

Positron emitters produced from naturally occurring targets

T. W. Leadbeater, A. Buffler, T. Hutton, M. van Heerden (University of Cape Town, South Africa)

Context

Novel experimental techniques

SPECT / PET / PEPT Structure / function Integral / Differential / Simulation

Applications

Real world flows Engineering systems Fundamental flows Benchmarking

180° +/- 0.5°

BGO Positron Cameras (UCT & iThemba LABS)

Millimetre scale segmented scintillators (@ 511 keV):
65% intrinsic efficiency, 30% energy resolution, 10 ns resolving time *Many* parallel coincidence channels (2τ < 12 ns), prompt + delayed MHz data acquisition rates (singles, prompts, delayeds)
Applications, training & education, hardware development, ...

@ UCT 1024 Crystals (expandable)

@ iThemba LABS27648 Crystals (fixed)

Particles, Fluids & Mixed Phase Flows

- 3 dimensional tracer imaging
- Non-intrusive
- Opaque and dense systems
- Particle and liquid tracers
- High speed (kHz MHz acquisition)
- Particle speeds up to 10 m/s
- Locations accurate to 0.5mm in 3D
- Well understood uncertainty budget

Fundamental flow studies

- development of transport models
- validation & benchmarking

System-specific studies

- system optimization and design
- multiphase systems, granulation,
- flotation cells...

Knowledge driven design strategy

iThemba LABS accelerator infrastructure:

- Ion sources: PIG, ECR, proton & light ions, polarized proton...
- Solid pole injector cyclotron SPC1 (k = 8) & SPC2 (k = 11)
- k = 200 Separated Sector Cyclotron (SSC)
- 11 MeV PET cyclotron (¹⁸F production)
- 70 MeV Cyclone cyclotron (new) (⁶⁸Ge production)

Radiochemical analogues: ⁶⁸Ge/⁶⁸Ga

^{nat}Ga(p, xn)⁶⁸Ge @ 66 MeV

- Phase representative analogue,
 - or selected from bulk
- Size range 50 μ m 10's mm
- Aggressive environments (high temperature, pressure)

¹⁸F: Latin *fluor*, meaning "a flowing"

Typically **natural** materials required:

- Water (H₂O) (radiochemistry),
- Glass/silica (SiO₂),
- Mullite $(3Al_2O_3 \cdot 2SiO_2)$,
- Magnetite (Fe_3O_4) ,
- Chromite ($FeCr_2O_4$)

"Novel" reactions: ${}^{16}O(\alpha, x){}^{18}F$

Activation @ iThemba LABS

Radionuclides currently produced with 66 MeV protons from SSC ²²Na, ⁶⁸Ge, ⁸²Sr, ¹²³I

> Target Station 1: The Elephant Horizontal-beam target station

Fig.1 Perspective view of the target station, showing the rotary target magazines (1) and their motor drives (2), target in load/unload position (3), target pusher arm (4) with cooling water lines (5), target transfer robot arm (6), electric-rail target transport system (7) with trolley (8) and neutron attenuation shield (9), composed of iron (a), paraffin wax containing 2.5% boron-carbide (b) and lead (c). Also see photo in Fig. 2.

Target Holder

Water cooling, volume flow rate: 30 liter/min per port. Pressure: 10 bar.

Rba

Encapsulation:

10

Br

11

Lia

12

1 mm gap

Stainless steel (316) for Rb, Niobium for Ga. Cold indentation welding forms sealed target unit

Beam direction

SiO₂ Targets: This Work

 $5-10 \text{ mm diameter SiO}_2$ (glass) spheres

Modelling: Target stack

Modelling: Energy, Yield & Range

Activation

iThemba LABS Cyclotron Facility Active Beam

Activation Product Characterisation

Proof-of-Concept & Reproducibility

Compound	Chemical Composition [%]
SiO_2	61-67
Na ₂ O	10-18
CaO	5 - 10
Al_2O_3	3-8
B_2O_3	1-5
MgO	0.5-3

Identified products (EOB):

^{18}F	$(\beta^+ 1.8 \text{ hours}) \sim 95\%$
⁴³ Sc	$(\beta^+ 3.9 \text{ hours}) < 5\%$
²⁴ Na	$(\beta^{-} 14.9 \text{ hours}) < 5\%$

Conclusions

- Positron Emission Particle Tracking (PEPT) measures tracer particle trajectories to study flow dynamics.
- The ${}^{16}O(\alpha, x){}^{18}F$ reaction channels were investigated, using a 100 MeV, 800 nA, alpha particle beam on SiO₂ targets.
- Beam & target modelling used to optimise energy: maximising activation product yield, minimising heating.
- Contaminants characterised by half-life measurements and spectral analysis. Yield products were ¹⁸F, ²⁴Na and ⁴³Sc, with ¹⁸F being the significantly dominant component.
- This reaction mechanism is therefore a reasonable candidate to compliment existing tracer particle production techniques at PEPT Cape Town.

Metrological and Applied Sciences University Research Unit

LABS Laboratory for Accelerator Based Sciences