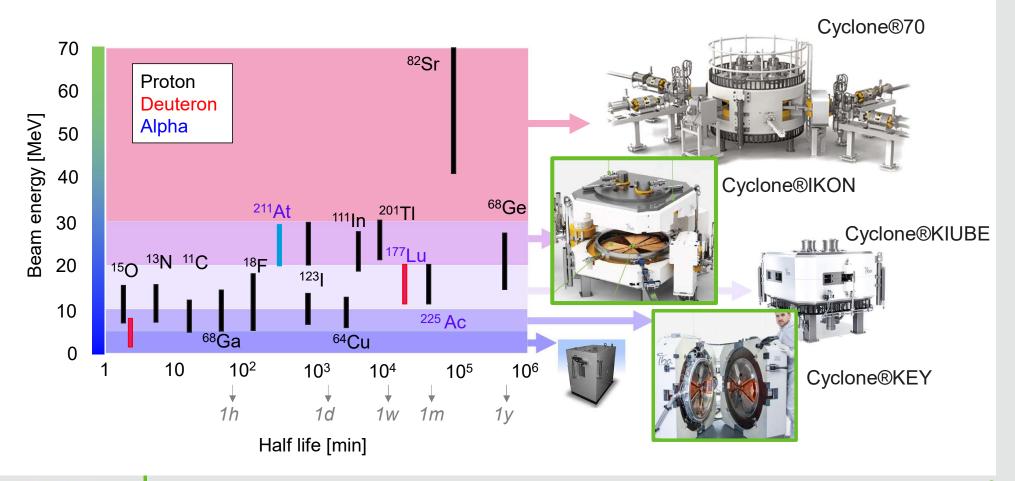


DEVELOPMENT OF THE CYCLONE®KEY:

HOW INTEROPERABILITY LEADS TO COMPACTNESS

V. Nuttens, M. Abs, J. Caulier, Q. Flandroy, W. Kleeven, E. Kral, J. Mandrillon, O. Michaux, N. Mine, E. Van der Kraaij



Energy ranges & example of cyclotrons

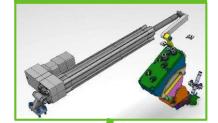
Public

The Cyclone®Key

iba

- Design constraints:
 - Simple to install and operate
 - Compact (self-shielded & low activation concrete enabled)

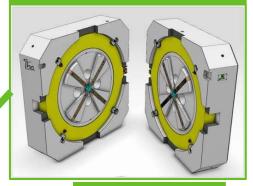
Parameter	Value
Accelerated ions	H ⁻
Ion source	Internal PIG
Number of sectors	4
RF frequency	41MHz
RF mode	2
Dee angle	40deg
Dee voltage	32kV
Extraction	Stripper
	(1+5 spares)
Extracted energy	9.2MeV
Cyclotron footprint	1.5m×1.4m×1.35
(L×W×H)	m



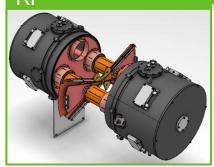
Cyclotron subsystems

Pop-up

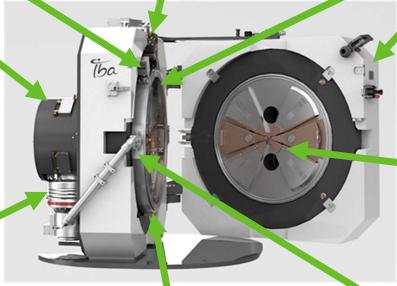
Target changer



Strippers



Magnet

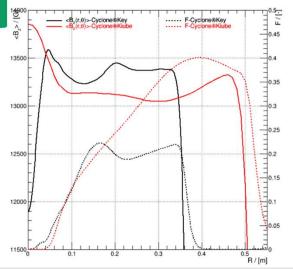


RF

Vacuum

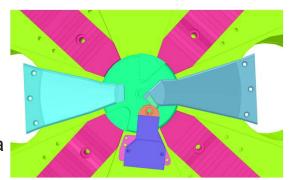
lon source

Central region

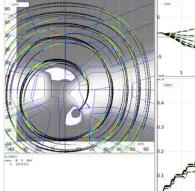

tuning

Magnet design with OPERA

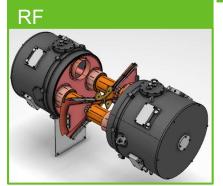
- Vertical median plane : no yoke lifting system, door opening
- Cyclone®KIUBE inheritance
 - 24mm of pole gap to optimize coil power consumption
 - Square shape: iron only where it is needed
 - Symmetry of yoke penetration for
 - RF coupler (left)
 - Coil connections (right)
 - Ion source (bottom)
 - Target (top)
 - Pole insert for cyclotron isochronisation during mapping
 - Vacuum chamber sits on the sectors
- Each half of the magnet is milled from a single plate of iron
 - Precision machining -> very low level of harmonic imperfection
 - High impact on vacuum performance (no virtual leak, faster pumping)
- Hole in the return flux for vacuum and RF system

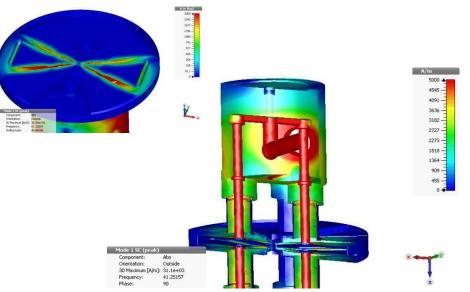


Ion source and central region with AOC



- Design constraint: same ion source as the Cyclone®KIUBE
 - PIG internal ion source for H- production
 - Consequence:
 - Central plug gap is fixed but too low field if flat
 - 2 magnetic extensions have been added to locally increase the magnetic field and keep isochronism
 - Not too close to the ion source to avoid plasma column deformation
- Central region design based on particle tracking with our tracking code AOC
 - Dee tip geometry has been optimized to provide
 - Orbit centering
 - Good phase acceptance
 - Horizontal and vertical electric focusing
 - Beam stop for protons

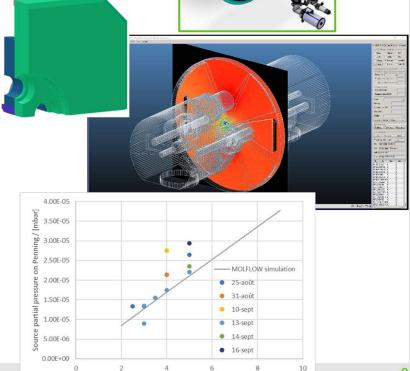




RF system design with CST

iba

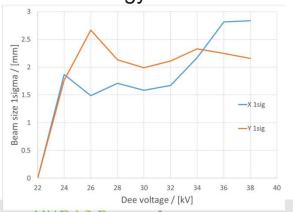
- Design constraint: combine the RF system with the vacuum box
- H2 mode at 41MHz and 32kV
- Compatible with Cyclone®KIUBE RF amplifier chain
- Symmetric wrt cyclo median plane
 - Slightly higher power consumption (5,3kW)
 BUT
 - No RF current in the poles (no heating of the poles) and vacuum chamber
 - No RF field on the stripper
 - No need for good RF contact between upper and lower parts in the CR
 - More stable and reliable during operation

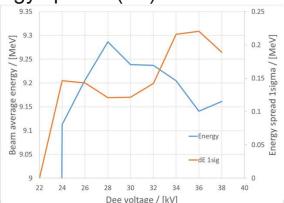


Vacuum system with MolFlow+

iba

 Design constraint: combine the RF system with the vacuum box

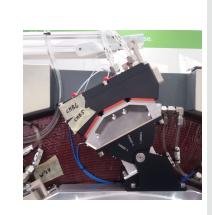

- Turbo molecular pump (TMP) HiPace2300
 - Compact and low maintenance requirements
 - Lower power consumption wrt ODP
 - S(N2)=1900L/s S(H2)=1850L/s
 - Possibility to install one or two pumps
- 3D model of the vacuum system
 - H₂ gas from source only
 - After validation with the Cyclone®KIUBE design
 - Holes dimensions in the valleys optimized for vacuum conductance, RF power and magnetic field
 - Measurement: primary pump was limiting the TMP
 - (note: Penning pressure corrected for H₂)

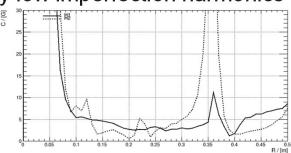


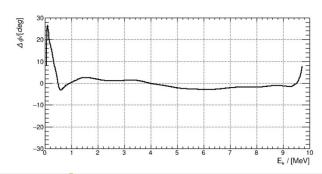
Vacuum

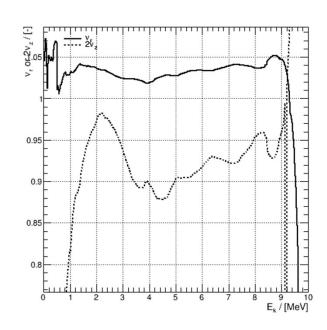
Extraction system and target changer

- Design constraints: 3 targets inside the yoke
- Stripping extraction:
 - 1 exit port with target changer
 - stripper carousel with up to 6 strippers
- Beam tracking from the ion source up to extraction was performed in AOC. At 32kV, in target:
 - Expected (1σ) beam sizes: X:2.1 and Y:1.7mm
 - Energy ≥9.2MeV Energy spread (1σ) 150keV






Tests results



- Successfully mapped
 - Very low imperfection harmonics

- Excellent isochronism
 - Confirmed by beam test with H⁺

Tests results

- Beam tests (with 2 TMP)
 - Base vacuum: 5,3E-7mbar
 - Source on vacuum: <1,2E-5mbar
 - Stripper current: 100µA for 2h
 - Transmission Pop-up/Stripper: 60-67% (depending on source gas quantity and source current)
 - Extraction ratio: 81%

Conclusion

 In parallel of the Cyclone®IKON, IBA has successfully design, develop & test its new compact cyclotron for the low energy range

Public

DEVELOPMENT OF THE CYCLONE®KEY:

HOW INTEROPERABILITY LEADS TO COMPACTNESS

V. Nuttens, M. Abs, J. Caulier, Q. Flandroy, W. Kleeven, E. Kral, J. Mandrillon, O. Michaux, N. Mine, E. Van der Kraaij

