiments. There are two different approaches to get the required small emittances: a) lengthy iterative global tuning technique, and b) trying to identify locations of the main sources of the emittance growth and reducing their effect locally. How these approaches help to get good beam performances is discussed.
 
 
TUPWO074 Reducing Spin Tune Spread by Matching DX Prime at Snakes in RHIC simulation, proton, power-supply, polarization 2030
 
  • C. Liu, M. Bai, E.D. Courant, A. Marusic, M.G. Minty, V.H. Ranjbar, S. Tepikian, R.A. Thomas, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
At the Relativistic Heavy Ion Collider (RHIC) at BNL the physics program includes collisions between beams of polarized protons at high beam energies. Maintaining the proton's polarization is vital and preserved primarily by application of a pair of Siberian snakes. Measurements from recent high-energy physics runs indicate polarization loss during acceleration between 100 and 250 GeV. Based on analytic estimations for off-momentum particles and/or beams, a nonzero difference in DX prime - the dispersion function angle - between the snakes can result in a shift in the spin tune, or equivalently, of the conditions of snake resonances in close proximity to the beam during acceleration. Requiring that DX prime at the two Siberian snakes in RHIC being equal would reduce the spin tune shift for off-energy particles so helping to maintain polarization during the energy ramp. Preservation of half-integer spin tune is also important for future operation of the spin flipper at store. In this report, the matching scheme and simulations using MAD-X will be presented together with a newly applied method based on response matrices.
 
 
WEOAB202 JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs linac, electron, dipole, optics 2085
 
  • S.A. Bogacz, G.A. Krafft, V.S. Morozov, Y. Roblin
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
We propose a demonstration experiment for a new concept of a ‘dogbone’ RLA with multi-pass return arcs – JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.
 
slides icon Slides WEOAB202 [1.485 MB]  
 
WEOBB203 Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors kicker, optics, pick-up, target 2097
 
  • P. Skowroński, A. Andersson, A. Gerbershagen, E. Ikarios, J. Roberts
    CERN, Geneva, Switzerland
  • P. Burrows, G.B. Christian, A. Gerbershagen, C. Perry, J. Roberts
    JAI, Oxford, United Kingdom
  • P. Burrows, G.B. Christian, A. Gerbershagen, C. Perry
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • A. Ghigo, F. Marcellini
    INFN/LNF, Frascati (Roma), Italy
  • E. Ikarios
    National Technical University of Athens, Athens, Greece
 
  Funding: Work supported by the European Commission under the FP7 Research Infrastructures project Eu- CARD, grant agreement no. 227579
The CLIC two beam acceleration technology requires a drive beam phase stability of better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurement and its subsequent correction in a chicane with help of fast kickers. A prototype of such a system is being installed in CLIC Test Facility CTF3. In this paper we describe in detail its design and implementation. Additionally, we present and discuss the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, measured with the drive beam.
We would like to acknowledge support of G.Sensolini, A.Zolla (INFN/LNF Frascati), N.S.Chritin and J-M.Scigliuto (CERN) in design and fabrication of components.
 
slides icon Slides WEOBB203 [6.770 MB]  
 
WEPWA020 Laser Electron Storage Ring for TTX cavity, laser, electron, storage-ring 2171
 
  • H.S. Xu, W.-H. Huang, C.-X. Tang, L.X. Yan, Y. You
    TUB, Beijing, People's Republic of China
  • D. Jehanno, Z.F. Zomer
    LAL, Orsay, France
  • S.-Y. Lee
    IUCEEM, Bloomington, Indiana, USA
 
  Tsinghua Thomson scattering X-ray (TTX) source, proposed by Tsinghua University, is a hard x-ray source with multi-application in condensed matter physics, etc. The TTX is composed of an S-band photocathode RF gun and a SLAC type 3m travelling wave Linac, and a femto-second tera-watt laser system drives the photocathode. The TTX source is in operation. To extend the capability of TTX, we plan to design a ring based system to increase the photon flux. In this paper, we report the design of the compact electron storage ring and optical cavity, expected performance, and future prospects.  
 
WEPWA023 Design of 14 MeV LINAC for THz Source Based FEL gun, linac, FEL, emittance 2181
 
  • Y.J. Pei, G. Feng, Y. Hong, G. Huang, D. Jia, K. Jin, C. Li, J. Li, S. Lu, L. Shang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Q.S. Chen, M. Fan, T. Hu, Y.Q. Xiong, H. Zeng
    HUST, Wuhan, People's Republic of China
  • B. Qing, Z.X. Tang, X.L. Wei
    USTC, Hefei, Anhui, People's Republic of China
  • L.G. Shen, F. Zhang
    USTC/PMPI, Hefei, Anhui, People's Republic of China
 
  Abstract THz wave have many special performances, such as it can penetrate deep into many organic materials without the damage associated with ionizing radiation such as X-ray, it can be used to distinguish between materials with varying water content, because THz radiation is absorbed by water. In part researchers lacked reliable sources of THz, so develop new THz sources is important now. So far there were many kind of THz Source, one of them is THz source based a FEL that can produce high power (~kW). This paper will describe the design of a LINAC of 14MeV which is used for FEL to produce THz radiation. The LINAC is mainly composed of a novel EC-ITC RF gun, compensation coil, constant gradient accelerating structure, beam diagnostic system and so on. Main design parameters are as following: Energy 7~15MeV Beam current (macro pulse) 571mA (micro pulse) 30~40° Bunch length 5~7ps Charge per bunch 200~300pC Normalized emittance ≤10mm.mrad Energy spread(rms) ≤0.5%  
 
WEPWA036 The Magnetic Performance of a Double Elliptically Polarized Undulator undulator, polarization, photon, focusing 2208
 
  • Q.G. Zhou, H.F. Wang, M. Zhang, W. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A pair of elliptically polarized undulators with APPLE-II type which will be used in a soft X-ray beam line for ARPES and PEEM at SSRF has been built and installed in the storage ring. The undulators can cover the energy range from 20eV to 2000eV of arbitrary polarized light including the horizontal, vertical, elliptical and circular polarization. The quasi-periodic design of the low energy undulator minimizes the contributions of the higher harmonics to be less than 20%. The magnet design and the measured magnetic field performance will be presented in this paper.  
 
WEPWA049 Top-up Safety Simulations for the ALBA Storage Ring dipole, sextupole, simulation, storage-ring 2229
 
  • G. Benedetti
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The potential hazards introduced by injecting into the ALBA storage ring with front end shutters open are determined through particle tracking simulations. The method is based on the possible overlap between phase space of forwards and backwards tracking between the straight section downstream the front end and the beamline. Realistic magnetic field, trajectory, aperture and energy errors are taken into account. Scenarios that could bring an injected beam of electrons passing through an open beamline front end are identified. The interlocks required to prevent such situations from arising are stated.  
 
WEPWA055 Multipole and End-field Shimming Results of EPU46 at the TPS multipole, undulator, polarization, electron 2244
 
  • T.Y. Chung, C.-H. Chang, J. Chen, J.C. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  Multipole error and the first and second integrals of EPU46 require shimming to fulfill the tolerance requirements of beam dynamics. In this paper, we describe the field correction, including central-field and end-field shimming procedures, and the results for EPU46 at TPS. End-pole shimming for the first and second integrals serve to adjust the beam trajectory, and magic fingers to decrease the multipole error. For the active multipole shimming for undulators of type Apple II, a trim-long-coil array is used to compensate for multipole error. This scheme efficiently eliminates a phase-dependent skew quadrupole error.  
 
WEPWA063 Longitudinal Beam Transport in the ALICE IR-FEL Facility sextupole, FEL, dipole, linac 2262
 
  • F. Jackson, D. Angal-Kalinin, J.K. Jones, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  The ALICE facility at Daresbury Laboratory is an energy recovery test accelerator which includes an infra-red oscillator-type free electron laser (IR-FEL). The longitudinal transport functions (including R56 and T566) in the ALICE accelerator lattice are studied in this paper by use of precision time-of-arrival methods. The results allow characterisation of the triple bend achromat (TBA) arcs and compression chicane of the lattice. The relevance of the results to the operational performance of ALICE as a IR-FEL facility and a THz source is discussed.  
 
WEPWA065 A Non-linear Injection Kicker for Diamond Light Source kicker, injection, emittance, septum 2268
 
  • T. Pulampong, R. Bartolini
    JAI, Oxford, United Kingdom
  • R. Bartolini
    Diamond, Oxfordshire, United Kingdom
 
  Ultra-low emittance lattices will operate with reduced dynamics apertures. New injection schemes are currently investigated in order to guarantee sufficient injection efficiency. A promising candidate is a pulsed kicker with a nonlinear magnetic field. The studies presented in this paper prove that this kicker allows injection with reduced dynamic aperture and provide minimal perturbation of the stored beam during Top-Up injection. Plans to install such a device at the Diamond light source are outlined.  
 
WEPWA072 Design and Commissioning of Chasman-­Green Double Bend Achromatic Lattice Linear Transport Line at the University of Hawai'i MkV Accelerator Facility dipole, electron, focusing, diagnostics 2280
 
  • B.T. Jacobson, J. Madey, P. Niknejadi
    University of Hawaii, Honolulu, HI, USA
 
  The design of the Double Bend Achromat (DBA) lattice was originally motivated by the desire to increase the brightness of a synchrotron ring by storing a low emittance electron beam*. Alternating the direction of the bends in the DBA lattice turns the ring into a linear transport line, which has advantages over the straight transport lines typically used in linac FEL's. The dipoles in the DBA cells provide synchrotron images of the electron beam, a real-time non-destructive diagnostic during operation. As in circular machines, sections between DBA cells provide a low-emittance dispersion free beam for insertion devices such as FEL's and inverse Compton backscattering sources. This paper describes an example linear DBA, which has been designed and commissioned as part of the MkV 40 MeV electron accelerator facility at the University of Hawaii.
* Renate Chasman and G. Kenneth Green "Preliminary Design of a Dedicated Synchrotron Radiation Facility", IEEE Transactions on Nuclear Science, NS­22(3):1765-­1767, June 1975
 
 
WEPWA083 Results of NSLS-II Linac Commissioning linac, emittance, solenoid, dipole 2301
 
  • R.P. Fliller, A. Blednykh, J. Choi, M.A. Davidsaver, J.H. De Long, F. Gao, C. Gardner, Y. Hu, G. Jahnes, W. Jew, J. Klug, P. Marino, D. Padrazo, L. Pharr, R. Rainer, G. Ramirez, P. Ratzke, R. Raynis, J. Rose, M. Santana, S. Seletskiy, T.V. Shaftan, J. Shah, G. Shen, O. Singh, V.V. Smaluk, C. Sorrentino, K. Vetter, G.M. Wang, G.J. Weiner, X. Yang, L.-H. Yu, E. Zeitler
    BNL, Upton, Long Island, New York, USA
  • K. Dunkel, J.H. Hottenbacher, B. Keune, A. Metz, C. Piel
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The NSLS-II linac is a 200 MeV normal conducting linac procured as a turn key system from Research Instruments. The linac and associated transport lines were installed at BNL in the winter of 2012. Commissioning activities started March 26 and lasted for 2.5 months. In this report we discuss the successful commissioning results of the linac, issues encountered, and the remaining work that needs to be accomplished for NSLS-II booster commissioning.
 
 
WEPWO040 Design of HWR at RISP cavity, simulation, electromagnetic-fields, niobium 2387
 
  • G.-T. Park, H.J. Cha, H.C. Jung
    IBS, Daejeon, Republic of Korea
 
  At RISP, superconducting cavity resonators to accelerate the various ions in high current are being developed. In particular, hal-wave resonator (HWR) will be used for β=0.12, f=162.5 MHz. Here we present the structural analysis of HWR, which includes the prediction of resonant frequency shift during the manufacturing and testing process, stiffening measures to minimize the shift, and the tuning mechanism. The processes of welding, polishing, vacuuming, cooling (to crygenic temperature)as well as Lorentz force, helium pressure fluctuation, microphonics, and interaction with the helium vessel and tuning system will be simulated optimizing the frequency shift.  
 
WEPWO044 RF Characterization of Niobium Films for Superconducting Cavities niobium, target, plasma, ion 2399
 
  • S. Aull, S. Calatroni, S. Döbert, T. Junginger, G. Terenziani
    CERN, Geneva, Switzerland
  • S. Aull
    University of Siegen, Siegen, Germany
  • A.P. Ehiasarian, G. Terenziani
    Sheffield University, Sheffield, United Kingdom
  • J. Knobloch
    HZB, Berlin, Germany
 
  Funding: Work supported by the Wolfgang-Gentner-Programme of the Bundesministerium für Bildung und Forschung (BMBF)
The surface resistance RS of superconductors shows a complex dependence on the external parameters such as temperature, frequency or radio-frequency (RF) field. The excited modes of 400, 800 and 1200 MHz allow measurements at actual operating frequencies of superconducting cavities. Niobium films on copper substrates have several advantages over bulk niobium cavities. HiPIMS (High-power impulse magnetron sputtering) is a promising technique to increase the quality and therefore the performance of niobium films. This contribution will introduce CERNs recently developed HiPIMS coating apparatus. Moreover, first results of niobium coated copper samples will be presented, revealing the dominant loss mechanisms.
 
 
WEPEA003 Dipole Fringe Field Effects in the ThomX Ring dipole, sextupole, closed-orbit, betatron 2504
 
  • J.F. Zhang
    LAL, Orsay, France
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette, France
 
  Thom-X is a 50 MeV compact ring based on the Compton back-scattering which is being built in LAL, France. With a very short bend radius of 0.352 m, the nonlinear effects of the dipole fringe fields become critical to the beam dynamic . This paper compares the modelings of the dipole fringe field using four popular codes: MadX, Elegant, BETA, and Tracy3, and then discuss the proper model to have consistent results between the analytical calculation and the symplectic tracking of the Thom-X ring.  
 
WEPEA008 Influence of Higher Order Phase Slip Factor Contributions on Beam Loss during SIS-100 Proton Operation sextupole, lattice, simulation, dynamic-aperture 2507
 
  • S. Sorge, O. Boine-Frankenheim, G. Franchetti
    GSI, Darmstadt, Germany
 
  The projected FAIR synchrotron SIS-100 is envisaged to accelerate intense proton and heavy-ion beams. The maximum proton energy will be E=29 GeV. In order to stay below transition energy a special powering scheme of the quadrupoles has been introduced which provides a maximum transition gamma of 45.5. The resulting settings of the quadrupole focusing strengths generate large maxima of the horizontal beta and dispersion functions. In particle tracking simulation we observed beam loss caused by a large momentum spread in the deformed rf bucket close to transition. Application of the chromaticity correction sextupoles led to a reduction of the first-order phase slip factor term and of the beam losses. In this contribution we will analyze the effect of the sextupoles on the higher-order components of the phase slip factor. The rf bucket shape will be discussed as well as the transverse beam loss and possible longitudinal instabilities.  
 
WEPEA009 Effects of Field Imperfections in the Isochronous Mode of the CR Storage Ring at FAIR dipole, octupole, sextupole, simulation 2510
 
  • S.A. Litvinov, A. Dolinskyy, O.E. Gorda, M. Steck, H. Weick
    GSI, Darmstadt, Germany
  • D. Toprek
    VINCA, Belgrade, Serbia
 
  Today the challenge is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross-sections and short half-lives. The large acceptance Collector Ring (CR) at FAIR tuned in the isochronous ion-optical mode offers unique possibilities for such measurements. Nonlinear field errors as well as fringe fields of the wide aperture quadrupoles and dipoles strongly excite the high-order aberrations which negatively affect the time resolution of the isochronous ring. Their influence is investigated here and a possible correction scheme is shown.  
 
WEPEA015 Possibility Study of High Repetition Rate Operation of JPARC Main Ring sextupole, injection, multipole, space-charge 2528
 
  • K. Fan, S. Igarashi, K. Ishii, T. Koseki, M. Uota
    KEK, Ibaraki, Japan
 
  The original design of JPARC main ring is to provide high beam power of 750 kW with machine repetition rate of 0.3 Hz. However, the severe space charge effects at low injection energy limit the beam intensity. In order to raise the beam power to the design limit, one logical way is to increase the repetition rate. However, the resulting eddy current in the laminations and pipes may impair the field quality of all magnets. In addition, the activation of beam pipe becomes severer in high beam power operation. Titanium beam pipe is proposed to replace the stainless steel pipe to reduce the activation and decrease the decay time. However, titanium has lower resistivity, severer eddy current effects are expected. The studies investigate the eddy current effects on field quality of the main dipole, quadrupole and sextupole magnets.  
 
WEPEA018 Further Improvement of the PTC-ORBIT Code to Model Realistic Operation of High-beam Power Synchrotrons injection, synchrotron, resonance, extraction 2534
 
  • A.Y. Molodozhentsev, E. Forest
    KEK, Ibaraki, Japan
 
  The combined PTC-ORBIT code has been developed a few years ago to study the dynamics of the high intensity proton beams in synchrotrons, including the nonlinear machine resonances and the space charge effects in the self-consistent manner. In order to extend the code abilities the time variation of the main elements of the synchrotron has been introduced into the PTC module of the code. This feature opens the direct way to model the multi-turn injection process and the slow extraction process by using realistic machine description, in particular the dynamic variation of the betatron tunes, strength of the bump magnets, dynamic resonance correction or resonance excitation. To demonstrate the code abilities the corresponding simulations for CERN PS Booster and for J-PARC Main Ring are discussed.  
 
WEPEA029 The SHER-HIAF Ring Lattice Design injection, ion, kicker, lattice 2561
 
  • X. Gao, W.P. Chai, G.D. Shen, J. Shi, J.W. Xia, J.C. Yang
    IMP, Lanzhou, People's Republic of China
 
  Super Heavy Experimental Ring (SHER) is one of the rings of the next accelerator complex High Intensity Heavy Ion Accelerator Facility (HIAF) at IMP[4]. Here, present ideas of the lattice design for the operation of the large acceptance ring are presented. The SHER ring has to be optimized for e-cooling and the lattice is designed for different modes. First of all, it is designed in the so called isochronous mode as time-of-flight mass spectrometer for short-lived secondary nuclei. Secondly, SHER can also be used to be a storage ring for collecting and cooling the secondary rare isotope beams from the transport line. In order to fulfill it's purpose, the ion optics can be set to different ion optical modes  
 
WEPEA032 Estimation and Correction of the Uncontrolled Beam Loss due to the Alignment Error in the Low-energy Linear Accelerator of RAON alignment, ion, linac, cavity 2570
 
  • J.G. Hwang, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • D. Jeon, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  RAON(Rare isotope Accelerator Of Newness) mainly consists of the front-end system, ISOL system , re-accelerator for ISOL system, charge stripper section and main linear accelerator(Linac) for ECR ion source. Since the beam energy at the down-stream of the front-end system is low, 0.3~0.5 MeV/u, the trajectories of the beam is very sensitive the alignment error of the magnets and cavities at the entrance of the main Linac. It can be caused the uncontrolled beam loss due to the large amplitude of the trajectory. The effect of the alignment errors of the magnets and cavities is estimated and corrected by using analytical model which is based on analytical model and code TRACK. The calculation result based on the analytical model agrees very well with the simulation by using the TRACK code. Using the analytical model, the position and number of the corrector and Beam Position Monitor(BPM) in low energy Linac was determined to compensate the amplification of the beam trajectory under 400 um. We will present the result of the estimation of the alignment error and the correction using steering magnet with strip-line Beam Position Monitor (BPM) in a low energy section.  
 
WEPEA034 Study on the Beam Dynamics in the RISP Driver Linac linac, stripper, ion, resonance 2576
 
  • H.J. Kim, H.J. Jang, D. Jeon
    IBS, Daejeon, Republic of Korea
  • J.G. Hwang
    Kyungpook National University, Daegu, Republic of Korea
  • E.-S. Kim
    KNU, Deagu, Republic of Korea
 
  Abstract Rare Isotope Science Project (RISP) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. The RISP driver linac which is used to accelerate the beam, for an example, Uranium ions from 0.3 MeV/u to 200 MeV/u consists of superconducting RF cavities and warm quadrupole magnets for focusing heavy ion beams. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the requirements of dynamic errors and correction schemes to minimize the beam centroid oscillation and preserve beam losses under control.  
 
WEPEA049 Analysis of the Non-linear Fringe Effects of Large Aperture Triplets for the HL LHC Project dipole, simulation, optics, luminosity 2615
 
  • A.V. Bogomyagkov, E.B. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk, Russia
  • A. Chancé, B. Dalena, J. Payet
    CEA/IRFU, Gif-sur-Yvette, France
  • R. De Maria, S.D. Fartoukh, M. Giovannozzi
    CERN, Geneva, Switzerland
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The HL-LHC project relies on large aperture quadrupoles which are compatible with the very large beam sizes in the inner triplets resulting from the strong reduction of β*. As a result the beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. The spatial extension of these fringe fields increases as well more or less linearly with the coil aperture, which is an additional motivation to analyse this aspect in detail in the framework of the High Luminosity LHC design study. This paper will quantify this effect both by direct analytical estimates using first order Hamiltonian perturbation theory, and via numerical studies thanks to the dedicated implementation of a fringe field symplectic integrator in SixTrack.
 
 
WEPEA058 LSS Layout Optimizations for Low-beta Optics for the HL-LHC optics, sextupole, luminosity, chromatic-effects 2639
 
  • B.J. Holzer, R. De Maria
    CERN, Geneva, Switzerland
  • R. Appleby, L.N.S. Thompson
    UMAN, Manchester, United Kingdom
  • L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
The High Luminosity LHC (HL-LHC) project aims to upgrade the existing LHC to a peak luminosity of the order 1035cm-2s−1, while retaining as much of the nominal layout and hardware as possible. The current baseline for this upgrade is the use of the Achromatic Telescopic Squeeze (ATS) concept, which allows mini-Beta squeeze in IRs 1 and 5 (ATLAS and CMS respectively) far below that possible with nominal optics. However it is useful to both explore the parameter space of the ATS scheme while also attempting to push the boundaries of the nominal layout. This paper presents a study into maximising optical flexibility of the nominal LHC Long Straight Sections (LSSs) around IPs 1 and 5. This involves replacing, moving or adding magnets within the LSS to investigate feasibility of exploiting a more conventional optical scheme than the ATS scheme. In particular the option of replacing single LSS quadrupoles with doublets is explored. The study also looks at making similar changes to the LSS while also implementing the ATS scheme, to further explore the ATS parameter space with the benefit of experience gained into flexibility of a modified nominal LHC optical scheme.
 
 
WEPEA059 Study of the Impact of Fringe Fields of the Large Aperture Triplets on the Linear Optics of the HL-LHC optics, luminosity, collider, focusing 2642
 
  • B.J. Holzer, R. De Maria, S. Russenschuck
    CERN, Geneva, Switzerland
  • R. Appleby, S. Kelly, M.B. Thomas, L.N.S. Thompson
    UMAN, Manchester, United Kingdom
  • L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: The HiLumi LHC Design Study is included in the HL-LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404
High-luminosity hadron colliders such as the High Luminosity LHC (HL-LHC) project place demanding requirements on existing and new magnet technology. The very low β* achieved by the Achromatic Telescopic Squeeze (ATS) optics scheme* for the HL-LHC in particular, requires large apertures in the high gradient Nb3Sn final focusing inner triplet triplet. Such magnets have extended fringe fields which perturb the linear and non-linear optics. This paper presents results of studies into the liner optics of the LHC using a range of fringe field models, including measurements of fringe fields from prototype magnets, and presents calculations of the beta-beating in the machine. Furthermore a similar study is presented on the nominal LHC optics, which uses final focus quadrupoles of higher gradient but significantly smaller aperture.
* S. Fartoukh, ‘’An Achromatic Telescopic Squeezing (ATS) Scheme for
LHC Upgrade’’, in proceedings of IPAC11, p. 2088.
 
 
WEPEA077 Applying the 'Simple Accelerator Modelling in Matlab' (SAMM) Code to High Luminosity LHC Upgrade proton, dipole, kicker, dynamic-aperture 2690
 
  • K.M. Hock, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  The "Simple Accelerator Modelling in Matlab" (SAMM) code is a set of Matlab routines for modelling beam dynamics in high energy particle accelerators. It includes a set of CUDA codes that can be run on a Graphics Processor Unit. These can be called from SAMM and can speed up tracking simulations by 100 times. To make use of this potential for the computationally intensive LHC upgrade simulations, we have developed additional Matlab and CUDA routines to simulate the full set of elements that are present in the Large Hadron Collider. We present the results of applying these codes to dynamic aperture calculations. These results are benchmarked against PTC and MADX.  
 
WEPFI014 Present Status and Progresses of RFQ of IFMIF/EVEDA rfq, coupling, vacuum, linac 2729
 
  • R. Dima, A. Pepato, F. Scantamburlo, E. Udup
    INFN- Sez. di Padova, Padova, Italy
  • F. Grespan, A. Palmieri, C. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  The RFQ of IFMIF/EVEDA is designed to accelerate a 125 mA D+ beam from 0.1 MeV to 5 MeV at a frequency of 175 MHz. The production of the modules 16, 17 and 18 necessary has been completed. In this paper the progress and improvements on the production of the modules, as well the development of the brazing procedure design will be described.  
 
WEPFI055 Experience on Fabrication and Assembly of the First Clic Two-Beam Module Prototype vacuum, alignment, RF-structure, instrumentation 2815
 
  • D. Gudkov, S. Lebet, G. Riddone, F. Rossi
    CERN, Geneva, Switzerland
  • A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
 
  The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies for the part manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison of several technical solutions adopted during the realization. The description of the module assembly and quality control measurements are also recalled.  
 
WEPFI089 High Gradient Normal Conducting Radio-frequency Photoinjector System for Sincrotrone Trieste gun, cathode, coupling, dipole 2905
 
  • L. Faillace, R.B. Agustsson, H. Badakov, P. Frigola
    RadiaBeam, Santa Monica, USA
  • F. Cianciosi, P. Craievich, M. Trovò
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Fukasawa, J.B. Rosenzweig, A. Yakub
    UCLA, Los Angeles, California, USA
 
  Radiabeam Technologies, in collaboration with UCLA, presents the development of a high gradient normal conducting radio frequency (NCRF) 1.6 cell photoinjector system for the Sincrotrone Trieste facility. Designed to operate with a 120MV/m accelerating gradient, this single feed, fat lipped racetrack coupler design is modeled after the LCLS photoinjector with a novel demountable cathode which permits cost effective cathode exchange. Full overview of the project to date and installation at Sincrotrone Trieste will be discussed along with basic, design, engineering and manufacturing.  
 
WEPME020 Alignment Plan and Survey Results of the Equipment for J-PARC 3 GeV RCS alignment, dipole, injection, emittance 2971
 
  • N. Tani, H. Hotchi, J. Kamiya, M. Kinsho, O. Takeda, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Misalignment of several millimeters of the magnets of J-PARC 3GeV RCS in both horizontal and vertical directions was caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011. As the result of orbit calculation showed that the beam loss was acceptable for beam operation at 300kW, beam operation with the current placement has been implemented. Realignment of the equipment will be carried out from August to December in 2013. Survey carried out in the summer of 2013 found out misalignment of ceramic vacuum ducts therefore their positioning is necessary. In this paper, these measurement result and latest alignment plan for J-PARC 3GeV RCS are reported.  
 
WEPME047 Identification of Sources of Orbital Distortions in Corrector Space alignment, feedback, controls, damping 3034
 
  • M. Böge, M. Aiba, A. Saá Hernández, A. Streun
    PSI, Villigen PSI, Switzerland
 
  Since modern ring and linear accelerator based light sources feature fast orbit feedback (FOFB) systems which transform orbital oscillations in beam position monitor (BPM) space into corrector (C) space over a wide frequency range, most perturbations can be directly analyzed utilizing the C pattern. In C space the localization of sources of distortions is facilitated since the large (per unit phase) number of BPMs and Cs involved provides a good spatial resolution. Applications of this technique include the beam-assisted girder alignment where changes in the C pattern are interactively analyzed while girder positions are remotely altered or the beam-based alignment of quadrupole/BPM pairs where the variation of C values as the result of quadrupole variations are observed. In both cases large oscillations in BPM space are completely surpressed by the FOFB leading to well controlled and stable conditions during the measurement.  
 
WEPME049 An Application of Laser Position Sensing Detector for Magnet Centralizing System laser, alignment, dipole, electron 3040
 
  • C.-S. Lin, J.-R. Chen, M.L. Chen, P.S.D. Chuang, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, H.C. Lin, H.M. Luo, S.Y. Perng, P.L. Sung, T.C. Tseng, H.S. Wang, M.H. Wu
    NSRRC, Hsinchu, Taiwan
  • J.-R. Chen
    National Tsing Hua University, Hsinchu, Taiwan
 
  Taiwan Photon Source (TPS) project has been proposed to create a 3GeV synchrotron light source. The designated ultra-low emittance of this new light source requires high precision positioning of storage ring magnets. The alignment of all magnets is very importance since it directly affects the closed orbit of electron beams. Previously, conventional on-site alignment of the magnets was mainly relying on the theodolite performance. The cumulated errors could be in the order of 0.1mm. In this paper, a new alignment scheme is proposed to enhance the on-site alignment of magnets for TPS project. To achieve the high precision requirements, a device possessing the advantages of expansion mandrel in conjunction with Position Sensing Detector (PSD) is proposed. The development of this alignment device is anticipated to provide a better mechanism to properly align the centers of the both quadrupole and sextupole magnets on girder with less than 30μm positioning errors.  
 
WEPME054 Girder Alignment in the Diamond Storage Ring survey, alignment, controls, storage-ring 3052
 
  • M. Apollonio, R. Bartolini, W.J. Hoffman, A.J. Rose, A. Thomson
    Diamond, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  A model of the Diamond Storage Ring describing the misalignment of its 74 girders in terms of displacements and rotations is used to predict the orbit distortions and corrector magnet strengths needed for a zero orbit. Using the data from a survey we compare the effect of a pure magnet misalignment with the natural orbit of the machine. A test with a displaced girder meant to produce a reduction in corrector strength is introduced. Comparison with data obtained from the actual move of the girder is presented and discussed.  
 
WEPME064 Recent Development on Beam-based Alignment in RHIC alignment, controls, power-supply, dipole 3082
 
  • J. Beebe-Wang, J.M. Ziegler
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
During the 2012 polarized proton and heavy ion runs, we continued the efforts on beam-based alignment (BBA) of quadrupoles in RHIC. A complete set of BBA data of triplet quadrupoles in all interaction regions of RHIC was obtained. In addition, the measurement procedures and data analysis were improved and the corresponding codes were developed. Here we report on the results of BBA measurements, analysis, and corrections. The model sensitivity, the measurement repeatability, and the BBA accuracy limitations are also discussed. As a continuing effort, we also present application code that is under development for future BBA operations in RHIC.
 
 
THXB101 High Power Operation and Beam Instrumentations in J-PARC Synchrotrons extraction, beam-losses, proton, synchrotron 3085
 
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Beam monitors developed and utilized at MR and RCS of J-PARC will be presented with emphasis on special characteristics for high intensity proton accelerator. Achieved beam characteristics and approach to improve beam intensity will be described in connection with the beam monitors. Usage of a transverse RF field to improve a duty factor of the slow extracted beam will be presented.  
slides icon Slides THXB101 [16.387 MB]  
 
THOAB103 Phase Space Tomography Research at Daresbury space-charge, electron, simulation, FEL 3096
 
  • K.M. Hock, D.J. Holder, M.G. Ibison, B.D. Muratori, A. Wolski
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  We report on the progress of phase space tomography research at Daresbury. The efforts over the past three years have been focussed on measuring the electron beam at the ALICE tomography section. Based on this result, we have developed techniques for improving resolution using normalised phase space, removing streaking artefacts by thresholding, demonstrating reliability of reconstructed phase space. We have developed in-house reconstruction codes using both the Filtered Back Projection and the Maximum Entropy Techniques. We are currently using a combination of simulation and measurements to investigate the onset of space charge effects at low bunch charges over short distances.  
slides icon Slides THOAB103 [0.878 MB]  
 
THOBB101 Transverse-to-longitudinal Emittance Exchange at the Fermilab Advanced Superconducting Test Accelerator emittance, simulation, cavity, controls 3103
 
  • C.R. Prokop, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.E. Carlsten
    LANL, Los Alamos, New Mexico, USA
  • M.D. Church, P. Piot
    Fermilab, Batavia, USA
 
  Funding: LANL LDRD program, project 20110067DR U.S. DoE under Contract No. DE-FG02-08ER41532 with Northern Illinois University and under Contract No. DE-AC02-07CH11359 the Fermi Research Alliance, LLC.
Earlier experiments at Fermilab’s A0 Photoinjector Laboratory demonstrated successful transverse-to-longitudinal emittance exchange (EEX) using a transverse-deflecting cavity (TDC) located between two identical doglegs. Such a design has the disadvantage of transversely displacing the beam. An interesting alternative is an EEX beamline designed out of a variable R56 bunch compressor chicane. In this paper, we present design and simulation testing for a chicane-based EEX for eventual implementation at Fermilab’s Advanced Superconducting Test Accelerator. We explore several advanced EEX concepts, including bunch current profile shaping, bunch compression, and dispersion-boosting to relax the requirements on TDC power and cooling.
 
slides icon Slides THOBB101 [2.582 MB]  
 
THOBB102 Beam Coupling Impedance Localization Technique Validation and Measurements in the CERN Machines impedance, kicker, lattice, betatron 3106
 
  • N. Biancacci, G. Arduini, T. Argyropoulos, H. Bartosik, R. Calaga, K. Cornelis, S.S. Gilardoni, N. Mounet, E. Métral, Y. Papaphilippou, S. Persichelli, G. Rumolo, B. Salvant, G. Sterbini, R. Tomás, R. Wasef
    CERN, Geneva, Switzerland
  • M. Migliorati, L. Palumbo
    URLS, Rome, Italy
 
  The beam coupling impedance could lead to limitations in beam brightness and quality, and therefore it needs accurate quantification and continuous monitoring in order to detect and mitigate high impedance sources. In the CERN machines, for example, kickers and collimators are expected to be the main contributors to the total imaginary part of the transverse impedance. In order to detect the other sources, a beam based measurement was developed: from the variation of betatron phase beating with intensity, it is possible to detect the locations of main impedance sources. In this work we present the application of the method with beam measurements in the CERN PS, SPS and LHC.  
slides icon Slides THOBB102 [7.224 MB]  
 
THPEA045 Beam Induced Quenches of LHC Magnets injection, beam-losses, simulation, kicker 3243
 
  • M. Sapinski, T. Baer, M. Bednarek, G. Bellodi, C. Bracco, R. Bruce, B. Dehning, W. Höfle, A. Lechner, E. Nebot Del Busto, A. Priebe, S. Redaelli, B. Salvachua, R. Schmidt, D. Valuch, A.P. Verweij, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
 
  In the years 2009-2013 LHC was operating with the beam energy of 3.5 and 4 TeV instead of the nominal 7 TeV, with the corresponding currents in the superconducting magnets also half nominal. To date only a small number of beam-induced quenches have occurred, with most being due to specially designed quench tests. During normal collider operation with stored beam there has not been a single beam induced quench. This excellent result is mainly explained by the fact that the cleaning of the beam halo worked very well and, in case of beam losses, the beam was dumped before any significant energy was deposited in the magnets. However, conditions are expected to become much tougher after the long LHC shutdown, when the magnets will be working at near nominal currents in the presence of high energy and intensity beams. This paper summarizes the experience to date with beam-induced quenches. It describes the techniques used to generate controlled quench conditions which were used to study the limitations. Results are discussed along with their implication for LHC operation after the first Long Shutdown.  
 
THPEA050 Power Supply Control and Applications Development for the TPS Storage Ring Quadrupole and Sextupole Magnet controls, power-supply, sextupole, EPICS 3258
 
  • Y.-S. Cheng, J. Chen, P.C. Chiu, K.T. Hsu, C.Y. Liao, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The TPS intermediate power supply for storage ring quadrupole and sextupole magnets with current rating 250 Amp will be equipped with Ethernet interface. The quadrupole power supply is 18bit with higher stability than sextupole with 16 bits, and have internal data buffer for post-mortem capability. The dedicated IOCs are built individually at the 24 cPCI platforms to manipulate the devices of the 24 cells of storage ring respectively. Each IOC is used to control 10 quadrupole magnet power supplies and 7 sextupole magnet power supplies. The GUIs of storage ring quadrupole and sextupole power supplies controls were implemented by the EDM toolkit. The client console can use the specific EDM pages to access power supplies via PVs channel access. The measured currents of quadrupole and sextupole power supplies were read back for observing performance. Some applications, like the degauss process, boot function and etc, are also developed with the specific toolkit. The efforts will be summarized at this report.  
 
THPEA057 Compensation Schemes for Operation of FEL Wigglers on Duke Storage Ring wiggler, FEL, storage-ring, lattice 3270
 
  • J.Y. Li, H. Hao, S.F. Mikhailov, V. Popov, W. Wu, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
 
  Funding: This work is supported in part by the US DOE grant no. DE-FG02-97ER41033.
The Duke FEL is the photon driver for the High Intensity Gamma-ray Source (HIGS). To extend the capabilities of the FEL and HIGS to higher photon energy regions, a FEL wiggler switchyard system was developed in the recent years. This system was installed and commissioned in 2012. The FEL wiggler switchyard is used to change between two planar OK-4 wigglers and two helical OK-5 wigglers in the middle of the FEL straight section in a short period of time (a few days). With a total of six electromagnetic wigglers, the Duke FEL can be operated in a number of wiggler configurations and with a wide range of magnetic fields. The operation of uncompensated FEL wigglers can cause significant changes to the electron beam closed orbit and magnetic lattice. To maintain a sufficiently large dynamic aperture for an efficient injection and good beam lifetime, a set of complex compensation schemes, including magnetic field and lattice compensation, have been developed for the operation of the FEL wigglers. This paper reports the overall architecture and performance of the FEL wiggler compensation schemes and their implementation in the accelerator controls system using the feedforward mechanism.
 
 
THPEA062 Magnetic Field Measurements for the IAC-RadiaBeam THz Project dipole, radiation, electron, FEL 3282
 
  • P. Buaphad, Y. Kim, M. Williams
    ISU, Pocatello, Idaho, USA
  • A. Andrews, T. Downer, C.F. Eckman, Y. Kim, M. Smith
    IAC, Pocatello, IDAHO, USA
 
  At the Idaho Accelerator Center (IAC) of Idaho State University, recently, a new chicane with four dipoles and quadrupole triplet magnets were installed in a 44 MeV linac to perform the IAC-RadiaBeam Terahertz (THz) project. To generate high power THz radiation, a THz radiator with numerous periodic gratings was also installed downstream of the quadrupole triplet. However, the electron beam shape at the radiator has to be horizontally focused strip-like one due to a tiny radiator gap with a width of 1.2 mm, and electron bunch length should be about a few picosecond (ps) to generate high power THz radiation in the radiator. By using the quadrupole triplet and chicane dipoles, we can control the transverse beam profile and bunch length freely. In this paper, we report the measured field maps of the dipole and quadrupole magnets, their effective lengths, and field strength or gradient as a function of the magnet power supply current.  
 
THPFI006 A New External Beamline for Detector Tests simulation, dipole, electron, extraction 3300
 
  • N. Heurich, F. Frommberger, P. Hänisch, W. Hillert, S. Patzelt
    ELSA, Bonn, Germany
 
  At the electron accelerator ELSA, a new external beamline is under construction, whose task is to provide a primary electron beam for detector tests. In the future, the accelerator facility will not only be offering an electron beam to the currently installed double polarization experiments for baryon spectroscopy, but to the new "Research and Technology Center Detector Physics" as well. This institution will be established near the accelerator in Bonn and is charged with the development of detectors for particle and astroparticle physics. The requirement for the new beamline is to be able to vary the beam parameters such as beam current and width over a wide range. With the resonance extraction method, it is possible to extract electrons with a maximum energy of 3.2 GeV slowly to the test area. A quasi-continuous external beam current of 1 fA to 100 pA can be offered. A further reduction of the beam current can be realized by utilizing the single-pulse operation mode at ELSA. The beam width can be changed in both transverse directions from 1 mm to 8 mm.  
 
THPFI015 In-situ Degassing of the Ferrite Cores in the Extraction Kicker Magnets of the J-PARC 3-GeV RCS vacuum, kicker, target, shielding 3324
 
  • J. Kamiya, Y. Hikichi, M. Kinsho, M. Nishikawa, N. Ogiwara, K. Suganuma, T. Yanagibashi
    JAEA/J-PARC, Tokai-mura, Japan
 
  Kicker magnets extract the accelerated beam to the beam transport lines in the RCS of the J-PARC. The kicker magnets mainly consist of Ni-Zn ferrite cores and Al alloy plates, and are installed in a vacuum to prevent discharge because a high voltage is applied for a short period. It is important to reduce the outgassing of water vapor from the ferrite cores. Although the kicker magnets have been working well, recently the vacuum quality became a little poor. Thus, we developed the in-situ degassing method for the ferrite cores. This is achieved by directing the heat from the heat source to the kicker magnet and not to the chamber wall. With the test stand we succeeded to flow almost all the heat toward the kicker magnet and to bake out the ferrite cores about 150°C, maintaining the temperature of the chamber wall less than 50°C. As the previous work with TDS measurements revealed that the absorbed water molecules can be easily removed by the bake-out at 100-150°C in a vacuum, the outgassing from the ferrite cores was successfully reduced. The details of the in-situ degassing method will be reported, including the practical method to reduce the outgassing of the working kickers.  
 
THPFI016 DESIGN CONSIDERATION OF BEAM DUCTS FOR QUADRUPOLE CORRECTORS IN J-PARC RCS vacuum, synchrotron, injection, focusing 3327
 
  • J. Kamiya, N. Hayashi, H. Hotchi, M. Kinsho, N. Ogiwara, N. Tani, Y. Watanabe
    JAEA/J-PARC, Tokai-mura, Japan
 
  which rapidly correct the tunes, are planned to be installed during the summer shutdown in 2013. The characteristic of the excitation pattern of such quadrupoles (quadrupole corrector) is their fast change of magnetic field, which are more than 200T/s at the fastest point. In this report, we describe a deliberation flow about the design of a vacuum chamber, which is installed in the quadrupole corrector. The effect of eddy current was calculated in the case of the current titanium vacuum chamber. The results showed that the temperature rise was too much (up to ~350oC) and the magnetic field in the vacuum chamber is largely distorted by the eddy current. Therefore we decided to employ an alumina ceramics vacuum chamber, for which we have a past achievement in RCS*. We estimated the displacement and stress, which is caused by the atmospheric pressure, for the alumina ceramics vacuum chamber and vacuum component around it by making the calculation model for the finite element method. It was found that there was no large displacement and stress by installing the alumina ceramics vacuum chamber.
*M. Kinsho, et al. Vacuum 81 (2007) 808.
 
 
THPFI017 Development of Harmonic Field Measurement System with Higher Resolution ADC background, dipole, multipole, focusing 3330
 
  • R. Kitahara, Y. Fuwa, Y. Iwashita, Y. Nasu
    Kyoto ICR, Uji, Kyoto, Japan
 
  Quadrupole magnets for ILC final focus should be enough strong with the limitation on the external radius, while the vibration of the magnetic center has to be highly avoided to keep the nm sized beam focusing stable at the interaction point a few m downstream from the lens. Gluckstern's 5-ring PMQ singlet seems a good candidate for the purpose, which is under investigation. The precise magnetic harmonic field measurement system is also under development for adjusting each magnet ring and evaluation of the assembled singlet. A rotating magnet system and a rotating coil system are prepared for the former and the latter purposes, respectively. Both systems have 24-bit ADC's for higher resolution. For the rotation coil, a flexible print circuit sheet, where a pair of one turn coils is printed on, is glued on a quartz rod. The two coils located on the quarts rod with the angle difference of 180 degree can separate the odd and even harmonics components by recording both the signals simultaneously to get their sum and difference. The two digitized signals are integrated digitally.  
 
THPME001 Permanent Magnets in Accelerators can save Energy, Space, and Cost permanent-magnet, dipole, synchrotron, vacuum 3511
 
  • F. Bødker, L.O. Baandrup, A. Baurichter, N. Hauge, K.F. Laurberg, B.R. Nielsen, G. Nielsen
    Danfysik A/S, Taastrup, Denmark
  • O. Balling
    Aarhus University, Aarhus, Denmark
  • F.B. Bendixen, P. Kjeldsteen, P. Valler
    Sintex A/S, Hobro, Denmark
  • S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
  • H.-A. Synal
    ETH, Zurich, Switzerland
 
  Green Magnet technology with close to zero electrical power consumption without the need for cooling water saves costs, space and hence spares natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. This first Green Magnet has been delivered to ETH Zurich for testing in a compact accelerator mass spectrometer facility. Permanent NdFeB magnets generate a fixed magnetic field of 0.43 T at a gap of 38.5 mm without using electrical power in the H-type 90° bending magnet with a bending radius of 250 mm. Thermal drift of the permanent magnets is passively compensated. Small air cooled trim coils permit fine tuning of the magnetic field. Magnetic field measurements and thermal stability tests show that the Green Magnet fully meets the magnetic requirements of the previously used electromagnet. The use of Green Magnet technology in other accelerator systems like synchrotron light sources is discussed.  
 
THPME005 Status of the Super FRS Magnet Development for FAIR dipole, status, octupole, sextupole 3519
 
  • H. Müller, E.S. Fischer, H. Leibrock, P. Schnizer, M. Winkler
    GSI, Darmstadt, Germany
 
  The Super-FRS is a new two stage in flight separator to be built on the site of GSI, Darmstadt, Germany as part of the FAIR (Facility for Anti-proton and Ion Research). It will be able to create and spatially separate rare isotopes from all elements up to Uranium. Also very short lived nuclei will be observed efficiently. The Super-FRS has three branches, so a wide variety of experiments can be carried out in frame of the NUSTAR collaboration. The large acceptance needed leads to large apertures of the magnets and therefore only a superconducting solution is feasible. The magnets of the Super-FRS are of the so called superferric type. These magnets use superconducting coils but the field is shaped by magnetic iron yoke. In this contribution the actual status of the designs of the dipole and multipole magnets will be presented.  
 
THPME011 Magnetic Field Design of the BAPS High Precision Quadrupole Magnet multipole, storage-ring, photon, vacuum 3531
 
  • Y.S. Zhu, F.S. Chen, W. Kang, X.J. Sun
    IHEP, Beijing, People's Republic of China
 
  The Beijing Advanced Photon Source (BAPS) is a high performance light source planned to be constructed in China. High precision small aperture quadrupole magnets are required in the BAPS storage ring, which needs extremely high mechanical accuracy. Instead of the conventional manufacture method, the coils are comprised of several U-shaped solid copper sheets. So two-piece structure of the iron core can be adopted to reduce assembly error and improve the poles symmetry. Design considerations, 2D and 3D magnetic field calculations are presented in detail, and the needed mechanical precision is estimated according to the error field analysis.  
 
THPME012 Measuring the Direction of Permanent Magnet Easy Axis by Helmholtz Coil permanent-magnet, DTL, multipole, linac 3534
 
  • X.Y. Jia, S.X. Zheng
    TUB, Beijing, People's Republic of China
 
  Permanent magnets for quadrupole focusing was used in drift-tube linac of the Compact Pulsed Hadron Sources(CPHS) in Tsinghua university. In order to ensure the accuracy of the quadrupole field can meet the design requirement, we need measure the strength and direction of remanence and choose the suit magnet. This paper proposed an easy way to get the direction of permanent magnet easy axis by Helmholtz coil without knowing the angle between magnet and the axis of the coil: the magnet rotational angle data was measured by rotary encoder and encoder would send trigger signal every turn at the same direction. First we started to record data when trigger signal was appeared. Then measured the magnet in three perpendicular directions (x,y,z). Last, caculated the remanence in three directions. We had measured some magnet by the new method and obtained satisfactory results.  
 
THPME013 MAGNET SUBSYSTEM OF HLS II dipole, storage-ring, electron, beam-transport 3537
 
  • Q. Luo, N. Chen, G. Feng, N. Hu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China 11005106
To improve the performance of the Hefei Light Source (HLS), in particular to get higher brilliance synchrotron radiation and increase the number of straight section insertion devices, NSRL is now upgrading HLS to HLS II. Most of the magnets had to be replaced in this project. To measure the magnets, set of the magnetic measurement equipment in NSRL are also re-built. New magnets are sample measured, the discreteness and uniformity of integrated magnetic field all meet the requirements. Piecewise fitting and electron tracking of bending magnets for injector and beam transport line were performed and the results showed that the electron trajectory fitted the physical design well.
 
 
THPME018 Design of Dipole and Quadrupole for THz-FEL at CAEP dipole, FEL, beam-transport, magnet-design 3540
 
  • L.G. Yan, W. Bai, D.R. Deng
    CAEP/IAE, Mianyang, Sichuan, People's Republic of China
 
  The high average power terahertz free electronic laser (THz-FEL) is being constructed at CAEP (China Academy of Engineering Physics), which is designed for lasing between 100-300 μm. The magnets of THz-FEL include 3 dipoles and 6 quadrupoles, and their fields and field quality were required by 6-9 MeV operation. This proceeding introduced the design and the main parameters of these magnets. The higher harmonic content of the magnetic field was also analyzed. All the design of magnets achieved the goal.  
 
THPME021 Application of Magnetic Field Integral Measurement of Magnet Module to Research Alterable Gap Undulator multipole, controls, undulator, synchrotron 3549
 
  • H.F. Wang, W. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
 
  A set of magnetic measurement system and a suitable magnetic field optimization method for an In-Vacuum Undulator (IVU) with alterable gaps have been developed. The method is based on assembling orders and directions of all magnet modules for correcting rms optical phase error, electron trajectory and multipole components of the IVU. Magnetic field distributions on axis and off axis of every magnet block module are measured. Then the appropriate magnetic block modules will be chosen from measured magnet modules according to a sorting algorithm and assemble them to two inner girders of an IVU. This paper will describe a magnetic field measurement system, magnetic field optimization method and optimized results of an IVU with a period of 20 mm.  
 
THPME023 A NEW HARMONIC COIL BENCH AT SINAP FOR THE ALS COMBINED FUNCTION SEXTUPOLE MAGNETS multipole, dipole, sextupole, controls 3552
 
  • J.D. Zhang, H.W. Du, L. Yin, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
  • N. Li, A. Madur
    LBNL, Berkeley, California, USA
 
  A new harmonic coil bench has been developed at Shanghai Institute of Applied Physics (SINAP) to measure the ALS combined function sextupole magnets. The measurement system has been designed with the aim to perform precise, fast and reliable measurements of series of magnets. It determines the strength, and the multipole content of the field as well as the magnetic axis for precise positioning of alignment targets on top of the multipoles. The multipole, while supported on a marble platform, can be moved with regard to the rotating coil using multi-dimensional adjustment plate. The resolution of the movement is read out by micrometer with a few μm resolutions. This article introduces the measurement system constitutes.  
 
THPME024 Magnet Designs of the In-flight Fragment Separator for the RISP dipole, radiation, sextupole, target 3555
 
  • D.G. Kim, J.Y. Kim, J.-W. Kim, M. Kim, M. Kim, C.C. Yun, A. Zaghloul
    IBS, Daejeon, Republic of Korea
 
  Magnets to be used for the in-flight fragment separator of the rare isotope science project (RISP) have been designed. The dipole magnets have a gap width of 150 mm and a magnetic rigidity of 10 Tm. The superferric quadrupole magnets have a pole tip radius of 170 mm and a maximum field gradient of 14 T/m. In addition, superconducting multiple coils will be wound around the cold bore tube of the quadrupole magnet to make high-order magnetic field corrections. In the high radiation region near the production target, warm iron dipole and quadrupole magnets employing high temperature superconductor (HTS) coils will be used in order to reduce the cold mass and to remove large radiation heat loads effectively at the temperature of 30-50 K. The design of dipole and quadrupole magnets has been optimized considering technical constraints and the manufacturing of the prototype of superferric quadrupole magnets is in progress. Simulation results using OPERA-3D and some results of prototyping will be presented.  
 
THPME028 Prototype Superconducting Magnets for the NICA Accelerator Complex dipole, booster, collider, ion 3567
 
  • H.G. Khodzhibagiyan, A.V. Bychkov, A.R. Galimov, O.S. Kozlov, G.L. Kuznetsov, I.N. Meshkov, V.A. Mikhaylov, A.V. Shabunov, A.Y. Starikov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
 
  NICA is a new accelerator complex being under design and construction at the Joint Institute for Nuclear Research (JINR) in Dubna. Full-size prototype dipole and quadrupole magnets for the booster synchrotron and the NICA collider have been designed, manufactured and tested. The magnets are based on a cold window frame iron yoke and a saddle-shaped superconducting winding made from a hollow NbTi composite superconducting cable cooled with a forced two-phase helium flow at T = 4.5 K. The maximal operating magnetic field in the aperture is 1.8 T. The magnetic field ramp rate of 1.2 T/s should be achievable. The quench history, AC losses as a function of the magnetic field ramp rate and pressure drop in the cooling channels of the magnets at different pulsed operation modes are presented.  
 
THPME031 Ramped Magnetic Measurement of NSLS-II Booster Dipoles vacuum, dipole, booster, sextupole 3576
 
  • I.N. Okunev, G.N. Baranov, A.M. Batrakov, A.I. Erokhin, V.A. Kiselev, V.V. Kobets, A.V. Pavlenko, S.V. Sinyatkin, R.V. Vakhrushev
    BINP SB RAS, Novosibirsk, Russia
 
  13. The magnetic system of NSLS II Booster are designed, manufactured and tested in BINP, Russia. The dipoles of the Booster have quadrupole and sextupole components and should create high quality of field ± 2·10-4 in region ± 2 cm. Magnets should provide performance of booster for energy from 170 MeV to 3.15 GeV with 2 Hz frequency. This report considers ramped magnetic measurement of NSLS-II Booster Dipoles.  
 
THPME032 Magnetic Measurement of the NSLS-II Booster Dipole with Combine Functions booster, dipole, extraction, sextupole 3579
 
  • I.N. Okunev, G.N. Baranov, A.M. Batrakov, P.N. Burdin, D.B. Burenkov, V.V. Kobets, A. Polyansky, L.E. Serdakov, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk, Russia
 
  The magnetic system of NSLS II Booster are designed, manufactured and tested in BINP, Russia. The dipoles of the Booster have quadrupole and sextupole components and should create high quality of field ± 2·10-4 in region ± 2 cm. Magnets should provide performance of booster for energy from 170 MeV to 3.15 GeV with 2 Hz frequency. To measure multipole field components one need to know accurate position of the probes in 3D coordinates. This report considers description of the magnetic measurement stand and achived accuracy for DC case.  
 
THPME036 Design and Measurement of the Transfer Line Magnets for the Taiwan Photon Source dipole, simulation, booster, linac 3591
 
  • C.Y. Kuo, C.-H. Chang, H.-H. Chen, Y.L. Chu, J.C. Huang, M.-H. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan photon source (TPS) transfer line from the linac to the booster (LTB) is made of 1 bending magnet, 11 quadrupoles and the booster to the storage ring (BTS) is include of 2 bending magnets, 7 quadrupoles. LTB bending magnet is provided for 11 degrees defection from the linac to the booster and 31 degrees from the linac to the beam dumper with two operating currents. The BTS quadrupoles are included four 0.3m and three 0.4m magnets which cross sections are the same with booster quadrupole give different integral quadrupole field strengths and cooling systems are redesign from 2 circuits to 4. The magnetic fields were simulated with Opera 2D and 3D; optimum processes are discussed. All of the magnets have been constructed by Danfysik, scanditronix and Gongin. This paper discusses the features, the design concept and the results of field measurements of these transfer line magnets.  
 
THPME037 Magnetic Field Character of TPS Booster Magnets sextupole, multipole, dipole, booster 3594
 
  • J.C. Jan, C.-H. Chang, H.-H. Chen, Y.L. Chu, M.-H. Huang, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin, C.S. Yang, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is a 3-GeV synchrotron radiation facility operated in top-up injection mode. The booster ring of TPS shares the same tunnel, concentric with the storage ring. The lattice of the booster is a 24-cell DBA of circumference 496.8 m. The energy of the electron beam is ramped from 150 MeV to 3 GeV at repetition rate 3 Hz in the booster ring. The trajectory of the electron beam is controlled with complicated combined-function magnets including combined dipole magnet, combined quadrupole magnet, pure quadrupole magnet, sextupole magnet and corrector magnet. The measurement and performance of these magnets are discussed in this letter.  
 
THPME043 Prototype Adjustable Permanent Magnet Quadrupoles For CLIC permanent-magnet, linear-collider, collider, magnet-design 3606
 
  • B.J.A. Shepherd, J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Bartalesi, M. Modena, M. Struik
    CERN, Geneva, Switzerland
  • N.A. Collomb
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The 42km long Drive Beam Decelerator for the Compact Linear Collider (CLIC) requires over 41,000 quadrupole magnets. ASTeC and CERN are investigating the possibility of permanent magnet quadrupoles (PMQs) to reduce running costs and heat load inside the CLIC tunnel. A prototype of a high-strength adjustable PMQ has been built, based on a simple concept using two moving sections each containing a pair of large permanent magnets. The gradient can be adjusted within a range of 15-60 T/m (3-15T integrated gradient). The prototype has undergone extensive magnetic testing at Daresbury Laboratory and CERN, and performs well in line with expectations. A prototype of the low-strength version (0.9-9T) is currently under construction.  
 
THPME045 TEST RESULTS OF A NB3SN QUADRUPOLE COIL IMPREGNATED WITH RADIATION-RESISTANT MATRIMID 5292 dipole, radiation, collider, controls 3612
 
  • A.V. Zlobin, G. Ambrosio, N. Andreev, E.Z. Barzi, R. Bossert, G. Chlachidze, V.V. Kashikhin, S. Krave, A. Nobrega, I. Novitski
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
FNAL is developing advanced Nb3Sn magnets for present and future accelerators. Insulation is one of the primary elements of magnet design, essential for maintaining its electrical, mechanical and thermal performance. The Nb3Sn magnet fabrication process involves coil reaction at high temperature and then impregnation with epoxy to restore the insulation electrical and mechanical properties. The traditional epoxy offers adequate structural and electrical properties, but has a low radiation strength which limits the lifetime of accelerator magnets operating in severe radiation environments. Studies to replace epoxy as impregnation material for Nb3Sn coils with high radiation-resistant material have started at FNAL ten years ago. The studies concentrated on the Matrimid® 5292, a bismaleimide based material, which has appropriate viscosity and potlife as well as provides excellent mechanical, electrical and thermal coil properties. A 1 m long Nb3Sn quadrupole coil was recently fabricated, impregnated with Matrimid and tested in a quadrupole magnetic mirror at 4.2 and 1.9 K. Coil test results are presented and compared to the results for similar coils impregnated with epoxy.
 
 
THPME046 A Summary of the Quality of the ALS Combined Function Sextupole Magnets sextupole, dipole, multipole, controls 3615
 
  • N. Li, A. Madur
    LBNL, Berkeley, California, USA
  • C. Chen, H.J. Hu, J. Jin, Y.M. Wen, L. Yin, J.D. Zhang, Q.G. Zhou
    SINAP, Shanghai, People's Republic of China
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
A total of 51 combined function magnets is required to upgrade the Advanced Light Source (ALS) Storage Ring at LBNL. These magnets will provide 4 types of magnetic fields: sextupole, horizontal and vertical dipoles, and skew quadrupole and will enable an emittance reduction and upgrade of the beam quality in the ALS ring. A relatively new procedure using EDM cut poles after core assembly that was first used by Buckley System Ltd, NZ was adopted during the production of these magnets. Also, a new 3D CAD modeling was used for the coil design. A total of 57 magnets (including prototypes and spare magnets) were built by the Shanghai Institute of Applied Physics (SINAP) in China. These magnets have achieved extraordinarily high pole profile accuracies and exhibit excellent coil performance characteristics: resistances and water flows reached a high degree of consistency. Consequently, the system errors of the magnetic field of these magnets all meet the LBNL specifications. This paper will summarize the mechanical quality and magnetic field properties of these magnets. The interrelationship between the qualities of coil and the magnet field will be described as well.
 
 
THPME052 Analysis of the NSLS-II Magnet Measurement Data dipole, sextupole, storage-ring, multipole 3624
 
  • W. Guo, A.K. Jain, S.K. Sharma, J. Skaritka, C.J. Spataro
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No. DE-AC02-98CH10886
NSLS-II is a third generation 3GeV light source that is under-construction at the Brookhaven National Laboratory. The 30-DBA-cell storage ring will provide micron size beam resulting from the 1nm emittance. Recently the last magnet was received and the completion of girder installation in the tunnel is foreseeable in a few months. In this paper we will briefly review the physics considerations for the magnet specifications, the major field quality related issues that arose during the fabrication process. Our emphasis will be on the statistical analysis of the magnet measurement results and comparison with the design tolerances.
 
 
THPWA038 GEANT4 Studies of Magnets Activation in the HEBT Line for the European Spallation Source proton, target, neutron, octupole 3714
 
  • C. Bungau, R.J. Barlow, A. Bungau, R. Cywinski, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
  • P. Carlsson, H. Danared, F. Mezei
    ESS, Lund, Sweden
  • A.I.S. Holm, S.P. Møller, H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The High Energy Beam Transport (HEBT) line for the European Spallation Source is designed to transport the beam from the underground linac to the target at the surface level while keeping the beam losses small and providing the requested beam footprint and profile on the target. This paper presents activation studies of the magnets in the HEBT line due to backscattered neutrons from the target and beam interactions inside the collimators producing unstable isotopes.  
 
THPWO004 RF Tuning of the LINAC4 RFQ rfq, linac, coupling, dipole 3761
 
  • O. Piquet, Y. Le Noa, J. Novo
    CEA/DSM/IRFU, France
  • M. Desmons, A. France
    CEA/IRFU, Gif-sur-Yvette, France
  • C. Rossi
    CERN, Geneva, Switzerland
 
  The construction of Linac4, the new 160 MeV CERN H injector, has started with the goal of improving the LHC injection chain with a new higher energy linac. The low energy front end of Linac4 is based on a 352 MHz, 3-m long Radiofrequency Quadrupole (RFQ) which accelerates the 70 mA, 45 keV H beam from the ion source to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane type and it has been designed in collaboration between CERN and CEA. Construction has started in 2009 and all the steps of machining and assembly have been done at CERN. The RFQ is equipped with 35 fixed tuners and one waveguide RF port located in the second module. This paper describes the procedure used to tune the accelerating field and the power coupler of the LINAC4 RFQ in order to achieve the nominal voltage profile within ±1% accuracy.  
 
THPWO009 Beam Dynamics Error and Loss Investigation of the FAIR Proton Injector linac, rfq, DTL, proton 3776
 
  • G. Clemente, W.A. Barth, P. Forck, L. Groening, R. Hollinger, M. Kaiser, J. Pfister, W. Vinzenz, S.G. Yaramyshev, C. Zhang
    GSI, Darmstadt, Germany
  • R. M. Brodhage, B. Koubek, H. Podlech, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main, Germany
  • N. Chauvin, C.S. Simon, O. Tuske
    CEA/DSM/IRFU, France
  • O. Delferrière
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Launé, J. Lesrel
    IPN, Orsay, France
 
  The FAIR Proton Linac is a 70mA, 70 MeV. 325 MHz linear accelerator based on CH cavities. The focusing scheme is provided by an asynchronous KONUS lattice period. Random misalignment and rotation errors of the quadrupoles, together with phase and RF settings of the power source plays a major role in beam losses. Those effects are investigated and the beam dynamics results, including several source of errors, are presented and discussed.  
 
THPWO011 Status of the SIS100 Heavy Ion Synchrotron Project at FAIR cryogenics, dipole, ion, extraction 3782
 
  • P.J. Spiller, U. Blell, O. Boine-Frankenheim, L.H.J. Bozyk, E.S. Fischer, E. Floch, F. Hagenbuck, F. Hehenberger, M. Kauschke, O.K. Kester, A. Klaus, H. Klingbeil, H.G. König, P. Kowina, J.P. Meier, P. Moritz, C. Mühle, C. Omet, D. Ondreka, N. Pyka, H. Ramakers, P. Schnizer, J. Stadlmann, K. Sugita, D. Theuerkauf, B. Walasek-Höhne, St. Wilfert
    GSI, Darmstadt, Germany
 
  SIS100 is a unique superconducting heavy ion synchrotron, optimized for the acceleration of intense beams of intermediate charge state heavy ions. The operation with such beams has required new synchrotron design features and new technical concepts aiming for minimized ionization beam loss and vacuum dynamics. SIS100 is a superconducting synchrotron because of the required vacuum conditions and pumping power to achieve stable XHV conditions at high intensity operation. The project and procurement status will be presented.  
 
THPWO020 Simulations on the Boundary Fields of 4-rod RFQ Electrodes rfq, simulation, cavity, shielding 3803
 
  • J.S. Schmidt, B. Koubek, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  If the RF design of a 4-rod Radio Frequency Quadrupole (RFQ) is not performed carefully with respect to the boundary fields of its electrodes, it can produce errors compared to beam dynamic simulations. An additional field component can be induced on the beam axis, which influences the properties of the particle beam, like energy per nucleon for example, dramatically. Therefore, the influences of different geometric parameters of 4-rod RFQs on these fields have been studied in detail. The results of these simulations will be presented in this paper.  
 
THPWO022 Beam Dynamics Design, Simulation and Benchmarking for the C-ADS Injector-II RFQ rfq, simulation, emittance, linac 3809
 
  • C. Zhang
    GSI, Darmstadt, Germany
  • C. Xiao
    IAP, Frankfurt am Main, Germany
 
  The planned Chinese Accelerator Driven System (C-ADS) will use two 10 MeV, up to 10 mA, and CW (Continuous Wave) proton linacs in parallel as injectors. Two versions of the injectors with different resonant frequencies as well as different cavity configurations are under development. This paper will focus on the beam dynamics design, simulation and benchmarking performed for the 162.5 MHz, 2.1 MeV Injector-II RFQ (Radio-Frequency Quadrupole).  
 
THPWO028 Commissioning Plan for Energy Upgrade of J-PARC Linac linac, acceleration, injection, DTL 3821
 
  • M. Ikegami, Z. Fang, K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • T. Maruta
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • A. Miura, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  In J-PARC linac, we plan to have an energy and intensity upgrade in summer 2013. The upgrade involves replacement of the ion source and RFQ (Radio Frequency Quadrupole linac), and addition of ACS (Annular Coupled Structure linac) cavities after existing SDTL (Separate Drift Tube Linac) section. With this upgrade, the design peak current will be increased from the present 30 mA to 50 mA, and the energy from 181 MeV to 400 MeV. This significant upgrade will be followed by a full-scale beam commissioning campaign. In this paper, we present the plan for the commissioning with outlining the assumed commissioning schemes.  
 
THPWO034 Fabrication of the RFQ III for the J-PARC Linac Current Upgrade rfq, linac, cavity, dipole 3839
 
  • T. Morishita, Y. Kondo, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • K. Hasegawa
    JAEA, Ibaraki-ken, Japan
  • H. Kawamata, F. Naito, T. Sugimura
    KEK, Ibaraki, Japan
 
  The J-PARC accelerator comprises an injector linac, a 3-GeV Rapid-Cycling Synchrotron and a 50-GeV Main Ring. The J-PARC linac has been operating for users with the beam energy of 181 MeV. The energy (to 400MeV) and current (to 50mA) upgrade of the linac is scheduled for 1MW operation at RCS. For the current upgrade, the RFQ III, which is designed for 50mA beam acceleration, has been fabricated. The engineering design and the fabrication technologies are basically the same as the RFQ II in J-PARC linac. Some engineering methods are improved for the dimension accuracy, the reliability, and the period of fabrication. In the RFQ II fabrication, there was a leakage trouble at the electron-beam-welding spot by the thermal stress at the brazing only occasionally. Then, we changed to all-brazing design. Also, there was a vane deformation after the final machining. This was corrected by changing the method of fixation at the brazing. As a result, a dimension error was in a tolerable range. Currently, the fabrication is in a final process and the high-power test is scheduled at the second quarter of 2012.  
 
THPWO035 Numerical Study on the Effect of Magnetic Shield of a Bunch Shape Monitor in J-PARC Linac electron, linac, simulation, beam-transport 3842
 
  • J. Tamura, H. Ao, A. Miura, N. Ouchi
    JAEA/J-PARC, Tokai-mura, Japan
  • M. Ikegami
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • T. Maruta
    KEK/JAEA, Ibaraki-Ken, Japan
  • T. Miyao, K. Takata
    KEK, Ibaraki, Japan
 
  In the annual shutdown period of 2012, three bunch shape monitors (BSMs) have been installed to the J-PARC linac beam transport line at the downstream of the 181-MeV separated DTL. To measure the longitudinal micro-bunch shape, the BSM detects the electrons produced by the accelerated protons hitting the negatively energized wire. Due to the space limitation, the each BSM is installed at the center of the quadrupole doublet, where the fringe field from the quadrupole magnets exists. It has been observed that the fringe field significantly affects the orbit of the emitted electrons. To shield the magnetic field, iron plates have been inserted to the spaces between the quadrupole magnets and BSM. This causes changes of the total magnetic flux density (GL) and the amount of quadrupole component of the fringe field. In this paper, numerical estimation of the shield effect is presented.  
 
THPWO042 Macroparticle Simulation Studies of a Beam-core Matching Experiment simulation, rfq, proton, emittance 3860
 
  • H. Jiang, P. Chen, S. Fu, T. Huang, F. Li, P. Li, H.C. Liu, C. Meng, M. Meng, Z.C. Mu, H.F. Ouyang, J. Peng, L.Y. Rong, B. Sun, J.M. Tian, B. Wang, S.C. Wang, W.Q. Xin, T.G. Xu, L. Zeng, F.X. Zhao
    IHEP, Beijing, People's Republic of China
 
  We compared the 3-D nonlinear macro- particle code IMPACT simulations with the measured beam-core profiles obtained by the wire-scanners in the beam-core matching experiment. Quadrupole scans were used to determinate the transverse properties of the RFQ output beam. The Gaussian distribution was chosen as the initial particle distribution, which is well fit with the measured beam-core profile. We matched the beam using the least-squares fitting procedure that adjusted the first four matching quadrupoles to produce equal rms beam size in the last six wire scanners. Simulations had been fairly successful in reproducing the core of the measured matched beam profiles.  
 
THPWO045 Commissioning Plan for the CSNS Linac DTL, linac, emittance, diagnostics 3869
 
  • J. Peng, S. Fu, J. Li, Y. Li, H.C. Liu, H.F. Ouyang, N. Wang, S. Wang, T.G. Xu
    IHEP, Beijing, People's Republic of China
 
  The linac of the China Spallation Neutron Source(CSNS) will be commissioned from October 2013. The linac will be commissioned in three phases. The delivery of beam to the RCS is planned for October 2015. This paper describes the commissioning plans for the MEBT and DTL parts of the linac. Techniques for finding the RF set-point, matching and steering are presented, as well as codes to assist in the beam commissioning.  
 
THPWO049 Preliminary Beam Dynamics and Structure Design of One 50mA/CW RFQ with Ramped Inter-vane Voltage rfq, simulation, radio-frequency, linac 3881
 
  • L. Du, X. Guan, C.-X. Tang, Q.Z. Xing
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by National Natural Scienccontracte Foundation of China (Major Research Plan Grant No. 91126003 and Project 11175096).
The beam dynamics and structure design of a ramped-voltage CW RFQ (Radio Frequency Quadrupole) accelerator for a NSFC (National Natural Science Foundation of China) Project at Tsinghua University is presented in this paper. The ramped-voltage RFQ, in which the inter-vane voltage increases from the low-energy end to the high-energy end, is compact and efficient. The RFQ, with the operating frequency of 325 MHz, will capture a 50 mA/CW, 50 keV proton beam from the RF source and accelerate it to 3 MeV, an energy suitable for chopping and injecting the beam in a conventional Drift Tube Linac. After optimization, the total length is as short as 2.9 m and the transmission rate is above 97%. The design of RFQ structure including the undercuts will also be shown.
 
 
THPWO064 Superconducting Linac for the Rare Isotope Science Project linac, cryomodule, cavity, ion 3903
 
  • H.J. Kim, H.J. Cha, M.O. Hyun, H.J. Jang, D. Jeon, J.D. Joo, M.J. Joung, H.C. Jung, Y.C. Jung, Y. Kim, M. Lee, G.-T. Park
    IBS, Daejeon, Republic of Korea
 
  Abstract The RISP (Rare Isotope Science Project) accelerator has been planned to study heavy ion of nuclear, material and medical science at the Institute for Basic Science (IBS). It can deliver ions from proton to Uranium. The facility consists of three superconducting linacs of which superconducting cavities are independently phased and operating at three different frequencies, namely 81.25, 162.5 and 325 MHz. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the RISP linac design, the superconducting cavity and the requirements of beam diagnosics.  
 
THPWO070 ESS DTL RF MODELIZATION: FIELD TUNING AND STABILIZATION DTL, linac, cavity, target 3918
 
  • R. De Prisco
    ESS, Lund, Sweden
  • M. Comunian, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A.R. Karlsson
    Lund University, Lund, Sweden
 
  The Radio Frequency (RF) design of Drift Tube Linac (DTL) of the European Spallation Source, ESS, has been defined in order to satisfy the accelerating field requirements of beam dynamic studies and to reduce peak field levels in the critical areas. The electro-magnetic field is stabilized with post-couplers. The cells geometries of the DTL are optimized to accommodate permanent magnet quadrupoles (PMQ), to get maximum shunt impedance, to meet the Moretti criterion at the low energy part and to facilitate the mechanical construction.  
 
THPWO090 MEBT Design for the Front End Test Stand Project at RAL cavity, lattice, diagnostics, emittance 3969
 
  • M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Front End Test Stand (FETS) linear accelerator at Rutherford Appleton laboratory (RAL) will accelerate a 60 mA, 2 ms, 50 pps H beam up to 3 MeV. A new lattice design for the Medium Energy Beam Transport (MEBT) with a fast-slow chopping system is presented. Beam dynamic simulation has shown very good particle transmission in this new lattice with space charge effects included. The beam energy distribution on the beam choppers dumps is also calculated.  
 
THPWO094 Electromagnetic and Multi-particle Beam Dynamics Modeling of 4-Rod RFQs rfq, simulation, vacuum, cavity 3978
 
  • S.S. Kurennoy, R.W. Garnett, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  Detailed 3D modeling of the recently commissioned FNAL 4-rod RFQ was performed with the CST Studio Suite. The RFQ model is based on the CAD files used for its fabrication, which are imported in CST Studio. The electromagnetic (EM) analysis was done with MicroWave Studio (MWS) and the beam dynamics modeled with Particle Studio (PS) using the MWS-calculated fields. Realistic matched input CW beam distributions, generated externally with up to 10K particles per RF period and up to 70 RF periods long, are injected in the RFQ for PS simulations. The EM analysis reveals some interesting features of the RFQ fields; their origin and influence on the beam parameters is studied. In particular, the end-gap longitudinal field, which is usually not taken into account when an RFQ is designed with standard codes, can change the output beam energy. Our CST modeling results helped explain and successfully resolve some problems encountered in the FNAL RFQ commissioning. We plan to use a similar approach to evaluate a new 4-rod RFQ that will become a part of an upgraded front end of the LANSCE linac.  
 
FRXAB201 Status of CSNS Project target, linac, cavity, dipole 3995
 
  • S. Fu, H. Chen, Y.W. Chen, H. Dong, S.X. Fang, K.X. Huang, W. Kang, J. Li, H.C. Liu, L. Ma, H.F. Ouyang, H. Qu, H. Sun, J.Y. Tang, C.H. Wang, Q.B. Wang, S. Wang, T.G. Xu, Z.X. Xu, C. Zhang, J. Zhang
    IHEP, Beijing, People's Republic of China
 
  The China Spallation Neutron Source (CSNS) accelerator is designed to accelerate proton beam pulses to 1.6 GeV at 25 Hz repetition rate, striking a solid metal target to produce spallation neutrons. The accelerator provides a beam power of 100 kW on the target in the first phase and then 500 kW in the second phase by increasing the average beam intensity 5 times while raising the linac output energy. The project construction has been formally launched in 2011 and it is planed to complete the project in March 2018. It is one of the high intensity proton accelerator projects in the world and it imposes a great challenge to Chinese accelerator community. This presentation will cover the status and challenges of the CSNS project.  
slides icon Slides FRXAB201 [4.320 MB]