

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Content

- SOLEIL main characteristics
- Specificities and innovative aspects
- Commissioning progress
- Conclusions

Jean-Marc FILHOL on behalf of the SOLEIL team

Commissioning team : <u>A Nadji</u>, JC Besson, P Brunelle, L Cassinari, ME Courpie, C Daveran, JC Denard, P Gros, C Herbeaux, JF Lamarre, MP Level, P Lebasque, A Lestrade, A Loulergue, A Madur, P Marchand, L Nadolski, R Nagaoka, B Pottin, JB Pruvost, F Ribero, MA. Tordeux Operator team : R Cuoq, A Bence, P DaSilva, X Deletoille, D Pereira, G Roux, S Petit Magnetism and Insertion Device group RF Group, Linac Group, Diagnostic group Vacuum group Alignment group Mechanical and engineering group : JL Marlats et al Electronics and Computer Groups : P Betinelli, A Buteau et al. Infrastructure group : P Eymard, S Mzah et al. Safety group

- Electron energy : 2.75 GeV
- Extended spectral range : From UV (5 eV) up to hard X-Rays (15 KeV)
- 3rd generation => Many insertion device beamlines 21 straight sections available (29% of ring circ.)
- High brilliance (10²⁰) in the soft X-ray range :
 => small emittance and high intensity
- Best achievable beam position stability

22 Beamlines approved by the Council + 2 beamlines to be defined: 16 on insertion devices and 6 on bending magnets Spectral range equally shared : 50% below 1.3 keV and 50% above

Phase 1: 11 beamlines being built =>open to external Users in 2007 6 on insertion devices and 3 on bending magnets + 2 IR

Phase 2: 7 beamlines open to external Users in 2008 5 on insertion devices and 2 on bending magnets + 4 beamlines on ID open to external Users in 2009

5 Straight sections still free + 15 bending magnet beamports !

Storage Ring parameters

Energy	2.75 GeV		
Circumference	354 m		
Number and length of straight sections	4 x 12 m 12 x 7 m 8 <u>x 3.6</u> m		
Horizontal emittance	3.7 10 ⁻⁹ m.rad		
Vertical emittance	37 10 ⁻¹² m.rad		
Energy spread	1.16×10-3		
Multibunch mode	500 mA		
Lifetime	18 h		
8 bunch (30 ps every 148 ns)	90 mA		
Lifetime (10% coupling)	18 h		

Horizontal tune Qx :18.2Vertical tune Qz :10.3Natural Chromaticities $\xi x/\xi z$:-53/-23Momentum compaction α_1 / α_2 :4.4 10⁻⁴ / 4.5 10⁻³

RF Frequency:352.202 MHzHarmonic number (max number of bunches)416Maximum RF Voltage:4.8 MVEnergy loss per turn (with ID's):1200 keVTotal radiation power loss (at 500 mA):600 kW

Storage Ring Optical functions

SULTER Sizes and divergences at Source points

SYNCHROTRON Horizontal emittance 3.7 nm.rad

			H Size	H Divergence	
	BetaX	EtaX	SigmaX	Sigma XP	Effective
	m	m	μm	μ rad	Emittance H
Short straight	17,8	0,285	388	14,5	5,61 nm.rad
Medium straight	4,0	0,133	182	30,5 🤇	5,56 nm.rad
				/	
Long straight	10,1	0,200	281	19,2	5,40 nm.rad
Dipole 4°	0,38	0,021	43	107,0	

Vertical emittance 37 pm.rad (1% coupling)

		V Size	V Divergence
	BetaZ	SigmaZ	SigmaZP
	m	μm	μ rad
Short straight	1,75	8,1	4,6
Medium straight	1,77	8,1	4,6
Long straight	8,01	17,3	2,2
Dipole 4°	16,01	24,5	2,1

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

The requirement due to the vertical beam size is $\sigma/10 \sim 1 \mu m$

 \Rightarrow Site and building aspects

 \Rightarrow Storage Ring Girder design

⇒ Keep constant the heat load on optical components:
 => Topping-up
 > Linac
 > Booster
 > Storage Ring Injection equipments

Building were designed for optimum position stability :

<u>All potential sources of vibrations in a separate technical building :</u> All pumps for different cooling circuits + supported on damping material Compressor for the cryogenic source

Synchrotron building :

Storage Ring and Experimental Hall isolated from the other parts of the building

Exp. Hall : Storage Ring Tunnel : > Air temperature regulated at 21 °C ±1.0 °C
> Air temperature regulated at 21 °C ±0.1 °C
=> Water cooling circuit regulated at 21 °C ±0.1 °C

External perturbations

The surface of the 2 adjacent roads will be smoothen during this summer

Buildings

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

95 cm thick slabs laying on piles for Storage Ring and Exp. Hall

Synchrotron building : Experimental Hall

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Vibrations measurements : Effect of the crane on the storage ring slab

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring :

- Specific design of the girders supporting the magnets (1st eigen mode > 40 Hz)
- > High resolution Beam Position Monitors (< 1 μ m)
- Fast position feedback (1-100 Hz) implemented in 2007
- Minimize effects of ID gap changes (magnetic measurements)

Measurements done by AVLS company

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Experimental Modal Analysis

Residual levels with all utilities ON (cooling, ventilation,..)

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

with bulldozer + truck working on the site

Residual levels

Time Signals are very similar since there is no dynamic amplification in the 0-20 Hz rangeOVERVIEW OF THE STATUS OF THE SOLEIL PROJECTJM Filhol – Edinburgh - EPAC2006

Linac and Booster designed for topping-up operation

Storage Ring Septum magnet

Eddy current septum magnet leakage field strongly reduced => Full sine excitation (150 µs)

THPLS101 P. Lebasque

=> Optimised shielding screen

I_{leak} < 4µT.m => 10 ppm of main field integral (255 mT.m)

SuperImphy shielding screen around the stored beam chamber

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

The septum magnet with its shielding screen

Storage Ring

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring Vacuum system

Vacuum system for one typical cell

Storage Ring Vacuum system

Vacuum system for one typical cell

Together with the Straight Sections chambers, ~200 m of NEG coated Al chamber (56% of the ring)

SOLEIL = first SR Machine with extensive use of NEG coated AL vessels

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

In-situ Bake-out of vacuum vessels

Goals :

- Outgassing all vacuum parts
- Activation of NEG coating deposited on the quadrupole chambers

Method :

- Heating of the vacuum chambers up to 180°C
- Use of resistive heaters deposited on 1mm thick Kapton foil, glued onto the vessels

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring Vacuum system

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring Vacuum system

Partial pressures at the end of the bake-out

After bake-out, the total pressure measured in a cell is in the low 10^{-10} mbar range. Max pressure ~ 4 10^{-10} mbar is measured close to the crotch absorber

Storage Ring : Vacuum system

10 small aperture Insertion device chambers (L=5.5 m / h=10 mm) installed before injecting the first electrons ! (First facility to dare doing it !)

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring : magnets

Dipoles (38) : TESLA Quadrupoles (160): DANFYSIK Sextupoles (120) : SIGMAPHI

Storage Ring : magnetic measurements

Very careful metrology to reach excellent alignment

May 2004-Aug. 2005 Magnetic measurements of 326 electro-magnets : magnetic axis centering, field properties

rotating coil bench built to reach magnetic centering to ± 25 µm and tilt ±0.1mrad

Table 1		P. Brunelle		
	Quad	drupoles	Sextupoles	
	Mean Value	RMS value	Mean Value	RMS value
ΔX (microns)	1.5	8.4	-3	15
ΔZ (microns)	2.6	7.5	2	10
Tilt (mrad)	0.008	0.040	0.010	0.100

JM Filhol – Edinburgh - EPAC2006

THPLS007

Design and construction of a dedicated cryomodule with 2 SC cavities so as to provide HOM free operation up to 500 mA. (Collab CEA/CERN/SOLEIL/ESRF)

→ Prototype tested initially at CERN and ESRF (2000-2002)

- → Completely refurbished
- → Tested at CERN (Oct 05).
- \rightarrow Installed On the Ring (Nov 05).
- MOPCH142 P. Marchand
- \rightarrow Installed On the Ring (Nov 05).
- → Cooled @ 4 K since May 10, 2006
 → RF conditioned since May 24, 2006 (150 kW/coupler)

1st cryomodule will enable alone operation up to 300 mA. A 2nd cryomodule is being built by ACCEL for operation at 500 mA (2nd half of 2007)

Motivation : No klystrons suitable to the power required at SOLEIL

> Solid state amplifier : $\rightarrow 1^{st}$ unit (40 kW) built for the Booster (2004)

→ Decision to use this technology for the Storage Ring

Storage Ring RF amplifier 4 x 190 kW power amplifiers

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring RF plant

4 x 190 kW power amplifiers

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Storage Ring RF amplifiers

EXAMPLE 1 Cryogenic source (Air Liquide) in RF area 400 W @ 4K + 50 I/h liquid He production

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

120 BPMs (LIBERA modules from I-Tec) featuring :

- sub micron resolution
- turn by turn capability (worked nicely during commissioning)
- 2 DCCTs, 1 FCT (Bergoz)

TUPCH008 JC Denard

1 visible light monitor, 1 pinhole camera, 1 streak camera

Tune monitors and striplines

H and V scrapers

Fast and slow beamloss monitors

SOLEIL first facility using TANGO at full scale Collaboration ESRF/ELETTRA/SOLEIL/ALBA

- easy and efficient tools to control any equipment
- data archiving
- control of all equipments from the control room
- supervision done using "Global Screen" applications (developed by operators)
- All hardware installed (Crate with CPCI and boards, PLC's..)
- Machine commissioning : Matlab applications (Matlab Middle Layer Toolkit...)

THPCH109 A. Nadolski

Electromagnet Helical Undulator HU640

	DanFysik	HU640
	Period	640 mm
	Nbr of Periods	14
	Length	10.0 m
	Туре	Electro- magnetic
	Min. gap (mm)	19
	Polarisation	Circ./Lin. adjustable
	Bxmax	0.09 T
THPLS118	Bzmax	0.11 T
F. Briquez	Photon Energy	5 – 40 eV

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Vacuum chamber for HU640

- •Al extruded up to 10 m long
- •Water cooled
- •NEG coated in 2 parts 5m long (SAES)
- •Welded together (CINEL)

Electromagnet Helical Undulator HU256

	14B	BINP/SOLEIL	3 x HU256
		Period	256 mm
The second second		Nbr of Periods	12
		Length	3.6 m
A GOL M		Туре	Electro- magnetic
		Minimum gap (mm)	15 (V) 50 (H)
		Polarisation	Circ./Lin. H et V
		Bxmax	0.275 T
TUDI CI 10	7- 2/11/1-	Bzmax	0.400 T
F. Briquez		Photon Energy	10 – 1000 eV

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Apple-II Type Helical Undulator HU80

ELETTRA/SOLEIL	3 x HU80	
Period	80 mm	
Number of Periods	19	
Length	1.65 m	
Туре	Apple-II	
Minimum gap (mm)	15 to 250	
Polarisation	Circ./Lin.	
Bxmax	0.76 T	
Bzmax	0.85 [1.0] T	
Photon Energy	80 [35] – 1500 eV	

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

In-Vacuum undulator U20 inside SR tunnel

DANFYSIK/SOLEIL	3 x U20
Period	20 mm
Nbr of Periods	98
Length	2.0 m
Туре	Hybrid
	In-Vacuum
Min. gap (mm)	5.5 to 30
Polarisation	Linear H
Bzmax	0.97 T
Photon Energy	3 – 18 keV

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Commissioning

Linac

Booster

Storage Ring

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Linac installation completed by THALES in Spring 2005

Integrates 2 Accelerating sections donated by CERN

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

1st beam on July 2nd,2005

Linac heart is beating !

Many experiments and tuning performed by THALES and SOLEIL. Excellent performances (stability/reproducibility) Final Acceptance pronounced on November 15th, 2005

Beam transmission

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

LINAC : Short Pulse Mode

4 pulses with a level's decrease:< 5 %

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Mode	Beam Charge	Horizontal π mm mrad	Vertical π mm mrad	
Long Pulse	10.6 nC	47	52	
Short Pulse (1)	0.55 nC	64	67	THDI SO10
Short Pulse (4)	2.27 nC	67	78	MA Tordeux

(Specifications : ($\gamma \epsilon$ at 90 %) < 200 **π.mm.mrad**)

Booster

Installation was completed in July 2005

1st beam in the Booster at 110 MeV

2 turns !

Beam stored !

July 23rd 2005

Booster equipment are OK !

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

SYNCHROTRON

SUPERIL SYNCHROTRON

Fast increase of the acceleration efficiency

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Booster : 1st extraction of 2.75 GeV beam

May 6th

May 14, 2 am : THE VERY FIRST TURNS (9) (without any trajectory correction)

The beam went through the 10 small aperture chambers !!

THPLS009 A. Nadji

Start of radiation measurements (May 14, May 20, May 31)

1st beam storage (0.3 mA) on June 2nd at 2 am !

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

1st beam accumulation (8 mA) on June 4th at 3 am !

Continuous Injection during radiation controls

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

A set of radiation monitors are distributed around the tunnels (34 γ and 28 n)

The maximum dose over 4 hours should not exceed 2 μSv

=> Strong constraints during commissioning time

=> We managed to achieve it, thanks to the <u>very flexible</u> <u>synchronization system</u> :

=> Linac pulse at any frequency from 3 shots/s down to one shot on demand

=> Very low activation level inside the tunnels

Radiation monitoring

Uncorrected closed orbit errors : rmsH = 2.31 mm, rmsV = 0.58 mm

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

After correction : rmsH = 0.38 mm, rmsV = 0.31 mm

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Vacuum conditioning

Average pressure of Cell C07 normalised to current

OVERVIEW OF THE STATUS OF THE SOLEIL PROJECT

Vacuum conditioning

Average pressure of Cell C07 normalised to current

VS

the beam dose

- Problem of reduced flow due to small resin balls contaminating the water cooling circuit due to a human mistake
 - \Rightarrow Blocking of the filters on the magnets
 - \Rightarrow Blocking of the filters on some power supplies
 - \Rightarrow Blocking of the crotch cooling circuits
 - ⇒ Cleaning of the whole network during this summer

- Problem of obstacle reducing the beam stay clear aperture
 - \Rightarrow Bad mounting of 2 RF Finger assemblies (out of ~200)
 - \Rightarrow Will all be checked during this summer

Smooth and efficient start-up of the commissioning

All diagnostics required were available on timeThe TANGO Machine control system worked nicely

Excellent machine alignment

Vacuum conditioning in good progress
But present current limitations possibly due to Fast Ion instabilities ? THPCH

THPCH032 R. Nagaoka

> Present performances are very promising

Our present goal is to reach 100 mA usable by the beamlines

The delivery of photon beam for the commissioning of the beamlines will start in September 2006 The construction SOLEIL is completed.

SOLEIL has largely benefited from the Experience and expertise of the other labs.

We believe that SOLEIL has in return brought some significant contributions to the accelerator technologies

