



# ILSF, A Third Generation Light Source Laboratory in Iran

## Javad Rahighi and all ILSF Staff

Institute for Research in Fundamental Sciences, IPM, Iranian Light Source Facility, ILSF

Tehran, Iran





# Iranian Light Source Facility The first large scale facility for multidisciplinary Research in Iran

Iranian Scientists and Engineers have demonstrated a good capability to build the laboratory.

The project is executed in max transparency:

Many scientists visit ILSF frequently. Your involvement is very much welcomed.

ILSF technical reports and the complete Conceptual Design Report can be accessed on our website.....





# What is done so far ?

- Conceptual Design of the facility has now been completed.
  - The design have been approved by ILSF steering committee in a meeting held last January.
- Some important accelerator prototype components have been developed and built at ILSF R&D laboratory.
- ILSF has been given the go ahead to do the detailed design of the laboratory.



# Light source around the world



Light Source Facility





# **General layout of ILSF accelerator complex**







# Various stages and milestones of the ILSF project





International Particle Accelerator Conference, IPAC'13 SAC: Scientific Advisory Committee HSE: Health, safety & Environment SSA: Solid State Amplifier LLRF: Low Level Radio Frequency 4th **HR: Human Resource IT: Information Technology** 



# **Design goals of the Iranian Light Source Facility**

- High brilliance  $\approx 10^{21}$  photons/s/mm<sup>2</sup>/mrad<sup>2</sup>/0.1%( $\Delta \omega / \omega$ )
- High Photon flux density
- High current  $\approx 400 \text{ mA}$ 
  - Low emittance < 5 nm-rad



**Storage ring** 



General layout of the designed ILSF storage ring and its main parameters;





### **Storage ring-Radiation performance**

Institute for Research in Fundamental Sciences

| Parameter                      | Unit | SCW60** | EPU46**       | IU28** | IVU21.6* | SU15** |
|--------------------------------|------|---------|---------------|--------|----------|--------|
| Number of period               | -    | 33      | 97            | 160    | 97       | 67     |
| Period length                  | mm   | 60      | 46            | 28     | 21.6     | 15     |
| $K_{v}(K_{x})$                 | T.cm | 19.610  | 3.264 (2.104) | 2.353  | 1.600    | 2.100  |
| Magnetic field, $B_{y}(B_{x})$ | Τ    | 3.500   | 0.760 (0.490) | 0.900  | 0.793    | 1.500  |
| Length of ID                   | m    | 1.980   | 4.462         | 4.480  | 2.100    | 1.005  |



\* TPS design handbook

\*\* ALBA insertion devices (http://www.cells.es/Divisions/Accelerators/Insertion\_Devices/Ids/)

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_1.jpeg)

# **Construction of Prototypes**

- Booster and Storage Ring Magnets.
- Power Supplies for Booster and SR magnets.
- Radio Frequency Systems,

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_1.jpeg)

# Booster and Storage Ring Magnets

![](_page_12_Figure_0.jpeg)

![](_page_13_Picture_0.jpeg)

**Booster Magnets** 

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

14

![](_page_14_Picture_0.jpeg)

# **H-Dipole prototype Magnets**

![](_page_14_Picture_2.jpeg)

![](_page_14_Picture_3.jpeg)

![](_page_15_Picture_0.jpeg)

# **H-Dipole prototype Magnets**

![](_page_15_Picture_2.jpeg)

![](_page_15_Picture_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_16_Picture_0.jpeg)

# First Designed and Constructed Prototype Dipole Magnet at ILSF

![](_page_16_Picture_2.jpeg)

rce Facilit

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_19_Picture_0.jpeg)

# Alpha magnet

![](_page_19_Picture_2.jpeg)

#### **Magneto-static simulations**

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

**Mechanical drawings** 

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

# Power Supply Prototype

![](_page_21_Picture_0.jpeg)

**IPS-30500** 

![](_page_21_Picture_2.jpeg)

# First Prototype Power Supply Designed and Constructed at ILSF Suitable for Quadrupole:

- **24V**, 120A
- **•Full Digital**
- Precision Power Supply but Using Low Resolution Digital PWM
  Series Combination of 2 power supplies (coarse and Fine)

![](_page_21_Figure_7.jpeg)

![](_page_22_Picture_0.jpeg)

# <u>IPS-30500</u>

![](_page_22_Picture_2.jpeg)

# First Prototype Power Supply Designed and Constructed at ILSF

- Maximum output voltage.....+24V
- Maximum output current ......120A
- Maximum output power ......2880W
- Correction power factor .....0.98
- Ripple .....Less Than 0.01% full load
- Current regulation ......Better Than 40ppm at full load
- Current measurement......20 bit ADC

![](_page_22_Figure_12.jpeg)

![](_page_23_Picture_0.jpeg)

**IPS-30500** 

![](_page_23_Picture_2.jpeg)

### 2nd Prototype Power Supply Under Design and Construction at ILSF

![](_page_23_Picture_4.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

# Radio Frequency System

![](_page_25_Picture_0.jpeg)

# LLRF

![](_page_25_Picture_2.jpeg)

- Self-excited loop architecture for the LLRF system.
- The analog/digital hardware is developed and the software is under development.
- The LLRF system is tested using a simple aluminum cavity, and some promising results are obtained.

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_8.jpeg)

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_10.jpeg)

Digital Section

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

# **Solid State Amplifier**

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

# Solid State Amplifier I

![](_page_27_Picture_3.jpeg)

#### Amplifier module based on BLF 578 transistor

| Freq.   | CW Input<br>power | CW Output<br>power | gain    | efficiency |
|---------|-------------------|--------------------|---------|------------|
| 500 MHz | 11W               | 660W               | 17.8 dB | 53%        |

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

# Solid State Amplifier II

![](_page_28_Picture_3.jpeg)

#### Amplifier module based on MRFE6VP61K25HR6 transistor

| Freq.   | CW Input<br>power | CW Output<br>power | gain   | efficiency |
|---------|-------------------|--------------------|--------|------------|
| 500 MHz | 10 W              | 700 W              | 18.4dB | 54%        |

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

# Solid State Amplifier III

![](_page_29_Picture_3.jpeg)

#### Amplifier Initial design of 8:1 radial power combiner (without heat sink)

| Number of<br>Inputs | Input<br>CW<br>power | Output<br>CW Power | Insertion<br>Loss | Isolation |
|---------------------|----------------------|--------------------|-------------------|-----------|
| 8                   | 600W                 | 4.7 KW             | 0.1 dB            | 16 dB     |

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

| No. | Beamline                                                |                                     | Source                        | Energy        | Photon                  | Resolution/       | Spot size |
|-----|---------------------------------------------------------|-------------------------------------|-------------------------------|---------------|-------------------------|-------------------|-----------|
|     |                                                         |                                     |                               | Ragne<br>(eV) | Flux (p/s)              | Resolving<br>pwer | (mm)      |
| 1   | Powder Diffraction                                      |                                     | Bending<br>Magnet             | 6-30 k        | 1012                    | 10-4              | 100×100   |
| 2   | Single Crystal X-ray<br>Diffraction for small molecules |                                     | In-Vacuum<br>Undulator        | 5-25 k        | 10 <sup>13</sup>        | 10-4              | 50×50     |
| 3   | EXAFS                                                   |                                     | Wiggler                       | 3-35 k        | 10 <sup>13</sup>        | 10-4              | Few mm    |
| 4   | Gas Phase photoemission (XPS, AES, ARPES)               |                                     | Electromagnet<br>ic Undulator | 15-1000       | <b>10</b> <sup>11</sup> | 10000             |           |
| 5   | Solid-State Electron<br>Spectroscopy                    |                                     | Electromagnet<br>ic Undulator | 10-1500       | 10 <sup>12</sup>        | 10000             |           |
| 6   | Spectroscopy                                            | SPEM<br>(+ARPES)<br>PEEM<br>(+XMCD) | Helical<br>Undulator          | 10-2000       | 10 <sup>13</sup>        | >8000             | Few mm    |
| 7   | Macromolecular<br>Crystallography                       |                                     | Wiggler                       | 3-25 k        | 10 <sup>12</sup>        |                   |           |

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

# Site selection

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_0.jpeg)

# **Iranian Light Source Facility Plan**

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

# Comparison of measured displacement power spectral density at Qazvin site and other projects

![](_page_34_Figure_3.jpeg)

1- FNAL: Fermi National Accelerator Laboratory, U.S. Department of Energy, http://www.fnal.gov

2- APS: Advanced Photon Source, U.S. Department of Energy, http://www.aps.anl.gov/

3-ESRF: European Synchrotron Radiation Facility, France, http://www.esrf.eu/about

4- SLAC: Stanford Synchrotron Radiation Lightsource, Stanford University, http://www-ssrl.slac.stanford.edu/

5- CERN: Conseil Européen pour la Recherche Nucléaire, or European Council for Nuclear Research, http://public.web.cern.ch

6- ALBA, Spain, http://www.cells.es/

7-ILSF: Iranian Light Source Facility, Iran, http://ilsf.ipm.ac.ir

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

ght Source Facilit

![](_page_35_Picture_2.jpeg)

# **Geotechnical tests**

In situ tests for measurement of soil mechanical and physical parameters

In laboratory tests for measurement of soil mechanical and chemical parameters

Ro IYanian light source facility RUN Dep+th:m ROD; Size Remar Ry Loc: QoZvin From to client: IPM 1.0 100 27 0.0 cont: P.O. Rahvar 1.0 7.0 00 2-BHNO: BHIL 3.0 3 BOXNO: 1 3.0 4.0 127 Dep+h: 0.0-4.0 Date: 91.11.21 A TANKA CON

![](_page_36_Picture_0.jpeg)

### **ILSF main building plan**

![](_page_36_Picture_2.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

![](_page_38_Figure_0.jpeg)

4th International Particle Accelerator Conference, IPAC'13

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_3.jpeg)

#### Iranian Light Source Facility (Iranian Light Source Facility)

Information about Iranian Light Source Facility

The Iranian Light Source Facility (ILSF) is an open project fully complying with the international scientific standards. All the design and progress reports will be presented at local and international conferences and published in international journals accessible to scientists all over the world. To realize this project, the intention is to work and collaborate with other light sources around the world. Users from abroad shall be welcome to set up their experiments in this new facility upon the acceptance of their proposals by the appropriate review boards. The layout and performance of the planned facility shall be based on the most recent advances and significantly improved with respect to other facilities which were planned many years ago and realized only recently.

![](_page_39_Picture_7.jpeg)

![](_page_39_Picture_8.jpeg)

Website: http://ilsf.ipm.ac.ir/ Address: Iranian Light Source Facility (ILSF) Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran Iran

Tel: +98 21 2281 3738 Fax: +98 21 2281 3722 email: ILSF@ipm.ir

Iranian Light Source Facility Links

\_\_\_\_\_

The Iranian Light Source Facility shall consist of a 3-GeV storage ring with a circumference of roughly 300m

At present the ILSF-team is working on the conceptual design report (CDR), which should be finished by the end of 2011. After CDR, the different components have to be designed in detail and a report that includes the technical specifications has to be drawn up. The technical specifications shall be the basis for call for tender. The call for tender process is finished with the signing of the contract. It is assumed that most of the components have to be purchased abroad. The so-called design phase should be finished by the end of 2013. The production of all components should be completed by the end of 2015. At the end of 2015 the Linac should already be commissioned. The installation phase is from 2016 to 2018. The booster should be commissioned in 2017 and the storage ring in 2018. The users of ILSF should be able to start their operations at the end of 2018

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

# Acknowledgments

Many thanks to :

Dieter Einfeld Helmut Wiedemann Albin F. Wrulich Ernst Weihreter

![](_page_41_Figure_0.jpeg)

![](_page_41_Picture_1.jpeg)