A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

booster

  
Paper Title Other Keywords Page
MOPCH090 ITEP-TWAC Status Report ion, synchrotron, injection, accumulation 243
 
  • N.N. Alexeev, D.G. Koshkarev, B.Y. Sharkov
    ITEP, Moscow
  Three years of successful operation the ITEP-TWAC facility delivers proton and ion beams in several modes of acceleration and accumulation of by using the multiple charge exchange injection technique*. Substantial progress is achieved in output ion beam current intensity of the linear injector I3, in intensity of the buster synchrotron UK, in efficiency increasing of ion beam stacking and longitudinal compression in the storage ring U10. The machine status analysis and current results of activities aiming at subsequent improvement of beam parameters for extending beam technology applications are presented.

*N. Alexeev et al. Laser and Particle Beams (2002) V 20, N3, 385-392.

 
 
MOPCH099 Performance and Capabilities of the NASA Space Radiation Laboratory at BNL ion, extraction, BNL, RHIC 270
 
  • K.A. Brown, L. Ahrens, I.-H. Chiang, C.J. Gardner, D.M. Gassner, L. Hammons, M. Harvey, J. Morris, A. Rusek, P. Sampson, M. Sivertz, N. Tsoupas, K. Zeno
    BNL, Upton, Long Island, New York
  The NASA Space Radiation Laboratory (NSRL) at BNL has been in operation since 2003. The first commissioning of the facility took place beginning in October 2002 and the facility became operational in July 2003. The facility was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL is capable of making use of protons and heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. It is also capable of making use of protons and heavy ions fast extracted from the AGS Booster. Many different beam conditions have been produced for experiments at NSRL, including very low intensity In this report we will describe the facility and its' performance over the eight experimental run periods that have taken place since it became operational. We will also describe the current and future capabilities of the NSRL.  
 
TUPCH009 Beam Measurements and Manipulation of the Electron Beam in the BESSY-II Transferline for Topping Up Studies emittance, synchrotron, quadrupole, injection 1010
 
  • T. Kamps, P. Kuske, D. Lipka
    BESSY GmbH, Berlin
  The BESSY-II storage ring based synchrotron radiation source will be upgraded to allow for continuous topping up operation. In order to achieve a high injection efficiency between the booster synchrotron and the storage ring, the transferline will be equipped with novel beam size monitors and collimators. This paper describes the collimator design and first beam measurements of the transverse emittance. The transverse emittance is measured using the quadrupole scan technique. The data taking and the analysis procedure is given together with results and comparision with simulations.  
 
TUPCH044 Turn-by-turn Data Acquisition and Post-processing for the Diamond Booster and Storage Ring betatron, storage-ring, DIAMOND, injection 1103
 
  • R. Bartolini, M.G. Abbott, I.P.S. Martin, G. Rehm, J.H. Rowland
    Diamond, Oxfordshire
  The Diamond booster and storage ring are equipped with Libera Electron Beam Position Processors with turn-by-turn capabilities. We describe here the turn-by-turn data acquisition system and the software used for post-processing the beam data. The signals from the Libera boxes are acquired and controlled with EPICS and then transferred to the MATLAB environment via the MATLAB Channel Access. Here they are post-processed using MATLAB capabilities and dedicated software linked to MATLAB. Examples of data acquired and measurements performed during Diamond booster and storage ring commissioning are reported.  
 
TUPCH045 First Use of Current and Charge Measurement Systems in the Commissioning of Diamond linac, storage-ring, DIAMOND, injection 1106
 
  • A.F.D. Morgan, M.G. Abbott, G. Rehm
    Diamond, Oxfordshire
  This paper will discuss the results obtained from the charge and current measurement systems installed in Diamond during the commissioning stage of operation. The charge measurements are gathered from integrating current transformers and Faraday cups, while the current is measured using a DC current transformer in each ring. The measured beam parameters will be investigated, as well as how well the devices performed against expectations.  
 
TUPCH046 Performance of Global Diagnostics Systems during the Commissioning of Diamond storage-ring, DIAMOND, injection, controls 1109
 
  • G. Rehm, M.G. Abbott
    Diamond, Oxfordshire
  This paper summarises data acquired with beam diagnostics systems distributed globally through Diamond's Linac, transfer paths, booster and storage ring. It shows results from the electron beam position monitors using their capabilities to monitor transient events, the booster ramp as well as stored beam. The performance derived from real beam measurements is compared to measurements obtained in the lab using signal and pulse generators. Other systems of widespread use are screens and synchrotron light monitors. Their performance and control system integration based on IEEE1394 camera technology is presented. Finally, first results from the fast and slow beam loss monitoring systems are described.  
 
TUPCH062 Synchrotron Radiation Diagnostics for the NSLS Booster synchrotron, diagnostics, synchrotron-radiation, radiation 1154
 
  • T.V. Shaftan, I. Pinayev
    BNL, Upton, Long Island, New York
  We developed an optical diagnostics system for the NSLS booster-synchrotron utilizing the synchrotron radiation from the dipole magnet. MATLAB based software allows to study the electron beam properties along the energy ramp. The trajectory, beam sizes and coupling at the different instants of time are retrieved from the analysis of the electron beam image. In the paper we present the system layout, as well as experimental results and upgrade plans.  
 
TUPCH078 BPM Design for the ALBA Synchrotron impedance, vacuum, storage-ring, pick-up 1190
 
  • F. Pérez, A. Olmos
    ALBA, Bellaterra
  • T.F. Günzel
    ESRF, Grenoble
  ALBA is a 3 GeV, low emittance, 3rd generation synchrotron light source that is in the construction phase in Cerdanyola, Spain. Vertical beam sizes down to a few microns will require beam stabilities on the submicron level. The BPM has to be designed in order to provide reliable and accurate beam position readings. Simulation and computational codes have been used to optimise, for a given vacuum chamber dimension, the BPM design. The optimisation has taken into account the usual sensitivity and intrinsic resolution parameters, but as well, the wakefield loss factor of the buttons. Due to the small vertical vacuum chamber dimension and the high design current, the beam power deposited in the buttons is becoming a concern due to the thermal deformation effects that can introduce errors at the submicron level. A compromise between a higher intrinsic resolution from one side, and a low power deposited by the beam in the buttons from the other, define the final buttons dimensions.  
 
TUPCH095 Status of Synchrotron Radiation Monitor at TLS synchrotron, synchrotron-radiation, radiation, controls 1232
 
  • C.H. Kuo, J. Chen, K.-T. Hsu, S.Y. Hsu, K.H. Hu, D. Lee, C.-J. Wang
    NSRRC, Hsinchu
  Synchrotron radiation monitor of the Taiwan Light Source have been upgraded recently. Improvement of optics and modelling was performed to improve accuracy of measurement for small beam size. Synchrotron light interferometer is implemented for complementary measurement. IEEE-1394 digital CCD camera is used to improve image transmission quality, camera remote control and to extend dynamic range. Intensify gated camera are included in this upgrade for dynamic property observation of the stored beam. Functionality enhancement of image analysis is also supported. Efforts and achievements will be summarized in this report.  
 
TUPCH120 The Diamond Light Source Booster RF System controls, DIAMOND, pick-up, synchrotron 1295
 
  • C. Christou, V.C. Kempson
    Diamond, Oxfordshire
  • K. Dunkel
    ACCEL, Bergisch Gladbach
  • A. Fabris
    ELETTRA, Basovizza, Trieste
  The Diamond Light Source (DLS) accelerator complex can be divided into three major components; a 3 GeV 561 m circumference storage ring, a 158.4 m circumference full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the design and presents commissioning results of the RF system for the booster synchrotron. Booster RF commissioning took place in late 2005 and early 2006 and involved the setting-into-operation of a 60 kW IOT amplifier, supplied by Thales Broadcast and Multimedia, a 5-cell copper cavity, manufactured by Accel Instruments, and a low-level RF system designed and built by Sincrotrone Trieste SCpA.  
 
TUPLS045 Completion of the Commissioning of the Superconducting Heavy Ion Injector PIAVE at INFN-LNL emittance, ion, rfq, cryogenics 1597
 
  • G. Bisoffi, G. Bassato, A. Battistella, l. Boscagli, A. Calore, S. Canella, D. Carlucci, M. Cavenago, F. Chiurlotto, M. Comunian, M. De Lazzari, A. Facco, E. Fagotti, A. Galatà, P. Modanese, M.F. Moisio, A. Pisent, M. Poggi, A.M. Porcellato, P.A. Posocco, C. Roncolato, E. Sattin, S. Stark
    INFN/LNL, Legnaro, Padova
  • N. Schiccheri
    CNAO Foundation, Milan
  At INFN-LNL the commissioning of the injector PIAVE, based on superconducting RFQs, has been completed. All the superconducting cavities (two RFQs and 8 quarter wave resonators - QWR) have shown very satisfactory stability with respect to changes of the liquid helium pressure and microphonics. Beam parameters are very close to the nominal values. The commissioning was completed by accelerating the pilot beam 16O3+ with the PIAVE injector and the booster linac ALPI (summer 2005). Since December 2005, a number of test beams were accelerated (mainly noble gas species) with PIAVE and ALPI and delivered to user experimental stations. Regular operation will be scheduled from Fall 2006 onwards.  
 
TUPLS047 An Analysis of Lumped Circuit Equation for Side Coupled Linac (SCL) coupling, SCL, linac, insertion 1600
 
  • V.G. Vaccaro, A. D'Elia
    Naples University Federico II and INFN, Napoli
  • M.R. Masullo
    INFN-Napoli, Napoli
  The behaviour of a SCL module is generally described by resorting to an equation system borrowed from lumped circuit theories. This description holds for a narrow frequency band (mono-modal cavity behaviour). A milestone in this field is represented by the classical analysis made by Knapp & alii where the equations allow for the resonant frequencies of the cavities and the first and second order coupling constants. Eigenvalues and eigenvectors (resonant frequencies of the system and relevant current amplitudes) are also given. We show that the system is not correct in the second and last but one equations for the case of half cell termination and non zero second order coupling constants. Due to the relevance of this formulation and of the case treated, we pay a particular attention to find the missing terms in the above mentioned equation. We suggest a correction term, having in addition a deep meaning from electromagnetic point of view. By means of this term we may justify the analytical solution given by the authors. Some numerical examples are also given showing that a discrepancy appears comparing the new equations with the results of the non-correct formulation.  
 
TUPLS049 A Rationale to Design Side Coupled Linac (SCL): a Faster and More Reliable Tool SCL, coupling, linac, simulation 1606
 
  • V.G. Vaccaro, A. D'Elia
    Naples University Federico II and INFN, Napoli
  • M.R. Masullo
    INFN-Napoli, Napoli
  A module of an SCL is formed by a cascade of two or more tanks, connected by a Bridge Couplers (BC) with an RF feeder, which realizes a well defined accelerating field configuration in all the coupled cavities. Even resorting to geometrical scaling for the design of the adjacent tanks in the module it is not possible to reproduce the same e-m parameters. In addition to this the BC's for each tanks have a different geometrical design because of phasing constraints. The standard procedure may leads a very slow convergence of the design to the optimum and it is not in general clear if the optimum is reached. In this paper a rationale for designing a module of an SCL will be described and it will be presented its application to PALME first module (30-3???MeV). From a lumped circuit model one may get useful relations between e-m global response of the system and single cell parameters. Therefore it provides a certain number of tools which are used for the designing steps in connection with the standard electromagnetic CAD's, the results of which were used as "measurements".  
 
TUPLS137 Design of the Utility System for the 3 GeV TPS Electron Storage Ring storage-ring, controls, synchrotron, synchrotron-radiation 1828
 
  • J.-C. Chang, J.-R. Chen, Y.-C. Lin, Y.-H. Liu, Z.-D. Tsai
    NSRRC, Hsinchu
  After 13-year operation of the Taiwan Light Source (TLS), National Synchrotron Radiation Research Center (NSRRC), had proposed to construct a new light sourc, Taiwan Photon Source (TPS) in the near future. TPS is preliminarily designed with 3.0 GeV in energy, 518.4m in circumference and 24 Double-Bend Achromat (DBA). This study designed the utility system, including the electrical power system, grounding system, de-ionized cooling water (DIW) system and air conditioning (AC) system for the TPS. Special considerations are focused on the stability of the electrical power and grounding system and temperature control of the DIW and AC systems. The power and cooling loads had been estimated according to each subsystem of the accelerator. Layouts of main utility equipment and piping system had also been preliminarily designed.  
 
WEPCH013 Electron Transport Line Optimization using Neural Networks and Genetic Algorithms injection, synchrotron, electron, storage-ring 1948
 
  • D. Schirmer, T. Buening, P. Hartmann, D. Mueller
    DELTA, Dortmund
  Methods of computational intelligence (CI) were investigated to support the optimization of the electron transfer efficiency from the booster synchrotron BoDo to the electron storage ring DELTA. Neural networks and genetic algorithms were analysed alternatively. At first both types of methods were trained on the basis of a theoretical model of the transport line. After the training various algorithms were used to improve the magnet settings of the real transport line elements with respect to the electron transfer efficiency. The results of different strategies are compared and prospects as well as limitations of CI-methods to the application of typical optimization problems in accelerator operation are discussed.  
 
WEPCH063 Measurements and Modeling of Eddy Current Effects in BNL's AGS Booster vacuum, dipole, quadrupole, AGS 2068
 
  • K.A. Brown, L. Ahrens, C.J. Gardner, J. Glenn, M. Harvey, W. Meng, K. Zeno
    BNL, Upton, Long Island, New York
  Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the basic lattice parameters of betatron tune and chromaticity. The Booster is capable of operating at ramp rates as high as 8 T/sec. At these ramp rates eddy currents in the vacuum chambers have significant effects on the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the effect of the induced eddy currents. In this report results from measurements of these effects will be presented. Results from modeling and comparisons to the measurements will also be presented.  
 
WEPCH164 High Power RF Tests of the First Module of the TOP Linac SCDTL Structure linac, coupling, proton, impedance 2313
 
  • L. Picardi, C. Cianfarani, G. Messina, G.L. Orlandi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • E. Cisbani, S.F. Frullani
    ISS, Rome
  The TOP Linac (Oncological Therapy with Protons), under development by ENEA and ISS, is a sequence of three pulsed (5 microseconds, 300 Hz) linear accelerators: a 7 MeV, 425 MHz RFQ+DTL (AccSys Model PL-7), a 7-65 MeV, 2998 MHz Side Coupled Drift Tube Linac (SCDTL), and a 65-200 MeV, variable energy 2998 MHz Side Coupled Linac (SCL). The first SCDTL module structure, composed by nine DTL tanks coupled by eight side cavities, has been built. Low power RF measurements have shown good field uniformity and stability along the axis. The structure has been tested with a 1 - 4 MW power RF. Results of low and high power tests are reported and discussed.  
 
WEPCH186 Present Status of FFAG Accelerators in KURRI for ADS Study controls, acceleration, proton, ion 2367
 
  • M. Tanigaki, M. Inoue, K. Mishima, S. Shiroya
    KURRI, Osaka
  • S. Fukumoto, Y. Ishi
    Mitsubishi Electric Corp, Energy & Public Infrastructure Systems Center, Kobe
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Mori
    KEK, Ibaraki
  KART (Kumatori Accelerator driven Reactor Test) project is in progress at the Kyoto University Research Reactor Institute (KURRI) since fiscal year 2002. We are now constructing a 150 MeV proton FFAG accelerator complex as a neutron production driver for this project. The whole of this FFAG complex is expected to be in the test operation around the spring in 2006. The developments and the current status of this accelerator complex, including the current status of this project, will be presented.  
 
WEPLS067 Magnets for the 3 GeV Booster Synchrotron for the Diamond Light Source dipole, quadrupole, sextupole, DIAMOND 2535
 
  • S.P. Mhaskar, C.P. Bailey, G.M.A. Duller, V.C. Kempson, N. Marks
    Diamond, Oxfordshire
  • F. Bødker, N. Hauge, L.H. Helmersen
    Danfysik A/S, Jyllinge
  The Diamond Booster is a full energy injector for the Diamond Storage Ring. It is designed to accelerate electrons from 100 MeV to 3 GeV at a 5 Hz repetition rate. The lattice is a missing dipole FODO lattice consisting of 22 unit cells with 36 dipoles, 44 quadrupoles, 28 sextupoles and 44 correctors, distributed around a circumference of 158.4 m. The dipole field will be ramped from 0.026 T at injection to 0.809 T at 3 GeV; the quadrupoles will have a maximum operating gradient of 15T/m. The initial design of pole tip profiles was carried at Diamond, with the magnets then manufactured by DANFYSIK A/S as part of preassembled girder units (44 in total), complete with vacuum vessels. High quality was required to meet the accelerator physics requirements of alignment, positioning accuracies and field tolerances over the required good field apertures. Materials, ramp rates and field range have been selected to obtain almost linear response during magnet ramping. This paper describes the main features of the magnetic designs and measurement results; the magnets have now been delivered and installed at Diamond.  
 
WEPLS070 The Elettra Booster Magnets Construction Status sextupole, dipole, quadrupole, ELETTRA 2541
 
  • D. Zangrando, D. Castronovo, F. Iazzourene, M. Svandrlik
    ELETTRA, Basovizza, Trieste
  The third generation light source ELETTRA has been in operation since 1993. A new 2.5 GeV full energy booster injector has been approved and founded last year. It will replace the existing linear injector limited to a maximum energy of 1.2 GeV. During last year, after having completed the specifications and the preliminary magnetic and mechanical design, the orders for all the magnets were assigned to two European firms. The paper reports on the magnets' construction status and the requested specifications.  
 
WEPLS084 AC Field Measurements of Fermilab Booster Correctors Using a Rotating Coil System dipole, sextupole, synchrotron, quadrupole 2574
 
  • G. Velev, J. DiMarco, D.J. Harding, V.S. Kashikhin, M.J. Lamm, A. Makulski, D.F. Orris, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
  The first prototype of a new corrector package for the Fermilab Booster Synchrotron is presently in production. This water-cooled package includes normal and skew dipole, quadrupole and sextupole magnets to control orbit, tune and chromaticity of the beam over the full range of Booster energies (400 MeV-8 GeV). These correctors must make rapid excursions from the 15 Hz excitation cycle of the main synchrotron magnets, in some cases even switching polarity in approximately 1 ms at transition crossing. To measure the dynamic changes in the field during operation, a new method based on a relatively slow rotating coil system is proposed. The method pieces together the measured flux from successive current cycles to reconstruct the field harmonics. This paper describes the method and presents initial field quality measurements from the corrector prototype.  
 
WEPLS118 The 3Hz Power Supplies of the SOLEIL Booster dipole, SOLEIL, synchrotron, power-supply 2652
 
  • P. Gros, S. Bobault, A. Loulergue
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a 2.75 GeV new third generation synchrotron radiation facility under construction near Paris. The injector system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. A repetition rate of 3Hz is required for the booster for the filling of the Storage Ring together with the need for discontinuous operation for top-up filling mode. Based on digital regulation loop, the four power supplies (2 for the dipoles 600 A x 1000 V and 2 for the quadrupoles 250 A x 450 V) reach the current tracking tolerance specification of 10-3. The aim of this paper is to describe the main issues from the loads to the mains network through the power converters that are essential to reach the required performances.  
 
WEPLS123 Initial Experimental Results of a New Direct Converter for High Energy Physics Applications controls, power-supply, radio-frequency, target 2661
 
  • D. Cook, M. Catucci, J. Clare, P. W. Wheeler
    University of Nottingham, Nottingham
  • C. Oates
    Areva T&D, Stafford
  • J.S. Przybyla, R. Richardson
    e2v Technologies, Essex
  This paper presents practical results for a new type of power supply for high energy physics CW applications. The converter is a direct topology operating with a high frequency (resonant) link. Losses are minimised by switching at zero current. High operating frequency reduces the filter and transformer size. The transformer uses the latest nano-crystalline materials to further reduce losses. Where possible, circuit elements are incorporated into the transformer to reduce the physical size of the converter. Design of this transformer to accommodate the insulation, VA rating and circuit elements is non-trivial. The Radio Frequency power generated is stable and predictable, whilst the reduced energy storage in filter components removes the need for crowbar circuits. Potential benefits of this converter when compared to conventional approaches are discussed. These include reduced energy storage, reduced turn-on time and enhanced energy density when compared with existing topologies. Preliminary practical results are promising and are presented along with simulation results.  
 
WEPLS124 Diamond Booster Magnet Power Converters controls, dipole, DIAMOND, quadrupole 2664
 
  • J.A. Dobbing, C.A. Abraham, R.J. Rushton
    Diamond, Oxfordshire
  • F. Cagnolati, M.P.C. Pretelli, L. Sita
    O.C.E.M. S.p.A., Bologna
  • G. Facchini
    CERN, Geneva
  • C. Rossi
    CASY, Bologna
  This paper will describe the design, factory tests, commissioning and early operation of the Diamond Booster Power Converters. The Power Converters covered are the Dipole, Quadrupole with two outputs, two bi-polar Sextupoles and 44 Steerers. The actual achieved performance will be compared with the specification and the extensive modelling that was carried out during the design phase. The design includes measures to enhance the reliability of the power converters, such as redundancy, plug-in modularity, component de-rating and component standardisation. All the Diamond power converters use the same digital controller, manufactured under licence from the Paul Scherrer Institute.  
 
WEPLS136 Pulsed Magnet Power Supplies for Improved Beam Trajectory Stability at the APS septum, injection, power-supply, extraction 2697
 
  • B. Deriy, L. Emery, A.L. Hillman, G.S. Sprau, J. Wang
    ANL, Argonne, Illinois
  New power circuit and control electronics have been implemented in the septum power supplies at the Advanced Photon Source (APS). The goal was to meet a low pulse-to-pulse relative amplitude jitter of about ± 5·10-4 for trajectory stability in the booster-to-storage ring transport line. The original power supply design produced a jitter of ± 15e-4, which made injection tuning difficult. The jitter for the two new booster pulsed magnet supplies is now 1.1e-4, as inferred by a beam-based statistical analysis. A common design was made for all of the septum magnet power supplies at the APS. The system, regulation algorithms, the results achieved, and the current regulation stability issues will be discussed.  
 
THXPA01 Overview of the Status of the Diamond Project DIAMOND, storage-ring, vacuum, injection 2718
 
  • R.P. Walker
    Diamond, Oxfordshire
  The presentation will outline the status of the Diamond project including an overview of the major areas of technical challenge including reference to the physics issues and their impact on design and performance. The majority of the talk will present the status and challenges of first commissioning, outlining the current performance and the challenges in achieving operational status.  
slides icon Transparencies
 
THXPA02 Overview of the Status of the SOLEIL Project SOLEIL, storage-ring, vacuum, undulator 2723
 
  • J.-M. Filhol, J.C. Besson, P. Brunelle, M.-E. Couprie, J.-C. Denard, J.M. Godefroy, C. Herbeaux, V. Le Roux, P. Lebasque, A. Lestrade, M.-P. Level, A. Loulergue, P. Marchand, J.L. Marlats, A. Nadji, L.S. Nadolski, R. Nagaoka, B. Pottin, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a third generation synchrotron radiation source, under construction in France near Paris. The storage ring consists of a 357 m circumference ring, with 16 cells and 24 straight sections, out of which up to 21 will house insertion devices (ID). The optics features a low 3.7 nm.rad emittance at the 2.75 GeV operating energy, so as to provide high brilliance, from the VUV up to the hard x-ray domain. To reach a long lifetime, and beam position stabilities in the micron range, significant attention was paid at each design stage (optics, magnets, beam position monitors, vacuum and RF systems…), including on the design of the building, the construction of which is now complete. This resulted in some unprecedented approaches such as the intensive use of NEG coating vessels, or the development of a dedicated SC RF cavity and of 200 kW solid state RF amplifiers. The injector system (100 MeV Linac) and the 3 Hz full energy booster synchrotron have reached nominal operating conditions by fall 2005, while the ring commissioning should start by April 2006. Innovative ID's were designed and built so as to provide the best possible performances in a wide energy range (5 eV to 50 keV).  
slides icon Transparencies
 
THPCH108 Status of SOLEIL Control Systems controls, SOLEIL, ESRF, storage-ring 3053
 
  • A. Buteau, P. Betinelli, L.S. Nadolski
    SOLEIL, Gif-sur-Yvette
  The SOLEIL light source is a 2.75 GeV third generation synchrotron radiation facility under construction near Paris Storage ring commissioning is scheduled for April 2006 and 10 BL operation for the end of 2006. This paper will describe the technical solution choosen for the control systems of accelerators and beamlines, and will give the status of the deployment. On the hardware side, the SOLEIL Controls team has implemented an industrial approach using PLCs, standard Motion Controlers and CPCI Systems. The details of our technical choices and architectures will be described in this paper. On the software side, the SOLEIL Controls team has worked closely with ESRF's one on the TANGO framework since 2002. A quick tour on the TANGO software components used for SOLEIL Controls will be detailed. On the supervision layer, SOLEIL has choosen Java as the core technology, using javabeans components provided by the TANGO toolkit within an industrial SCADA (GlobalScreen). These tools and components for Graphical User Interface development will be presented. At last, an overview of the deployment of these systems on our installation will conclude this document.  
 
THPCH109 Control Applications for SOLEIL Commissioning and Operation controls, SOLEIL, storage-ring, synchrotron 3056
 
  • L.S. Nadolski, A. Buteau, J. Chinkumo, R.C. Cuoq, X. Deletoille, M.O. Ounsy, S. Petit, K.S. Saintin
    SOLEIL, Gif-sur-Yvette
  Synchrotron SOLEIL, the French third generation light source being commissioned in 2006, is the first facility using TANGO as a full control system. Control applications for operation and Beam Physics Dynamics have being developed using two major tools: the Matlab Middle Layer adapted from ALS and Spear3, and GlobalSCREEN, commercial SCADA software. Both tools are fully interfaced with the TANGO control system. In this paper, a sketch of the software architecture is shown. Then Storage Ring applications developed in house are presented. Finally configuration and database related applications (archiving, snapshot) are briefly described.  
 
THPCH112 High-level Software for Diamond Commissioning and Operation DIAMOND, storage-ring, controls, quadrupole 3065
 
  • R. Bartolini, C. Christou, I.P.S. Martin, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
  The Diamond accelerator complex is controlled with EPICS. While generic applications are provided by the EPICS toolkit, accelerator physics application for the commissioning and operation of the Diamond booster, storage ring and transfer line are mainly developed with MATLAB. The MATLAB Middle Layer tools developed at ALS and SPEAR3 have been extensively used and extended with many new applications. Experience using these tools during the commissioning of the Diamond booster, transfer lines and storage ring are reported.  
 
THPCH113 The Diamond Light Source Control System controls, DIAMOND, vacuum, linac 3068
 
  • M.T. Heron, M.G. Abbott, P.H. Amos, K.A.R. Baker, Y.S. Chernousko, T.M. Cobb, C.A. Colborne, P.N. Denison, I.J. Gillingham, A. Gonias, P. Hamadyk, S.C. Lay, M.A. Leech, P.J. Leicester, M. McClory, U.K. Pedersen, N.P. Rees, A.J. Rose, J.H. Rowland, E.L. Shepherd, S.J. Singleton, I. Uzun, K. Vijayan
    Diamond, Oxfordshire
  • S. Hunt
    PSI, Villigen
  • P.H. Owens
    CCLRC/DL, Daresbury, Warrington, Cheshire
  Diamond is a new 3rd generation synchrotron light source currently being commissioned in the UK. The control system for Diamond will be a site-wide monitoring and control system for the accelerators, beamlines and conventional facilities. This paper presents the design and implementation of the Diamond control system, which is based on the EPICS control system toolkit. It will present the detailed choice of hardware and software, the solutions realised for interfacing and control of the major technical systems of Diamond, together with progress on installation and commissioning.  
 
THPCH144 The Upgrading of the TLS Injector Bumper and Septum Power Supplies for Top-up Operation power-supply, extraction, septum, controls 3128
 
  • C.-S. Fann, K.-T. Hsu, S.Y. Hsu, J.-Y. Hwang, K.-K. Lin, K.-B. Liu, Y.-C. Liu
    NSRRC, Hsinchu
  Due to the inevitable requirement of routine top-up mode operation at TLS (Taiwan Light Source), the reliability of all components in TLS injector has been reevaluated in the past several months. Among all possible subsystems to be reinforced, the bumper and septum power supplies revealed urgent need of upgrading while operated continuously in the user shifts. In this report, the modification of the charging mechanism of the pulsed power supplies is described. The modular feature of the newly built units provides fast replacement capability in case of components failure. The unified specifications for all components have greatly reduced the effort in preparing spare parts. The test results of these units are presented in this report.  
 
THPCH166 The Timing System for Diamond Light Source DIAMOND, linac, gun, controls 3182
 
  • Y.S. Chernousko, A. Gonias, M.T. Heron
    Diamond, Oxfordshire
  • T. Korhonen
    PSI, Villigen
  • E. Pietarinen, J. Pietarinen
    MRF, Helsinki
  The Diamond timing system is the latest generation development of the design, principles and technologies currently implemented in the Advanced Photon Source and Swiss Light Source timing systems. It provides the ability to generate reference events, distribute them over a fibre-optic network, and decode and process them at the equipment to be controlled. The timing system is closely integrated within the Diamond distributed control system, which is based on EPICS. The Diamond timing system functionality and performance, and first operational experiences in using the timing system during the commissioning of the accelerators, are presented in this paper.  
 
THPCH168 RF Distribution System of the Diamond Master Oscillator synchrotron, DIAMOND, linac, storage-ring 3188
 
  • A.V. Watkins, M. Jensen, M. Maddock, S.A. Pande, S. Rains, D. Spink
    Diamond, Oxfordshire
  A modular RF distribution system has been designed and built at Diamond Light Source to distribute the master oscillator (MO) signal. The system will deliver a low noise, phase stable 500 MHz signal to multiple points of use around the synchrotron facility. Providing phase stability and preserving noise performance over the distances required (up to 300m) have been the main design challenges. A modular approach provides future flexibility, and this paper describes each component, outlining design choices, components used, construction details and test results.  
 
THPLS005 Commissioning Results from the Injection System for the Australian Synchrotron Project injection, synchrotron, quadrupole, emittance 3272
 
  • S. Friis-Nielsen, H. Bach, F. Bødker, A. Elkjaer, N. Hauge, J. Kristensen, L.K. Kruse, S.M. Madsen, S.P. Møller
    Danfysik A/S, Jyllinge
  • M.J. Boland, R.T. Dowd, G. LeBlanc, M.J. Spencer, Y.E. Tan
    ASP, Clayton, Victoria
  • N.H. Hertel, J.S. Nielsen
    ISA, Aarhus
  Danfysik has built a full-energy turnkey injection system for the Australian Synchrotron. The system consists of a 100 MeV LINAC, a low-energy transfer beamline, a full-energy booster and a high energy transfer beamline. The booster synchrotron will deliver a 3-GeV beam with an emittance of 33 nm. The lattice is designed to have many cells with combined-function magnets (dipole, quadrupole and sextupole fields) in order to reach this very small emittance. The current in single- and multi-bunch mode will be in excess of 0.5 and 5 mA, respectively. The repetition frequency will be 1 Hz. At the time of writing this abstract, the LINAC beam has been injected into the low-energy transfer beamline. The project is on schedule for delivery in April 2006. Results from the commissioning of the system will be presented together with its performance.  
 
THPLS008 Commissioning of the SOLEIL Booster injection, SOLEIL, extraction, emittance 3281
 
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a 2.75 GeV new third generation synchrotron radiation facility under construction near Paris. The injector system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. The booster lattice is based on a FODO structure with missing magnet. With a circumference of 157 m and low field magnets (0.74 T), the emittance is in the range of 110 to 150 nm.rad at 2.75 GeV. The magnets are excited at 3 Hz, using switched mode power supplies, with digital regulation. The LEP type RF cavity is powered by a 35 kW-352 MHz solid state amplifier. Closed orbits are measured turn by turn, using the BPM Libera digital electronics. The commissioning took place in October 2005, and an acceleration efficiency of 75% was obtained at the maximum energy. The main results achieved during that commissioning will be reported.  
 
THPLS010 Metrology for the Beam Emittance Measurement of the SOLEIL Injector emittance, linac, quadrupole, SOLEIL 3287
 
  • M.-A. Tordeux, Y.-M. Abiven, N.L. Leclercq, D. Pedeau
    SOLEIL, Gif-sur-Yvette
  The injector system of SOLEIL is composed of a 100 MeV electron linac pre-accelerator followed by a full energy 2.75 GeV booster synchrotron, operating at 3 Hz. Dedicated diagnostics such as emittance monitors are installed on the two transfer lines between the linac and the booster and between the booster and the storage ring. The measurement is performed using the gradient method, relying on YAG screens and high resolution CCD cameras. This paper will show the metrology of the emittance measurements which were made for the HELIOS (THALES) iinac beam (total emittance in the range of 1 μm.rad) and for the booster beam (rms emittance ~ 150 nm.rad): error sources are identified and specific corrections are shown. Additional analysis of the dynamics of the injection into the booster and into the storage ring is made for a deeper characterization.  
 
THPLS012 Commissioning of the Australian Synchrotron Injector RF Systems linac, controls, single-bunch, electron 3293
 
  • C. Piel, K. Dunkel, J. Manolitsas, D. Trompetter, H. Vogel
    ACCEL, Bergisch Gladbach
  • M.J. Boland, R.T. Dowd, G. LeBlanc, M.J. Spencer, Y.E. Tan
    ASP, Clayton, Victoria
  On December 16, 2003 the contract for the design, manufacture, installation and commissioning of the turnkey injector system for the Australian Synchrotron Project was awarded to industry. ACCEL Instruments is delivering the turnkey 100MeV linac and the booster RF system. Commissioning of the linac for ASP was performed in December 2005, right after successful commissioning of the Diamond Light Source injection linac*. The 500MHz booster cavity and related low level RF system will be commissioned after installation of the booster is finalised in early 2006. The paper will present design and layout information, as well as commissioning results.

*Commissioning of the Diamond Pre-Injector Linac (this conference).

 
 
THPLS028 Pulsed Magnets and Pulser Units for the Booster and Storage Ring of the Diamond Light Source septum, storage-ring, kicker, injection 3341
 
  • V.C. Kempson, J.A. Dobbing
    Diamond, Oxfordshire
  • C.E. Hansen, N. Hauge, G. Hilleke
    Danfysik A/S, Jyllinge
  The Diamond booster and storage ring complex require ten pulsed magnet systems, five for the booster (injection and extraction) and five for the storage ring injection. Each has its own specific design criteria, although commonality of approach has been applied wherever possible. This paper describes the design principles and construction method for the various systems and presents the results of power supply tests and magnetic measurements. Finally, initial experience during the Diamond beam commissioning is discussed.  
 
THPLS029 Commissioning of the Booster Synchrotron for the Diamond Light Source DIAMOND, injection, extraction, dipole 3344
 
  • V.C. Kempson, R. Bartolini, C. Christou, J.A. Dobbing, G.M.A. Duller, M.T. Heron, I.P.S. Martin, G. Rehm, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
  The Diamond booster is a 158 m circumference, 5 Hz synchrotron which accelerates the 100 MeV electron beam from a linac to 3 GeV for full-energy injection into the Diamond storage ring. The booster has been commissioned in the first few months of 2006, following successful initial 100 MeV trials at the very end of 2005. The injection and ramping process, orbit correction and essential beam physics measurements are discussed as are extraction and beam transport to the storage ring.  
 
THPLS030 Beam Optic Measurements for the Booster Synchrotron of the Diamond Light Source injection, lattice, DIAMOND, quadrupole 3347
 
  • B. Singh, R. Bartolini, C. Christou, V.C. Kempson, I.P.S. Martin
    Diamond, Oxfordshire
  • J.K. Jones
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The booster synchrotron of the Diamond Light Source is a full energy injector ramping from 100 MeV to 3 GeV with a repetition rate of 5 Hz. As part of the booster commissioning, beam optic measurements were performed to characterize the booster performance. Through the use of the beam position monitors, orbit corrections, tune and chromaticity measurements were performed at injection energy and during the ramp. A first comparison with the booster model is also discussed.  
 
THPLS033 Elettra New Full Energy Injector Status Report ELETTRA, dipole, quadrupole, storage-ring 3356
 
  • M. Svandrlik, S. Bassanese, F.C. Cargnello, A. Carniel, K. Casarin, D. Castronovo, P. Craievich, G. D'Auria, R. De Monte, S. Di Mitri, A. Fabris, R. Fabris, M. Ferianis, A. Gambitta, F. Giacuzzo, M. Giannini, F. Iazzourene, G.L. Loda, M. Lonza, F.M. Mazzolini, D.M. Morelli, G. Pangon, C. Pasotti, G. Penco, L.P. Pivetta, L. Rumiz, C. Scafuri, G. Tromba, A. Vascotto, R. Visintini, D. Zangrando
    ELETTRA, Basovizza, Trieste
  The Elettra new full energy injector will be based on a 100 MeV linac pre-injector, a 2.5 GeV booster synchrotron and two new beam transfer lines. It will replace the existing 1.2 GeV linac injector and transfer line. Full funding was finally available in 2005, which allowed to start, or in some cases to re-start, the construction activities. The status of the project will be presented in this paper, in particular the progress of the fabrication of various components, like magnets, power supplies, vacuum chambers; also the status of the construction of the building and technical plants will be given. Results of recent optimization studies will also be outlined. The commissioning of the new injector is scheduled to start in Spring 2007, while the first ELETTRA operation for user's with the new full energy injector is expected for the last quarter of 2007.  
 
THPLS045 Construction Status of the SSRF Project power-supply, vacuum, storage-ring, linac 3389
 
  • Z. Zhao
    SINR, Jiading, Shanghai
  • H. Ding, H. Xu
    SINAP, Shanghai
  The Shanghai Synchrotron Radiation Facility (SSRF), an intermediate energy third generation light source, is under construction at Zhang-Jiang Hi-Tech Park in Shanghai. Its main and auxiliary buildings are scheduled to be completed in October 2006, and this will be followed by the SSRF accelerator installations from October 2006 to March 2008. This paper presents the final design and the current construction status of the SSRF project.  
 
THPLS046 The Status of Instrumentation and Control for SSRF linac, controls, diagnostics, storage-ring 3392
 
  • D.K. Liu
    SINAP, Shanghai
  The SSRF (Shanghai Synchrotron Radiation Facility) was started in December 25, 2004, and is located in the Zhang Jiang Hi-Teck park in Shanghai. During the past one year, the main structure is under construction and will be completed in the middle of next year on schedule. Various equipment is being processed and tested. The preliminary design of the control system, including various hardware and software, are completed, and some prototype of IOC with EPICS such as LINAC rf station, magnet station and beam diagnosis station, etc. have been already tested successfully. The digital power supply control will be adopted. Various beam instrumentation have been designed for diagnostics of the LINAC, booster and storage ring. The performance of the design, progress of the subsystem and preliminary test results of the prototype will be described in this paper in detail.  
 
THPLS053 Status of the ALBA Project storage-ring, synchrotron, vacuum, insertion 3401
 
  • D. Einfeld
    ALBA, Bellaterra
  ALBA is a 3 GeV light source being built near Barcelona, Spain. ALBA is optimized for high flux density and a large number of available straight sections for insertion devices (3x8 m, 12x4.2 m) in a relatively small circumference of 268.8 m. The light source should be operational in 2010, including the operation of seven beamlines, including six insertion devices. The design of the lattice and of the major components of the accelerator complex (linac and booster, magnets, RF system, vacuum system) is finish and the procurement procedure has started for the large majority of them. The construction of the building will start in the first half of 2006. This report offers an overview of the status of the project, with special emphasis in the new developments.  
 
THPLS056 Synchrotron Radiation Monitors at ALBA synchrotron, radiation, synchrotron-radiation, vacuum 3410
 
  • U. Iriso
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • F. Pérez
    ALBA, Bellaterra
  ALBA is a 3 GeV, low emittance third generation synchrotron light source that is in the construction phase in Cerdanyola, Spain. Synchrotron Radiation Monitors (SRM) are one of the most useful, non-destructive tools to easily obtain information of three important parameters for a synchrotron user: beam position, beam dimensions and beam stability. These monitors diagnose beam performance using the radiation produced when the beam traverses a bending magnet. An extensive usage of SRM, based on the visible part of the spectrum, is planned in the ALBA synchrotron: Linac, Booster, Transfer Lines and the Storage Ring. The latter will be equipped as well with an SRM based on the x-ray part of the spectrum, using the PinHole technique in order to accurately measure the low beam size and emittance. This paper describes the different SRM designs for the ALBA light source.  
 
THPLS057 Injector Design for ALBA linac, quadrupole, dipole, storage-ring 3413
 
  • M. Pont, G. Benedetti, D. Einfeld, A. Falone, U. Iriso, M.L. Lopes, M. Muñoz
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • E. Al-Dmour, F. Pérez
    ALBA, Bellaterra
  • W. Joho
    PSI, Villigen
  The storage ring ALBA is a 3rd generation synchrotron light source under construction in Barcelona (Spain). The facility is based on a 3.0 GeV storage ring of 268.8 m circumference with a beam emittance under 5 nm.rad. Top-up operation is foreseen from the start. The injector complex for ALBA will consist of a 100 MeV linac and a full energy booster. The linac will be a turn-key system which has already been ordered to the industry and delivery is expected in the second half of 2007. The full energy booster will be placed in the same tunnel as the storage ring and will have a circumference of 249.6 m. The lattice of the booster is a modified FODO lattice providing an emittance as low as 9 nm.rad. The magnet system comprises 40 combined magnets and 60 quadrupoles. Chromaticity correction relies on the sextupole component built-in the combined magnets and the quadrupoles. In this paper a description of the booster design including the present status of the different components will be given.  
 
THPLS061 Status of the Swiss Light Source SLS, feedback, coupling, injection 3424
 
  • A. Lüdeke, Å. Andersson, M. Böge, B. Kalantari, B. Keil, M. Pedrozzi, T. Schilcher, V. Schlott, A. Streun
    PSI, Villigen
  The Swiss Light Source (SLS) is a 3rd generation synchrotron light source in operation since 2001. The paper will point out the recent activities to enhance machine operation and provides an overview about the new beamlines currently under construction at the SLS.  
 
THPLS066 Improvement on the Single Bunch Operation of the TLS Injector electron, cathode, gun, linac 3439
 
  • J.-Y. Hwang, C.-S. Fann, K.-T. Hsu, S.Y. Hsu, K.H. Hu, S.H. Lee, K.-K. Lin, K.-B. Liu, Y.-C. Liu
    NSRRC, Hsinchu
  The improvement of the TLS (Taiwan Light Source) injector on single bunch operation is presented in this study. Limited by the existing design of the TLS injector, the single bunch operation was not optimized in terms of bunch purity for specific users of TLS. A high voltage pulser was implemented to improve the situation. This pulser has been integrated into the high-voltage-deck electronics of electron gun for single bunch generation. Both high-voltage pulses and the associated electron bunches are monitored with a wideband digital oscilloscope. The result shows that the bunch purity can be greatly improved by using the newly installed pulser. It also greatly eliminates the beam losses while injected into the booster ring.  
 
THPLS069 Preliminary Design of the TPS Linac to Booster Transfer Line linac, injection, electron, focusing 3448
 
  • Y.-C. Liu, H.-P. Chang, C.-S. Fann, K.-T. Hsu, S.Y. Hsu, K.-K. Lin, K.-B. Liu, G.-H. Luo
    NSRRC, Hsinchu
  The preliminary design of the LTB (linac to booster) transfer line of the proposed TPS (Taiwan Photon Source) project is considered in this study. The layout presented in this report is based on the booster lattice and the choice of linac parameters. These parameters are adopted from previous report of booster design and typical commercial available products of linac. The simulation result indicates that the desired optical functions at a given location can be readily obtained by varying the appropriate focusing strength of quadrupoles. It provides tuning capability to match various possible options of optical functions at injection location. This report is presented together with design consideration of a set of beam diagnostics instruments.  
 
THPLS101 Eddy Current Septum Magnets for Booster Injection and Extraction and Storage Ring Injection at Synchrotron SOLEIL septum, injection, vacuum, storage-ring 3511
 
  • P. Lebasque, J. Da Silva, P. Gros, J.-P. Lavieville, A. Mary, D. Muller
    SOLEIL, Gif-sur-Yvette
  Eddy current thin septum magnets are used to inject or extract the electron beam to/from the Booster and to the Storage Ring of SOLEIL. Good transverse homogeneity in the gap for injected beam, and low leakage field on circulating beam is needed, as well as pulse stability. The Top Up injection mode of the Storage Ring needs a very low level of leakage field on the stored beam path. Operating currents are from 2000 A and 3000 A for Booster injection and extraction, to 5100 A for SR injection. This contribution will describe the magnets and the pulsed power supplies design. The electrical and magnetic measurement results will be presented, with a specific emphasis on the improvements needed to reduce the level of leakage field of the SR septum magnet.  
 
THPLS103 Investigations of the Longitudinal Phase Space at PITZ PITZ, gun, simulation, electron 3517
 
  • J.R. Roensch, J. Rossbach
    Uni HH, Hamburg
  • K. Abrahamyan, G. Asova, J.W. Baehr, G. Dimitrov, H.-J. Grabosch, J.H. Han, O. Kalekin, S. Khodyachykh, S.A. Korepanov, M. Krasilnikov, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • D. Lipka, R. Richter
    BESSY GmbH, Berlin
  The correlation between the positions of the particles in the bunch and their longitudinal momenta has to be analysed in order to optimize photo injectors for Free-Electron Lasers (FELs). Longitudinal phase space measurements at the upgraded PITZ facility* will be presented in this paper. Measurements of the complete longitudinal phase space and its projections behind the gun are compared with simulations. Momentum measurements after a booster cavity will be discussed.

*A.Oppelt et al. "Status and first results from the upgraded PITZ facility", FEL Conf. 2005.