Keyword: vacuum
Paper Title Other Keywords Page
MOAI01 Status of the HIAF Accelerator Facility in China ECR, injection, extraction, linac 1
 
  • J.C. Yang, L.T. Sun, Y.J. Yuan
    IMP/CAS, Lanzhou, People’s Republic of China
 
  HIAF (High Intensity heavy ion Accelerator Facility) is a new accelerator facility for advances in the nuclear physics and related research fields in China. It is composed of a superconducting ion linear accelerator, a high-energy synchrotron booster, a high-energy radioactive isotope beam line, an experimental storage ring, and a few experimental setups. Characterized by unprecedented intense ion beams from hydrogen through uranium, HIAF can produce a large variety of exotic nuclear matters not normally found on the earth and will bring researchers to the forefront of promoting the most vigorous and fascinating fields in nuclear physics. In addition, HIAF will provide an excellent platform to develop heavy-ion applications in medicine, life science, space science, and material science. The construction of HIAF started up in December of 2018, and takes approximately seven years in total. Since the commencement, the civil engineering and infrastructure are being constructed on time schedule and will be completed in July, 2023. R&D on key accelerator techniques are going on successfully, and prototypes of core devices are fabricated in collaboration with home and abroad universities, institutes, and companies. Presently, we come to the stage of invitation for bids and volume production of various apparatuses. The progress and present status will be given in the presentation.  
slides icon Slides MOAI01 [7.656 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOAI01  
About • Received ※ 29 January 2023 — Revised ※ 10 February 2023 — Accepted ※ 14 February 2023 — Issue date ※ 25 April 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO007 The Design and Commission of Vacuum System for CYCIAE-230 Superconducting Cyclotron cyclotron, MMI, ion-source, cavity 66
 
  • S.P. Zhang, H.R. Cai, W.F. Fu, B. Ji, J.Y. Liu, G.F. Pan, C. Wang, Z.G. Yin, T.J. Zhang, H. Zhou, X.F. Zhu
    CIAE, Beijing, People’s Republic of China
 
  In this paper, the design and installation CYCIAE-230 superconducting cyclotron main vacuum system’s equipment and the cryogenic systems based on the liquid helium zero-boiling-off technology for the CYCIAE-230 superconducting cyclotrons are described. The vacuum in the particle acceleration cavity is 2x10-4 Pa. The main technical features of the accelerator vacuum system are that the main magnet cover plate with diameter 3.12m are used as a part of the main vacuum chamber, 8 magnetic poles, 8 high frequency resonators, and 2 sets of striper targets and 2 sets of radial targets are installed in the main vacuum chamber, resulting in technical difficulties such as large surface gas discharge, virtual leakage, high leakage of magnetic flux at the installation position of vacuum equipment (up to 2000 gauss) and so on. The main vacuum system is designed as 9 sets of TMP with magnet shields installed on the valley of magnet poles, which also used as RF cavity.  
poster icon Poster MOPO007 [1.509 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOPO007  
About • Received ※ 06 February 2023 — Revised ※ 07 February 2023 — Accepted ※ 03 August 2023 — Issue date ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO008 PLC Based Vacuum Control and Interlock System of the CYCIAE-230 Superconducting Cyclotron Beam Line controls, PLC, cyclotron, interface 70
 
  • M.Z. Hu, H.R. Cai, A.L. He, S.M. Jiang, T.Y. Jiang, J.Y. Liu, P. Liu, Q.Q. Song, Y. Wang, F.D. Yang, Z.G. Yin, T.J. Zhang, B.H. Zhao, X.F. Zhu
    CIAE, Beijing, People’s Republic of China
 
  In the CYCIAE-230 superconducting cyclotron beam line, a vacuum system capable of providing a pressure of about 5·10-4 Pa is required for particle beam transport. In order to provide adequate interlocking to safeguard the vacuum environment and ensure the regular transmission of particles within the beam line, a vacuum control system based on programmable logic controller (PLC) has been developed and integrated into the accelerator monitoring system. The PLC not only interfaces with the quick-acting relay based on interlocking signals but also interfaces with the equipment based on Profibus communication to monitor and control various parameters in the vacuum system, such as pump speed, vacuum pressure reading, valve status, water cooling status, etc. This work presents the structure and interface logic necessary for communication with a series of valves, vacuum gauges, and molecular pump controllers. Also presented is an interface approach between vacuum control and the rest of the accelerator control system.  
poster icon Poster MOPO008 [3.051 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOPO008  
About • Received ※ 27 December 2022 — Revised ※ 26 January 2023 — Accepted ※ 09 February 2023 — Issue date ※ 01 April 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPO011 Design and Operation of the New Fast Beam Chopper between Tandetron and Cyclotron controls, electron, power-supply, electronics 76
 
  • T. Fanselow, J. Bundesmann, A. Denker, A. Dittwald, U. Hiller
    HZB, Berlin, Germany
 
  In collaboration with Charite - Universitätsmedizin Berlin, patients with ocular melanomas are treated with protons at Helmholtz Zentrum Berlin. Accompanying research includes beam delivery for Flash irradiation, thus it became necessary to set up a fast and reliable beam chopper. The new beam chopper can deliver much shorter pulses than needed for Flash irradiation, minimum pulse widths down to 70ns at 1kV amplitude can be delivered. A short description of the design and installation process, which occurred in 2020, and the experiences of the first 2 years of operation with the new fast beam chopper system is presented.  
poster icon Poster MOPO011 [3.738 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-MOPO011  
About • Received ※ 30 December 2022 — Revised ※ 12 January 2023 — Accepted ※ 01 February 2023 — Issue date ※ 04 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAO03 Development of the Cyclone® Key: How Interoperability Leads to Compactness cyclotron, target, ion-source, isotope-production 156
 
  • V. Nuttens, M. Abs, J. Caulier, Q. Flandroy, W.J.G.M. Kleeven, E.K. Kral, J. Mandrillon, O. Michaux, N.A.R. Mine, E. van der Kraaij
    IBA, Louvain-la-Neuve, Belgium
 
  Funding: Pole Mecatech/Biowin/SPW RW - Convention 8150: CardiAmmonia
In 2020, IBA has started the design, construction, tests and industrialization of a new proton cyclotron for the low energy range, the Cyclone® KEY, for PET isotope production (18F, 13N, 11C) for neurology, cardiology or oncology imaging. It is a compact and fully automated isochronous cyclotron accelerating H up to 9,2 MeV. Based on the successful design history and return of experience of the Cyclone® KIUBE, the Cyclone® KEY design has been focused on compactness (self-shielding enabled), cost effectiveness and ease of installation, operation and maintenance. The innovative design consists in the interoperability of the different subsystems: the magnet, the RF system, the vacuum system, the ion source, the stripping extraction, and target changers (with up to three targets). First beam tests results will also be presented.
 
slides icon Slides WEAO03 [2.848 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEAO03  
About • Received ※ 22 December 2022 — Revised ※ 11 January 2023 — Accepted ※ 01 February 2023 — Issue date ※ 11 April 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBO03 Positron Emitters Produced from Naturally Occurring Targets target, positron, cyclotron, radiation 183
 
  • T.W. Leadbeater, A. Buffler, T. Hutton, M. van Heerden
    UCT Physics, Cape Town, South Africa
 
  Short lived positron emitters are used as flow following tracer particles in the study of dynamic processes within physics and engineering applications. For full representation of the materials of interest, tracer particles must be activated with proton rich radionuclides utilising reactions on their naturally abundant isotopic content. Cyclotron accelerated alpha particle beams incident upon (16O) oxygen rich targets have been investigated in producing the positron emitter 18F within naturally occurring materials. Simulations and numeric calculations of the beam conditions are used to maximise the activation yield and minimise heat load by carefully placing the Bragg peak in relation to the water-cooled target. Corresponding to the target thickness, the 100 MeV extraction energy is degraded to match a broad resonance in 18F production around 35 MeV, while maintaining energy above the 18 MeV threshold. Beam currents below 1 µA resulted in typical 18F yields of 1 - 2 mCi within spherical SiO₂ targets of diameters 1 - 10 mm, ideal for envisaged application studies.  
slides icon Slides WEBO03 [4.876 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-WEBO03  
About • Received ※ 28 December 2022 — Revised ※ 16 January 2023 — Accepted ※ 01 February 2023 — Issue date ※ 27 May 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO001 COLUMBUS - A Small Cyclotron for School and Teaching Purposes cyclotron, experiment, acceleration, simulation 288
 
  • C.R. Wolf, M. Prechtl
    HS Coburg, Coburg, Germany
 
  In the early 2012 the project "COLUMBUS a small Cyclotron for School- and Teaching Purposes" started. Supported by the FZ Jülich and some German companies a small cyclotron was built at the University of Applied Sciences of Coburg, Germany. After the first beam was detected in 2014, the cyclotron was continuously improved and expanded. At the same time, an educational concept was developed that is based on the studies and curricula in Germany. Since then, the workshops and internships, which are the two columns of the concept, have enjoyed increasing popu-larity among students and, fortunately, among female students as well. Furthermore, future improvements of the accelerator and the educational concept are presented.  
poster icon Poster THPO001 [2.651 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THPO001  
About • Received ※ 30 November 2022 — Revised ※ 11 January 2023 — Accepted ※ 31 January 2023 — Issue date ※ 01 April 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO009 Vacuum Model of the C400 Cyclotron for Hadrontherapy cyclotron, injection, extraction, hadrontherapy 317
 
  • V. Nuttens, P. Cailliau, Q. Flandroy, W.J.G.M. Kleeven, J. Mandrillon
    IBA, Louvain-la-Neuve, Belgium
  • Ph. Velten
    NHa, Caen, France
 
  Since 2020, NHa and IBA collaborate on the development of the C400 cyclotron dedicated to hadron therapy. This machine accelerates C6+ and He2+ up to 400 MeV/n and H2+ up to 260 MeV/n. The H2+ is extracted by stripping and the other particles by electrostatic extraction. Vacuum management in the injection line and in the cyclotron are of prime importance to avoid large beam losses. Indeed, C6+ ions are subjected to charge exchange during collision with the residual gas. On the opposite, H2+ will suffer from molecular binding break up. According to cross section data, the constraints on the residual gas pressure is driven by C6+ in the injection line and by H2+ in the cyclotron. An electrical equivalent model of the vacuum system of the cyclotron, its injection and extraction lines has been developed in LTSpice® software to determine the pressure along the particle path. Contributions from outgassing surfaces, O-ring outgassing and permeation are included and vacuum pump requirement could be obtained. The expected beam transmission is then evaluated based on cross sections available from the literature.  
poster icon Poster THPO009 [0.524 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-THPO009  
About • Received ※ 06 December 2022 — Revised ※ 12 January 2023 — Accepted ※ 31 January 2023 — Issue date ※ 14 March 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRAO03 Engineering Design and Fabricate Technology for Superconducting Magnets in Cyclotron superconducting-magnet, cyclotron, proton, FFAG 364
 
  • Z.XY. Guo
    Suzhou Bama Superconductor Tech. Co.,Ltd., Zhangpu Town, People’s Republic of China
 
  Magnets play an import role in cyclotrons. Application of superconducting magnets can make the cyclotron more compact, magnet field higher, and operation cost lower. From 1982 the first external beam was extracted from the K500 cyclotron at MSU, cyclotrons based on superconducting magnets became a popular research field in science, research, medicine and so on. Especially in recent years superconducting cyclotrons is increasing number in heavy iron therapy application, and they are an easy and cheap way to get ion beams. As a superconducting magnet besides the electromagnetic design to meet the beam transport requirement, there are many special engineering design points, including mechanical, cooling, stability, safety, measurement and so on. To fabricate the superconducting magnet, especially those with specially winding shape and configuration, need to study the process including winding, resin vacuum pressure impregnation, superconductor welding joint, assembling and so on.This report describes the engineering design technology, key fabricate technology, and some special equipment developed for superconducting magnets, including NbTi, NbSn3 and YBCO magnets. Some projects finished and carrying on in Bama Superconductive Tech Co. are also presented in this report, these projects are mainly related to cyclotron, synchrocyclotrons, FFAG accelerators, medical accelerators and so on.  
slides icon Slides FRAO03 [8.647 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-CYCLOTRONS2022-FRAO03  
About • Received ※ 06 December 2022 — Revised ※ 28 February 2023 — Accepted ※ 03 March 2023 — Issue date ※ 20 May 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)