Paper | Title | Other Keywords | Page |
---|---|---|---|
MOODB101 | Manufacturing of the First of Series SIS100 Dipole Magnet | dipole, synchrotron, magnet-design, laser | 31 |
|
|||
Babcock Noell (Würzburg, Germany) manufactures the First of Series (FOS) SIS100 dipole magnet for the FAIR project. This contribution reports on the progress during the design-phase, performed together with GSI, and on the manufacturing- and assembly-processes. Special emphasis will be given on new or special techniques adopted to fulfill the stringent requirements demanded by such a magnet. The new tooling systems and machines which were developed and brought into operation for this FOS magnet will be discussed. | |||
MOODB103 | Results of an Experiment on Hydrodynamic Tunnelling at the SPS HiRadMat High Intensity Proton Facility | target, simulation, proton, synchrotron | 37 |
|
|||
To predict the damage for a catastrophic failure of the protections systems for the LHC when operating with beams storing 362 MJ, simulation studies of the impact of an LHC beam on targets were performed. Firstly, the energy deposition of the first bunches in a target with FLUKA is calculated. The effect of the energy deposition on the target is then calculated with a hydrodynamic code, BIG2. The impact of only a few bunches leads to a change of target density. The calculations are done iteratively in several steps and show that such beam can tunnel up to 30-35 m into a target. Validation experiments for these calculations at LHC are not possible, therefore experiments were suggested for the CERN Super Proton Synchrotron (SPS), since simulation studies with the tools used for the LHC also predict hydrodynamic tunnelling for SPS beams. An experiment at the SPS-HiRadMat facility (High-Radiation to Materials) using the 440 GeV beam with 144 bunches was performed in July 2012. In this paper we compare the results of this experiment with our calculations of hydrodynamic tunnelling. | |||
![]() |
Slides MOODB103 [40.426 MB] | ||
MOPME005 | Goubau Line and Beam Characterization of TURBO-ICT for SwissFEL | FEL, resonance, electron, laser | 476 |
|
|||
SwissFEL will be able to operate with electron bunch doublets 28ns apart. Each of the bunches carries 10pC to 200pC of charge with bunch lengths of a few femto-seconds. For charge calibration of the FEL photon pulses, a measurement accuracy of 1% is desired. The Turbo-ICT accomplishes these requirements with negligible beam position and bunch length dependence. It is insensitive to dark current and features high immunity to background noise. We characterize the Turbo-ICT performance on a Goubau line, also known as single-wire transmission line. The Goubau line utilizes electromagnetic fields with frequencies up to many GHz. It allows accurate bench testing including beam position and bunch length dependence. The results are compared to beam measurements performed at the SwissFEL Injector Test Facility (SITF). | |||
MOPME052 | Beam Instrumentation System Optimization for Top-up Operation in SSRF | storage-ring, pick-up, injection, booster | 589 |
|
|||
In order to offer higher average brightness and more stable photon beam, top-up injection mode is scheduled for daily operation in SSRF. Several critical beam parameters, such as fill pattern, average current, beam lifetime and transfer efficiency, need to be measured precisely and reliably, and few interlock logics need to be added into machine protection system with top-up mode. Hardware and software optimizations of beam instrumentation for this purpose will be introduced in this paper. | |||
MOPME056 | Measurement of the Beam Position Monitor’s Electrical Performance and Electronics Sensitivity for 100 MeV Proton Linac and Beam Lines | linac, proton, pick-up, monitoring | 598 |
|
|||
Funding: This work was supported by the Ministry of Education, Science and Technology of the Korean Government. The development of the beam position monitor (BPM) is in progress for the 100-MeV proton linac and 10 beam lines of the 1st phase of KOMAC. Those were selected the strip line type BPM for the proton linac and beam lines. 5 beam-line BPMs and 9 linac BPMs were checked their electrical performance in the RF test using by developed test stand and tested the Log-ratio BPM (Beam Position Monitor) electronics module of the Bergoz Instrumentation for direct beam position derivation signal from the pickup signal. After then, those will be installed 100-MeV proton Linac and beam lines for beam commissioning in February 2013. This presentation summarized the results of measured BPM’s electrical performance and the Log-ratio BPM electronics pickup sensitivity. |
|||
MOPWA060 | DITANET - An International Network in Beam Diagnostics | diagnostics, electron, photon, synchrotron | 813 |
|
|||
Funding: Work supported by the EU under contract 215080. Beam diagnostics systems are essential constituents of any particle accelerator; they reveal the properties of a beam and how it behaves in a machine. Without an appropriate set of diagnostic elements, it would simply be impossible to operate any accelerator complex, let alone optimize its performance. Beam diagnostics is also a rich field in which a great variety of physical effects are made use of and consequently provides a wide interdisciplinary base for the training of researchers. The DITANET Consortium develops beyond state-of-the-art beam diagnostic techniques for hadron and electron accelerators and trained more than 20 researchers between 2008 and 2012. This contribution summarizes the network's research outcomes in beam instrumentation and diagnostics. |
|||
MOPWA080 | Design of a Fast, XFEL-quality Wire Scanner | photon, electron, radiation, vacuum | 867 |
|
|||
RadiaBeam Technologies, in collaboration with the Pohang Accelerator Laboratory, has designed and built a fast wire scanner for transverse beam size measurements in the XFEL Injector Test Facility. The wire scanner utilizes three 25-micron diameter tungsten wires mounted vertically, horizontally, and diagonally on a single alumina card to measure the transverse beam size down to 10 microns with sub-micron accuracy of a 139-MeV electron beam. A double-ended design using dual bellows for actuation is used to reduce the vibrations of the wire holder during motion and negate the effects of air pressure on positioning. The servomotor-driven system is capable of performing full horizontal, vertical, and 45-degree scans in under a minute. Algorithms are presented for removing the broadening effect of the wires' thickness from the scanning data to measure beams that are as small or smaller than the wires. Furthermore, we present formulas for determining the beam's transverse spatial sizes (horizontal and vertical spot size and correlation) from the scan data. | |||
TUPEA051 | Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS | plasma, laser, quadrupole, proton | 1247 |
|
|||
The world’s first proton driven plasma wakefield acceleration experiment is presently being studied at CERN. The experiment will use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility are considered: the West Area and the CNGS long baseline beam-line. The previous transfer line from the SPS to the West Area was completely dismantled in 2000 and it would need to be fully re-designed and re-built. For this option, geometric constraints for radio protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the final part of the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented. | |||
WEPFI055 | Experience on Fabrication and Assembly of the First Clic Two-Beam Module Prototype | vacuum, alignment, quadrupole, RF-structure | 2815 |
|
|||
The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies for the part manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison of several technical solutions adopted during the realization. The description of the module assembly and quality control measurements are also recalled. | |||
THPFI035 | Design of A 4-cavities Collinear Load Coated with FeSiAl Alloy for 14 MeV LINAC | cavity, simulation, linac, target | 3370 |
|
|||
Collinear load is a substitute for waveguide load to miniaturize linear accelerator and make the beam quality better. Coating with a kind of high efficient microwave-absorbing material FeSiAl alloy, a collinear load section composed of 4 cavities (at 2 /3 mode) with different coating dimensions is designed to absorb 4kW remnant power. Cavity dimensions are adjusted to compensate the frequency shift from 2856 MHz respectively. Simulation shows the loss material FeSiAl only need to be coated on the inner surface of the ring. This makes the design and construction of the cooling system for the load segment easier. Coming with a specific water cooling system can makes the working frequency of the accelerator and the collinear load more close to the supposed. Eventually, based on optimized uniform power absorption principle concluded from the simulation of temperature field, a four-cavity collinear load is designed with one-way attenuation of 76.1 dB, while the largest shift from operation frequency is 35 kHz. | |||
THPFI046 | First Results of an Experiment on Advanced Collimator Materials at CERN HiRadMat Facility | simulation, proton, vacuum, laser | 3391 |
|
|||
Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579 A comprehensive, first-of-its-kind experiment (HRMT-14) has been recently carried out at CERN HiRadMat facility on six different materials of interest for Beam Intercepting Devices (collimators, targets, dumps). Both traditional materials (Mo, W and Cu alloys) as well as advanced metal/diamond and metal/graphite composites were tested under extreme conditions as to pressure, density and temperature, leading to the development of highly dynamic phenomena as shock-waves, spallation, explosions. Experimental data were acquired, mostly in real time, relying on extensive embarked instrumentation (strain gauges, temperature and vacuum sensors) and on remote acquisition devices (laser Doppler vibrometer and high speed camera). The experiment was a success under all points of view in spite of the technological challenges and harsh environment. First measurements are in good agreement with results of complex simulations, confirming the effectiveness of the acquisition system and the reliability of advanced numerical methods when material constitutive models are completely available. Interesting information has been collected as to thermal shock robustness of tested materials. |
|||
THPFI053 | A Feasibility Experiment of a W-powder Target in the HiRadMat Facility of CERN | target, proton, laser, factory | 3409 |
|
|||
Granular solid targets made of fluidized tungsten powder or static pebble bed of tungsten spheres, have been long proposed and are being studied as an alternative configurations towards high-power (>1MW of beam power) target systems, suitable for a future Super Beam or Neutrino Factory. Serving the lack of experimental data on this field, a feasibility experiment was performed in HiRadMat facility of CERN/SPS that tried in a pulse-by-pulse basis to address the effect of the impact of the SPS beam (440GeV/c) on a static tungsten powder target. Online instrumentation such as high-speed photography and Laser - Doppler Vibrometry was employed. Preliminary results show a powder disruption speed of less than 0.5 m/s while the disruption height appears to be scaling proportionally with the beam intensity. Other analysis results will be discussed. | |||
THPFI055 | First Year of Operations in the HiRadMat Irradiation Facility at CERN | proton, target, radiation, laser | 3415 |
|
|||
HiRadMat (High Irradiation to Materials) is a new facility at CERN constructed in 2011, designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of 7.2 μs, to maximum pulse energy of 3.4MJ. For 2012, the first year of operations of the facility, nine experiments were scheduled and completed data-taking successfully. The experience gained in operating this unique facility, along with highlights of the experiments and the instrumentation developed for online measurements are reported. | |||
THPME034 | The LHC Cryogenic Operation Availability Results from the First Physics Run of Three Years | cryogenics, controls, monitoring, collider | 3585 |
|
|||
The LHC (Large Hadron Collider) accelerator consists in eight cryogenically independent sectors, each 3.3 km long with a cold mass of 4500 ton cooled at 1.9 K. Each helium cryogenic plant combines an 18 kW at 4.5 K refrigerator and a 2.4 kW at 1.8 K refrigeration unit. Since early operation for physics in November 2009, the availability has been above 90% for more than 260 days per year, ending at 94.8% in 2012 and corresponding to an equivalent availability of more than 99% per independent sector. The operation and support methodology as well as the achieved performance results are presented. Emphasis is given on implementing operational return for short, medium and long term consolidations. Perspective for restart after the first long shutdown of the LHC works will be described. | |||