Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPEA032 | Installation Status of Deuteron Injector of IFMIF Prototype Accelerator in Japan | neutron, rfq, emittance, simulation | 148 |
|
|||
The International Fusion Materials Irradiation Facility (IFMIF) will generate a neutron irradiation field with the spectrum simulating the fusion D-T neutrons (14 MeV) to qualify suitable materials for fusion power plants. The IFMIF accelerator facility provides two CW / 40 MeV / 125 mA deuteron beams to the IFMIF Lithium target facility. In the Engineering Validation and Engineering Design Activities phase, the concept of IFMIF is validated with a single CW / 9 MeV / 125 mA deuteron accelerator prototype under construction in JAEA/Rokkasho. The injector part has been designed, constructed and successfully tested by CEA/Saclay. The ECR ion source produces a deuteron beam of 140 mA at 100 keV. In spring 2013, the injector will be delivered and re-installed on the Rokkasho site. This paper will focus on the detailed plan of the injector’s re-assembly as well as on the re-commissioning. Further possible improvements are discussed in order to achieve reliable operation. | |||
MOPEA033 | Status of Upgrade Project of the 1.2 GeV Booster Synchrotron at Tohoku University | booster, quadrupole, dipole, synchrotron | 151 |
|
|||
The 1.2 GeV electron synchrotron has been operated for nuclear physics experiment since 1997 in Electron Light Science Centre, Tohoku University, in which the high energy gamma-rays via bremsstrahlung has been supplied for hadron physics. After the Great East Japan Earthquake in March 2011, recovery and reconstruction work of the accelerator complex is in progress vigorously. While the compact 90 MeV linac is newly constructed as the dedicated injector for the synchrotron, old power supplies of synchrotron magnets and also pulsed magnets for beam injection are going to be replaced in the synchrotron. Furthermore replacements of some quadrupole magnets to the combined function magnets with sextupole component are also on going. Modifying the ring optics so as to introduce the horizontal dispersion on the combined magnet position, this replacement work will make it possible to correct the chromaticity. At the present, power supplies and combined magnets have been manufactured and those installations will be completed soon. We will present the current status of upgrade project of the booster synchrotron. | |||
MOPEA036 | Transport Line Orbit Correction for CSNS/RTBT | target, quadrupole, extraction, linac | 154 |
|
|||
Dipole field kicks arisen from the construction and alignment of the magnets may cause the orbit distortion and reduce the efficiency of beam extraction and striking target in RTBT transport line of CSNS. In this paper, orbit correction is done based on XAL Orbit Correction application with the algorithm modified partially and the result was according with by AT toolbox. Meanwhile, the orbit correction before the target was special considered for the beams striking the target center vertically. | |||
MOPFI082 | Redesign and Development of the Shanghai Electron Beam Ion Trap | electron, ion, vacuum, cryogenics | 467 |
|
|||
Over the last few years the Shanghai Electron Beam Ion Trap (EBIT) has been successfully redesigned and rebuilt. The original machine, developed under collaboration with the Shanghai Institute of Nuclear and Applied Physics, first generated an electron beam in 2005. Shanghai EBIT could be operated with electron beam energies between 1 and 130 keV and currents up to 160 mAmps. After several years of operation, it was found that some improvements/modifications to the old design were necessary. This contribution will discuss several of the main aspects of the redesigned Shanghai EBIT. So far it has been operated up to an electron energy of 40 keV with an current density of over 2400 A per square cm. The new EBIT is made primarily from Titanium instead of Stainless Steel and has an order of magnitude better background vacuum, a more efficient and economical cryogenic system, and also excellent optical alignment. Finally the magnetic field in the central drift tube region can reach up till 4.8 T. | |||
MOPME019 | Alignment Detection Study using Beam Induced HOM at STF | HOM, cavity, dipole, cryomodule | 509 |
|
|||
STF accelerator using L-band photocathode RF Gun and two superconducting cavities is under operation for R&D of ILC. Electron beam extracted from the RF Gun is accelerated to 40 MeV by two superconducting cavities. Cavity alignment requirements for ILC are less than 300um offset and 300urad tilt with respect to cryomodule. It is necessary to measure their offset and tilt inside of cryomodule. Cavity offset has been already measured by using beam induced HOM at FLASH in DESY. Cavity deformation during assembly and by cooling contraction has not been examined yet. We measured HOM signals to detect their tilt and bending. TE111-6 which has high impedance is used to estimate cavity offset. To find cavity tilt and bending, we selected pi over nine mode in the first dipole passband (TE111-1) and beam pipe modes. From information of TE111-1 which has maximum radial electric field in the middle cell, we can get electrical center of middle cell. At beam pipes, electrical center can be found by using beam pipe modes. Combinations of these electrical centers tell us cavity tilt and bending. We will present results of these TE111-1 and beam pipe mode together with beam trajectory information. | |||
MOPME045 | Design and Test Status of Beam Position Monitors for ADS Injector II Proton LINAC | proton, linac, cryomodule, vacuum | 574 |
|
|||
Beam Position Monitors (BPM) based on capacitive pick-ups are designed for Accelerator-Driven System (ADS) Injector II proton LINAC. This LINAC is aiming to produce a maximum design current of 15 mA at the 10 MeV energy with an operating frequency of 162.5 MHz. Non-interceptive BPM will be installed to measure the transverse beam position and beam phase in the vacuum chamber. Depending on the location, the response of the BPMs must be optimized for a beam with an energy range from 2.1 up to 10 MeV and an average current between 0.01 and 15 mA. Apart from the broadening of the electromagnetic field due to the low-beta beam, specific issues are affecting some of the BPMs: tiny space in the transport line between the RFQ and the cryomodule and the cryogenic temperature inside the cryomodule. For this reason two types of BPMs are being designed for each location (MEBT and cryomoudle). In this contribution, the present status of the design and measured results for each BPM will be presented in room and cold temperature, focusing on the electromagnetic response for low-beta beams. | |||
MOPWA053 | Sub-Micrometre Resolution Laserwire Transverse Beam Size Measurement System | laser, electron, photon, background | 795 |
|
|||
Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project Eu-CARD, grant agreement no. 227579 We present the results from the laserwire system at the Accelerator Test Facility 2 (ATF2) during recent operation after relocation to the virtual image point of the ATF2 final focus. The characterisation of the 150 mJ, 77 ps long laser pulses at a scaled virtual interaction point is used to deconvolve the transverse laserwire profile demonstrating a 1.16 ± 0.06 um vertical electron beam profile. Horizontal laserwire scans were used in combination with the vertical scans to measure the electron beam size using a full overlap integral model due to the problems presented by a large aspect ratio electron beam. |
|||
MOPWA088 | FPGA Development Approach for Accelerator Systems with High Integration Complexity | controls, neutron | 876 |
|
|||
During the application-layer FPGA development for timing system for a medical accelerator (accelerator: MedAustron, timing system: Micro Research Finland) and a couple of other FPGA projects (power supply waveform generator, Machine Protection System proof of concept, ESS timing system demo) we got very good insight on how to approach demanding FPGA development that requires team work of many developers, coupled with particularities of accelerator system development. Because subsystems’ specific requirements evolve together with the operational understanding of the entire machine, the careful balance has to be taken between requirements gathering, prototyping and development stage. Furthermore, when doing architectural design decisions, knowledge from multiple domains should be taken into account; accelerator operation, software development and FPGA development. The design shouldn’t be register or counter centric, and FPGA functionality shouldn’t appear to the software developer as fixed – otherwise the design decisions of one world will sooner or later lead to spaghetti-code workarounds in the other world. | |||
MOPWO031 | High Energy Beam Impact Tests on a LHC Tertiary Collimator at CERN HiRadMat Facility | vacuum, collimation, simulation, proton | 954 |
|
|||
The correct functioning of the collimation system is crucial to safely operate the LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN HiRadMat (High Irradiation to Materials) facility, involved 440 GeV beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained together with some first outcomes from visual inspection. | |||
MOPWO048 | Cleaning Performance of the LHC Collimation System up to 4 TeV | collimation, insertion, betatron, beam-losses | 1002 |
|
|||
Funding: Research supported by EU FP7 HiLumi LHC (Grant agreement 284404) In this paper we review the performance of the LHC collimation system during 2012 and compare it with previous years. During 2012, the so-called tight settings were deployed for a better cleaning and improved beta-star reach. As a result, a record cleaning efficiency below a few 0.0001 was achieved in the cold regions where the highest beam losses occur. The cleaning in other cold locations is typically a factor of 10 better. No quenches were observed during regular operation with up to 140 MJ stored beam energy. The system stability during the year, monitored regularly to ensure the system functionality for all machine configurations, and the performance of the alignment tools are also reviewed. |
|||
TUYB101 | Progress in Super B-Factories | emittance, luminosity, linac, positron | 1096 |
|
|||
The upgrade of B-Factories to Super B-Factories, which will search for new physics beyond the Standard Model, opens the way for new luminosity frontier. The status of Super B-Factories will be reported. | |||
![]() |
Slides TUYB101 [42.300 MB] | ||
TUOCB203 | In Vacuum High Accuracy Mechanical Positioning System of Nano Resolution Beam Position Monitor at the Interaction Point of ATF2 | feedback, vacuum, linear-collider, collider | 1149 |
|
|||
ATF2 is a low energy (1.3GeV) prototype of the final focus system for ILC and CLIC linear collider projects. A major goal of ATF2 is to demonstrate the ability to stabilise the beam position at the interaction point, where the beam can be focused down to about 35 nm. For this purpose, a set of new Beam Position Monitors (BPM) has been designed, with an expected resolution of about 2 nm. These BPMs must be very well aligned with respect to the beam, at the few micron level, to fully exploit their fine resolution. In this paper, the mechanical positioning system which has been developed to enable such a precise alignment is presented. It is based on a set of eight piezo actuators with nanometer range displacement resolution, mounted in a new specially made vacuum chamber. Due to the expected resolution of the piezo actuators, this system also brings a new functionality, the possibility to calibrate the BPMs by mechanically scanning the beam. | |||
![]() |
Slides TUOCB203 [2.276 MB] | ||
TUPFI004 | Longitudinal Manipulation to Obtain and Keep the Low Emittance and High Charge Electron Beam for SuperKEKB Injector | emittance, wakefield, laser, gun | 1337 |
|
|||
The design strategy of SuperKEKB is based on the.nano-beam scheme. The dynamic aperture decreases due to the very small beta function at the interaction point. Thus the injector upgrade is required to obtain the low emittance and high charge beam corresponding to the short beam life and small injection acceptance. The required beam parameters are 5 nC, 20 mm mrad and 4 nC, 6 mm mrad for the electron and positron respectively. For the electron beam, we installed new photocathode RF-Gun with the focusing electric field and temporal adjusting laser system. Further the projected emittance dilution in the LINAC is an important issue for the low emittance injection. The longitudinal bunch length and shape is an important key to avoid the space charge effect and emittance dilution. The longitudinal manipulation using the temporal adjusting laser system and the bunch compression will be presented. Further the longitudinal bunch measurement will be also presented. | |||
TUPFI027 | Energy Deposition Studies for Fast Losses during LHC Injection Failures | injection, kicker, proton, quadrupole | 1397 |
|
|||
Several instances of injection kicker magnet (MKI) failures have occurred in the first years of LHC operation, leading to misinjections or to accidental kicks of circulating bunches. In a few cases, MKI modules imparted a partial or an increased beam deflection, resulting in grazing bunch impact on beam-intercepting devices and consequently leading to significant secondary showers to downstream accelerator elements. In this study, we investigate different failure occurrences where miskicked bunches were incident on the injection beam stopper (TDI) and on one of the auxiliary injection collimators (TCLIB), respectively. FLUKA shower calculations were performed to quantify the energy deposition in superconducting magnets. Different sections of the LHC insertion regions 2 and 8 were studied, including the separation dipole and the inner triplet downstream of the TDI as well as matching section and dispersion suppressor adjacent to the TCLIB. The obtained results are evaluated in view of quench and damage limits. | |||
TUPFI041 | Operating the LHC Off-momentum for p-Pb Collisions | collimation, optics, proton, quadrupole | 1439 |
|
|||
The first high-luminosity p-Pb run at the LHC took place in January-February 2013 at an energy of 4 Z TeV per beam. The RF frequency difference of proton and Pb is about 60 Hz for equal magnetic rigidities, which means that beams move slightly to off-momentum, non-central, orbits during physics when frequencies are locked together. The resulting optical perturbations ("beta-beating") restrict the available aperture and required a special correction. This was also the first operation of the LHC with low beta in all four experiments and required a specific collimation set up. Predictions from offline calculations of beta-beating correction are compared with measurements during the optics commissioning and collimator set up. | |||
TUPME050 | Performance Comparison of Different System Identification Algorithms for FACET and ATF2 | kicker, emittance, simulation, linac | 1679 |
|
|||
Good system knowledge is an essential ingredient for the operation of modern accelerator facilities. For example, beam-based alignment algorithms and orbit feedbacks rely strongly on a precise measurement of the orbit response matrix. The quality of the measurement of this matrix can be improved over time by statistically combining the effects of small system excitations with the help of system identification algorithms. These small excitations can be applied in a parasitic mode without stopping the accelerator operation (on-line). In this work, different system identification algorithms are used in simulation studies for the response matrix measurement at ATF2. The results for ATF2 are finally compared with the results for FACET, latter originating from an earlier work. | |||
TUPWO030 | Beam-based Alignment Simulation on Flash-I Undulator | undulator, quadrupole, simulation, electron | 1940 |
|
|||
In order to ensure the SASE process can take place in the whole FLASH-I undulator section, a straight beam trajectory is mandatory which can only be achieved through beam-based alignment (BBA) method based on electron energy variations. In this paper, a detailed result of simulation is presented which demonstrate that the alignment can be achieved within accuracy of a few 10 μm after several iterations. The influence of Quadrupole and BPM offsets, magnet-mover calibration errors, quadrupole gradient errors are also discussed. | |||
TUPWO048 | Understanding the Tune, Coupling, and Chromaticity Dependence of the LHC on Landau Octupole Powering | closed-orbit, octupole, coupling, simulation | 1976 |
|
|||
During the 2012 LHC run there were several observations of unexpectedly large shifts to the tune, chromaticity, and coupling which were correlated with changes in the powering of Landau octupoles (MO). Understanding the chromaticity dependence is of particular importance given it's influence on instabilities. This paper summarizes the observations and our attempts to-date to understand the relationship between Q, Q', c- and the MO powering. | |||
WEPWA037 | Effect of Ground Vibration on the Out-coupled Power in a Terahertz FEL Oscillator | FEL, cavity, simulation, laser | 2211 |
|
|||
To acquire high power out-coupled, we must ensure the co-axis of electron orbit, optical beam and magnetic field. The propagation of ground vibration through the optical platform will lead to misalignment of the optical axis in the FEL optical cavity. Based on measurement results of the ground vibration, simulations of misalignment are studied with GENESIS+OPC. The tolerance of mirror tilt and offset is also discussed. | |||
WEPEA032 | Estimation and Correction of the Uncontrolled Beam Loss due to the Alignment Error in the Low-energy Linear Accelerator of RAON | ion, linac, quadrupole, cavity | 2570 |
|
|||
RAON(Rare isotope Accelerator Of Newness) mainly consists of the front-end system, ISOL system , re-accelerator for ISOL system, charge stripper section and main linear accelerator(Linac) for ECR ion source. Since the beam energy at the down-stream of the front-end system is low, 0.3~0.5 MeV/u, the trajectories of the beam is very sensitive the alignment error of the magnets and cavities at the entrance of the main Linac. It can be caused the uncontrolled beam loss due to the large amplitude of the trajectory. The effect of the alignment errors of the magnets and cavities is estimated and corrected by using analytical model which is based on analytical model and code TRACK. The calculation result based on the analytical model agrees very well with the simulation by using the TRACK code. Using the analytical model, the position and number of the corrector and Beam Position Monitor(BPM) in low energy Linac was determined to compensate the amplification of the beam trajectory under 400 um. We will present the result of the estimation of the alignment error and the correction using steering magnet with strip-line Beam Position Monitor (BPM) in a low energy section. | |||
WEPFI055 | Experience on Fabrication and Assembly of the First Clic Two-Beam Module Prototype | vacuum, quadrupole, RF-structure, instrumentation | 2815 |
|
|||
The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies for the part manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison of several technical solutions adopted during the realization. The description of the module assembly and quality control measurements are also recalled. | |||
WEPFI056 | Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules | RF-structure, controls, linac, collider | 2818 |
|
|||
The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability of the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules have been assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems will be installed in the dedicated laboratory. Air temperature will be varied from 20 to 40 °C, while air flow rate will be regulated up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. This test program will allow for better understanding the behaviour of CLIC modules and the results will be propagated back to both numerical modelling and engineering design. | |||
WEPFI077 | LLNL X-band Test Station Status | gun, emittance, cathode, vacuum | 2872 |
|
|||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test station is being developed to investigate accelerator optimization for future upgrades. This test station will enable work to explore the science and technology paths required to boost the current mono-energetic gamma-ray technology a higher effective repetition rate, potentially increasing the average gamma-ray brightness by two orders of magnitude. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Detailed design of the test station including is complete, and will be presented with modeling simulations and future upgrade paths. The current status of the installation will also be discussed with future commissioning plans. |
|||
WEPME016 | Recent Progress of a Laser-based Alignment System at the KEKB Injector Linac | laser, linac, controls, feedback | 2959 |
|
|||
A new laser-based alignment system is under development in order to precisely align accelerator components with a precision level of ±0.1 mm along an ideal straight line at the KEKB injector linac. The high-precision alignment system is strongly required for the Super B-factory at KEK. The laser-based alignment system comprises a He-Ne laser source and optical components for delivering the laser beam, and silicon photodetectors. The laser-based alignment system aligns a misalignment of a girder unit for accelerating structures while accelerator components on the girder unit are aligned with another laser tracker system with a similar precision level. A new PC-based feedback system for the laser pointing stability has been introduced in order to stabilize the transverse laser positions at the photodetector. The experimental results show that although the laser pointing stability is easily disturbed by environmental factors without the feedback system, it has been successfully applied to control the laser pointing stability within a few ten-micron-meter. In this report, the experimental investigations in the new feedback system are reported. | |||
WEPME020 | Alignment Plan and Survey Results of the Equipment for J-PARC 3 GeV RCS | quadrupole, dipole, injection, emittance | 2971 |
|
|||
Misalignment of several millimeters of the magnets of J-PARC 3GeV RCS in both horizontal and vertical directions was caused by the Tohoku Region Pacific Coast Earthquake on March 11, 2011. As the result of orbit calculation showed that the beam loss was acceptable for beam operation at 300kW, beam operation with the current placement has been implemented. Realignment of the equipment will be carried out from August to December in 2013. Survey carried out in the summer of 2013 found out misalignment of ceramic vacuum ducts therefore their positioning is necessary. In this paper, these measurement result and latest alignment plan for J-PARC 3GeV RCS are reported. | |||
WEPME027 | Analysis of Tidal Effects on Measurement Accuracy of HLS | site, synchrotron, synchrotron-radiation, radiation | 2989 |
|
|||
Funding: Natural Science Foundation of China HLS* is mainly used in survey and high-accuracy alignment in particle accelerator. Monitoring the earth tides is primarily introduced in this paper. Based on the earth tide theory and the ocean load effects on the planet earth, the tidal effects on a hydrostatic leveling system is analyzed. Finally, the local ground deformation is obtained,and the current research establish a foundation for the further study. HLS-hydrostatic levelling system |
|||
WEPME041 | The Distance from CERN to LNGS | site, target, controls, survey | 3016 |
|
|||
Obviously the distance between the CNGS Target at CERN and the LNGS Opera experiment cannot be measured directly and in fact requires the combination of three independent sets of measurements: two to link underground reference points at each site to corresponding points on the surface; and a third to link the surface points at both sites. Until the Opera results raised questions about the speed at which neutrinos travelled, the main alignment concern for the CNGS beamline had been an orientation problem -to ensure that the beamline arrived to within ~100 m of its target at LNGS. GPS measurements at the two sites, and the use of gyro-theodolite measurements in the tunnel at CERN, ensured that the absolute alignment of the beamline was established to the required accuracy. New determinations of the links between the surface and the tunnel were not considered necessary until interest grew in the distance between the sites, at which point additional measurement campaigns were organised in order to further reduce the uncertainty in the distance. Details of all these campaigns and the distance estimates will be given. | |||
WEPME045 | Development and Validation of a Multipoint Based Laser Alignment System for CLIC | laser, linac, target, linear-collider | 3028 |
|
|||
Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence. | |||
WEPME046 | Alignment Challenges for a Future Linear Collider | linac, collider, linear-collider, laser | 3031 |
|
|||
The preservation of ultra-low emittances in the main linac and Beam Delivery System area is one of the main challenges for linear colliders. This requires alignment tolerances never achieved before at that scale, down to the micrometre level. As a matter of fact, in the LHC, the goal for the smoothing of the components was to obtain a 1σ deviation with respect to a smooth curve of 0.15 mm in a 150 m long sliding window, while for the CLIC project for example, it corresponds to 10 micrometres over a sliding window of 200m in the Beam Delivery System area. Two complementary strategies are being studied to fulfill these requirements: the development and validation of long range alignment systems to propagate precision and accuracy over a few hundreds of metres and short range alignment systems over a few metres. The studies undertaken, with associated test setups and the latest results will be detailed, as well as their application for the alignment of both CLIC and ILC colliders. | |||
WEPME047 | Identification of Sources of Orbital Distortions in Corrector Space | quadrupole, feedback, controls, damping | 3034 |
|
|||
Since modern ring and linear accelerator based light sources feature fast orbit feedback (FOFB) systems which transform orbital oscillations in beam position monitor (BPM) space into corrector (C) space over a wide frequency range, most perturbations can be directly analyzed utilizing the C pattern. In C space the localization of sources of distortions is facilitated since the large (per unit phase) number of BPMs and Cs involved provides a good spatial resolution. Applications of this technique include the beam-assisted girder alignment where changes in the C pattern are interactively analyzed while girder positions are remotely altered or the beam-based alignment of quadrupole/BPM pairs where the variation of C values as the result of quadrupole variations are observed. In both cases large oscillations in BPM space are completely surpressed by the FOFB leading to well controlled and stable conditions during the measurement. | |||
WEPME048 | Adjusting and Calibration Method for TPS Laser PSD System | laser, factory, storage-ring, synchrotron | 3037 |
|
|||
Laser PSD positioning system is a part of the TPS girder auto-alignment system and is designed for aligning and positioning the straight-section girders of TPS storage ring. Although the components of Laser PSD system are fabricated, assembling and adjusting precisely in advance, the accuracy of Laser PSD system is still influenced by girder fabricating quality, assembling errors and moving errors by transportation. For system correction, Laser beam positions on four sets of PSDs are formulized as an equation and calibrated with Laser tracker ultimately. According to the PSD calibration formula, the two girders of 18m long straight-section can be aligned and positioned within 20um by comparing with Laser tracker. This paper describes the assembly, installation and calibration process of Laser PSD system. | |||
WEPME049 | An Application of Laser Position Sensing Detector for Magnet Centralizing System | quadrupole, laser, dipole, electron | 3040 |
|
|||
Taiwan Photon Source (TPS) project has been proposed to create a 3GeV synchrotron light source. The designated ultra-low emittance of this new light source requires high precision positioning of storage ring magnets. The alignment of all magnets is very importance since it directly affects the closed orbit of electron beams. Previously, conventional on-site alignment of the magnets was mainly relying on the theodolite performance. The cumulated errors could be in the order of 0.1mm. In this paper, a new alignment scheme is proposed to enhance the on-site alignment of magnets for TPS project. To achieve the high precision requirements, a device possessing the advantages of expansion mandrel in conjunction with Position Sensing Detector (PSD) is proposed. The development of this alignment device is anticipated to provide a better mechanism to properly align the centers of the both quadrupole and sextupole magnets on girder with less than 30μm positioning errors. | |||
WEPME050 | Alignment Design and Status of Taiwan Photon Source | survey, storage-ring, laser, site | 3043 |
|
|||
Taiwan Photon Source (TPS) is a new 3-GeV ring with characteristics of great brightness and small emittance, at present under construction at National Synchrotron Radiation Research Center (NSRRC) Taiwan. The positioning of the magnets is highly sensitive to alignment errors, and the entire building will be constructed half underground at depth 12 m relative to Taiwan Light Source (TLS) for stability reasons; for these reasons the survey and alignment work is confined and difficult. To position magnets precisely and quickly, a highly accurate auto-tuning girder system combined with a survey network was designed to accomplish the alignment tasks. The survey network includes a preliminary Global Positioning System (GPS) network and a laser tracking network. The position data from the survey network define a basis for the system of motorized girders to auto-tune and to improve the accuracy. The detailed survey and alignment design, installation process is described in this paper. | |||
WEPME054 | Girder Alignment in the Diamond Storage Ring | survey, controls, storage-ring, quadrupole | 3052 |
|
|||
A model of the Diamond Storage Ring describing the misalignment of its 74 girders in terms of displacements and rotations is used to predict the orbit distortions and corrector magnet strengths needed for a zero orbit. Using the data from a survey we compare the effect of a pure magnet misalignment with the natural orbit of the machine. A test with a displaced girder meant to produce a reduction in corrector strength is introduced. Comparison with data obtained from the actual move of the girder is presented and discussed. | |||
WEPME063 | Progress Report on Development of a 5-μm Drive Laser for Dielectric Laser Acceleration | laser, acceleration, focusing, HOM | 3079 |
|
|||
Funding: This work has been sponsored by Defense Advanced Research Project Agency. A simple and robust ultrafast, high-peak-power 5-μm laser source for pumping a dielectric photonic structure for high-gradient electron acceleration has been designed and is being constructed. The use of long wavelength drive lasers can mitigate the problem of dielectric structure breakdown caused by multiphoton ionization. In addition, structure fabrication requirements are relaxed, and greater energy can be stored in the structure. The 5-μm laser source consists of two components: (1) a type-II-beta-barium borate-based 2-μm optical parametric amplifier (OPA) as a pump source, and (2) a type-I-zinc-germaniu-phosphate-based 5-μm OPA to produce mJ-class, <100 fs pulses. Our supercontinuum seeded two-stage 2-μm OPA is pumped by a Ti:sapphire amplifier and produces pulse energy of ~1.4 mJ with a pulse duration of 42 fs (~6 optical cycles). Carrier-envelope phase (CEP) stabilization is passively established for 2 μm pulses in our OPA design. An modified design of seed pulse generation for the 5-μm OPA based on several cascaded parametric processes can also result in CEP-stable operation for 5-μm amplified pulses. |
|||
WEPME064 | Recent Development on Beam-based Alignment in RHIC | quadrupole, controls, power-supply, dipole | 3082 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. During the 2012 polarized proton and heavy ion runs, we continued the efforts on beam-based alignment (BBA) of quadrupoles in RHIC. A complete set of BBA data of triplet quadrupoles in all interaction regions of RHIC was obtained. In addition, the measurement procedures and data analysis were improved and the corresponding codes were developed. Here we report on the results of BBA measurements, analysis, and corrections. The model sensitivity, the measurement repeatability, and the BBA accuracy limitations are also discussed. As a continuing effort, we also present application code that is under development for future BBA operations in RHIC. |
|||
THPFI041 | Installation and Operation of the Beamlines for the 100-MeV Proton Linac | proton, linac, DTL, site | 3376 |
|
|||
Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government. Beamlines and 100-MeV proton linac have been developed for 1st phase of KOMAC(Korea Multi-purpose Accelerator Complex) at the Gyeong-ju site. The linac supply either 20-MeV or 100-MeV proton beams for beam applications. Each proton beam can be transported to 2 beamlines for industrial purpose and 3 beamlines for various researches. At the first phase, 2 beamlines were installed and under test. A detailed description of the installation and the preliminary test results will be presented in this paper. |
|||
THPFI059 | Robustness Test of a Silicon Strip Crystal for Crystal-assisted Collimation Studies in the LHC | proton, collimation, extraction, scattering | 3427 |
|
|||
Over the past years, the UA9 experiment has successfully demonstrated the viability of enhancing the collimation efficiency of proton and ion beams in the SPS by means of bent crystals. An extension of UA9 to the LHC has been recently approved. The conditions imposed by the LHC operational environment, in particular the tremendous energy density of the beam, require a reliable understanding of the crystal integrity in view of potential accident scenarios such as an asynchronous beam dump. For this purpose, irradiation tests have been performed at the CERN-HiRadMat facility to examine the mechanical strength of a silicon strip crystal in case of direct beam impact. The tests were carried out using a 440 GeV proton beam of 0.5 mm transverse size. The crystal, 3 mm long in beam direction, was exposed to a total of 2*1014 protons, with individual pulse intensities reaching up to 3*1013. First visual inspections reveal no macroscopic damage to the crystal. Complementary post-irradiation tests are foreseen to assess microscopic lattice damage as well as the degradation of the channelling efficiency.
On behalf of the UA9 Collaboration. |
|||
THPFI063 | Development and Beam Tests of an Automatic Algorithm for Alignment of LHC Collimators with Embedded BPMs | pick-up, controls, collimation, insertion | 3439 |
|
|||
Collimators with embedded Beam Position Monitor (BPM) buttons will be installed in the LHC during the upcoming long shutdown period. During the subsequent operation, the BPMs will allow the collimator jaws to be kept centered around the beam trajectory. In this manner, the best possible beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation, as the BPM measurements are affected by non-linearities, which vary with the distance between opposite buttons, as well as the difference between the beam and the jaw centers. The successful test results, as well as some considerations for eventual operation in the LHC are also presented. | |||
THPFI064 | Crystal-assisted Collimation Experiment from the SPS to the LHC | collimation, simulation, extraction, background | 3442 |
|
|||
UA9 was operated in the CERN-SPS for more than six years in view of investigating the feasibility of the halo collimation assisted by bent crystals. Two-millimeter-long silicon crystals, with bending angles of about 150 μrad, are used as primary collimators. The crystal collimation process is obtained consistently through channeling with high efficiency, showing a steady reduction of almost one order of magnitude of the loss rate at the onset of the channeling process. This result holds both for protons and for lead-ions. The corresponding loss map in the accelerator ring is accordingly reduced. These observations strongly support our expectation that the coherent deflection of the beam halo by a bent crystal should enhance the collimation efficiency also in LHC. After a concise description of the results collected in the SPS we propose a scenario to integrate bent crystals in the LHC collimation system for machine experiment. | |||
THPFI078 | Design and Experiment on Auto-alignment Control System of Taiwan Photon Source | laser, controls, storage-ring, feedback | 3475 |
|
|||
TPS (Taiwan Photon Source) is a new 3-GeV synchrotron ring to be constructed at the NSRRC (National Synchrotron Radiation Research Center), Taiwan. There were hundreds of magnets that must be aligned on the absolute position to keep the electronic beam in the desire path while orbiting. Due to the problems of manpower, set up time, accuracy of adjustment, deformation of the floor, limited workspace and frequent earthquakes in Taiwan, an auto-alignment girder control system was designed to meet this requirement. The design and experiment of the auto-alignment system were tested successfully in the laboratory at NSRRC. The experiment of the auto-alignment control system would be implemented with half of the ring girders in the TPS. The detailed alignment design and status will be discussed in this paper. | |||
THPME030 | Magnetic Measurement Results of the NSLS-II Booster Dipole Magnets | dipole, booster, sextupole, extraction | 3573 |
|
|||
Focusing and defocusing dipole magnets for NSLS-II 3 GeV booster are designed, manufactured and measured in BINP, Russia. Magnetic measurements of 32 BD and 28 BF magnets are made by BINP. In this paper the results of magnetic measurements of dipoles magnets in the field area of 0.638 – 11.829 kGs for BD type and 0.260 - 4.829 kGs for BF type are given. Analysis and comparison with magnetic field simulation are made. | |||
THPWA043 | Production of the FETS RFQ | rfq, vacuum, pick-up, simulation | 3726 |
|
|||
The Front End Test Stand (FETS) project at RAL will use a 324 MHz 4-vane Radio Frequency Quadrupole (RFQ) to accelerate H− ions from 65keV to 3 MeV. This paper will report on the current status of the production of the FETS RFQ and will detail the manufacturing strategy used to produce the major and minor vanes. In addition the inspection results will be shown and the experiences from the assembly and alignment operations will be shared. Finally, the design of the bead-pull apparatus, end flanges, tuners and pick-ups required to measure the frequency and field-flatness of the assembled RFQ will be discussed. | |||
THPWO001 | Assembling, Testing and Installing the SPIRAL2 Superconducting Linac | cryomodule, linac, vacuum, cavity | 3752 |
|
|||
Assembly and tests of the SPIRAL2 superconducting linac's components are now proceeding smoothly. Cryomodules are being processed in CEA Saclay and IPN Orsay, inter-cryomodules "warm" sections in GANIL. While installation of the accelerators components is going on in the new SPIRAL2 building in Caen, installation of the cryomodules will begin during the last quarter of 2013. The latest results of the cryomodules tests as well as the installation strategy are depicted in this paper. | |||
THPWO015 | First Coupled CH Power Cavity for the FAIR Proton Injector | cavity, linac, coupling, proton | 3791 |
|
|||
For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. In Summer 2012, the assembly and tuning of the first power prototype was finished. Until then, the cavity was tested with a preliminary aluminum drift tube structure, which was used for precise frequency and field tuning. Before Spring 2013 the final drift tube structure will be welded inside the main tanks and the preparation for copper plating will take place. This paper will report on the main tuning and commissioning steps towards that novel type of DTL and it will show the latest results measured on a fully operational CH proton cavity. | |||