

Beam-Based Alignment at the KEK-ATF Damping Ring

Mark Woodley Stanford Linear Accelerator Center

EPAC 2004, Lucerne, Switzerland

- A Brief Description of ATF
- Beam-Based Alignment (BBA)
 Data Acquisition and Analysis
- BBA Results
- Conclusions and Future Prospects

The Accelerator Test Facility at KEK

Circumference: Energy: Arc Cells: Physical Emittance[†] (x/y): Normalized Emittance (x/y): Coupling (emittance ratio): 140 m 1.3 GeV 36 × FOBO 1.1 nm / < 5 pm 2.8×10⁻⁶ m / < 1.3×10⁻⁸ m < 0.5 %

[†]Note: low intensity, single-bunch operation; at 10¹⁰ e-/bunch the vertical emittance increases by 50% due to IBS

TF Beamline Component Map

The World's Largest Linear Collider Test Facility

BBA Data Acquisition (1)

Some early challenges ...

- 20 µm single-shot BPM resolution
- No multi-turn BPM data (one readout per injection/extraction cycle; each measured orbit is a new beam)
- Systematic dependence of BPM readings on bunch intensity

... and recent improvements

- Upgraded BPM electronics (now < 5 µm resolution)
- "Scrubbing mode" operation
- Frequent BPM calibration (suggested by MIA)

BBA Data Acquisition (2)

2D "grid" scan: closed local bump and quadrupole strength

BBA Data Analysis⁺ (1)

Change in closed orbit ($\Delta x_{co}, \Delta y_{co}$) due to a change in strength ($K \rightarrow K^{(1)}$) of a misaligned quadrupole (x_{bq}, y_{bq}):

$$\begin{split} \left\{ \begin{array}{l} \Delta x_{co} \\ \Delta y_{co} \end{array} \right\}_{S} &= \left[K^{(1)} \overline{C}^{(1)}(s;s_{0}) - K \overline{C}(s;s_{0}) \right] \left[1 + K \overline{C}(s_{0};s_{0}) \right]^{-1} \\ C(s;s_{0}) &= R(s;s_{0}) \left[1 - R(s_{0};s_{0}) \right]^{-1} \\ \end{array} \\ &= \left\{ \begin{array}{l} \left[-C_{12} & C_{14} \\ -C_{32} & C_{34} \end{array} \right], \text{ normal quadrupole} \\ \left[-C_{14} & -C_{12} \\ -C_{34} & -C_{32} \end{array} \right], \text{ skew quadrupole} \end{array} \right\}$$

✓ includes closed orbit effects of ∆K (both kick and position shift)
 ✓ includes optics effects of ∆K (change in closed orbit response matrix)
 ✓ fits both planes simultaneously, including coupling

[†]A. Wolski and F. Zimmerman, "Closed Orbit Response to Quadrupole Strength Variation", http://www-library.lbl.gov/docs/LBNL/543/60/PDF/LBNL-54360.pdf

BBA Data Analysis (2)

BBA Data Analysis (3)

BBA Results (1)

- Measured offsets are large (» 100 µm) compared to survey alignment (< 100 µm)
- Average error on measured offsets is small (< 10 µm) ... offsets are stable
- Separate tests have shown that offsets come from the BPM electronics

BBA Results (2)

Conclusions and Future Prospects

- BBA has been successfully used at the KEK-ATF Damping Ring to determine BPM offsets.
- Use of these BPM offsets has contributed to the achievement of < 5 pm vertical emittance, which is better than needed for the present GLC/NLC Damping Ring design.
- This BBA analysis allows us to use the quadrupoles themselves as BPMs, determining the actual beam offsets w.r.t. the magnetic center of each quadrupole; in the proposed GLC/NLC Damping Rings, magnet movers will be used to center the quadrupoles on the closed orbit.
- The analysis developed at the ATF has also been used successfully at PEP-II and will continue to be used.
- We hope next to demonstrate high resolution BBA of the ATF sextupoles, with the aim of further reducing the vertical emittance.

Acknowledgements

The speaker gratefully acknowledges the contributions of his coauthors to this work:

- Andy Wolski (LBNL)
- Marc Ross, Janice Nelson, and Jim Turner (SLAC)
- Kiyoshi Kubo (ATF)

Thanks also to our hosts at ATF for their help in the collection, analysis, and interpretation of the data.

