WPAE  —  Accelerator Technology   (18-May-05   08:30—12:20)

Paper Title Page
WPAE001 Helium Distribution for the Superconducting Devices in NSRRC 758
 
  • F.-Z. Hsiao, S. H. Chang, W. S. Chiou, H.C. Li
    NSRRC, Hsinchu
 
  In NSRRC up to five superconducting magnets and one superconducting cavity will be installed in the storage ring. At current stage two superconducting magnets and one superconducting cavity are kept in cold condition by one 450W helium cryogenic system. The crucial stable cryogenic condition required from the superconducting cavity is hard to achieve due to the join of superconducting magnets. A second cryogenic system dedicated for the superconducting magnets is planned in the next stage. A switch valve box serves the function for the backup of two cryogenic systems for each other and a 100 meter nitrogen-shielding helium transfer line dedicated for the five superconducting magnets are installed at end of the year 2004. This paper presents the helium distribution design of the two cryogenic systems and the commission result of the recent work.  
WPAE002 Safety Management for the Cryogenic System of Superconducting RF System 832
 
  • S.-P. Kao, C.R. Chen, F.-Z. Hsiao, J.P. Wang
    NSRRC, Hsinchu
 
  The installation of the helium cryogenic system for the superconducting RF cavity and magnet were finished in the National Synchrotron Radiation Research Center (NSRRC) at the end of October 2002. The first phase of this program will be commissioned at the end of 2004. This was the first large scale cryogenic system in Taiwan. The major hazards to personnel are cryogenic burn and oxygen deficient. To avoid the injury of the operators and meet the requirements of local laws and regulations, some safety measures must be adopted. This paper will illustrate the methods of risk evaluation and the safety control programs taken at NSRRC to avoid and reduce the hazards from the cryogenic system of the superconducting RF cavity and magnet system.  
WPAE003 The Cryogenic Supervision System in NSRRC 844
 
  • H.C. Li, S. H. Chang, W. S. Chiou, F.-Z. Hsiao, Z.-D. Tsai
    NSRRC, Hsinchu
 
  The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system’s real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.  
WPAE005 Status of the Cryogenic System Commissioning at SNS 970
 
  • F. Casagrande, I.E. Campisi, P.A. Gurd, D.R. Hatfield, M.P. Howell, D. Stout, W.H. Strong
    ORNL, Oak Ridge, Tennessee
  • D. Arenius, J.C. Creel, K. Dixon, V. Ganni, P.K. Knudsen
    Jefferson Lab, Newport News, Virginia
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge

The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

 
WPAE007 Commissioning of the LNLS 2 T Hybrid Wiggler 1072
 
  • R.H.A. Farias, J.F. Citadini, M.J. Ferreira, J.G.R.S. Franco, A.F.A. Gouveia, L.C. Jahnel, L. Liu, R.T. Neuenschwander, X.R. Resende, P.F. Tavares, G. Tosin
    LNLS, Campinas
  • N.P. Abreu
    UNICAMP, Campinas, São Paulo
 
  Funding: MCT-CNPq, FAPESP.

We present the results of the commissioning of a 28-pole 2 T Hybrid Wiggler at the 1.37 GeV electron storage ring of the Brazilian Synchrotron Light Source. The wiggler will be used mainly for protein crystallography and was optimized for the production of 12 keV photons. The very high field and relatively large gap (22 mm) of this insertion device led to a magnetic design that includes large main and side magnets and heavily saturated poles. We present the results of the commissioning with beam, with special attention to the correction of the large linear tune-shift perturbations produced by the wiggler as well as on the reduction of beam lifetime at full energy. Since the injection at the LNLS storage ring is performed at 500 MeV we also focus on the effects of non-linearities and their impact on injection efficiency.

 
WPAE008 Redesign of a Low Energy Probe Head 1105
 
  • Y.-N. Rao, G.H. Mackenzie, T.C. Ries
    TRIUMF, Vancouver
 
  The present situation of the low energy probe L·102 in TRIUMF cyctron is that the thickness of finger 5 is uniform in the radial direction and its weight which amounts to ~447 g is affecting its re-circulating ball mechanism and causing it to fall below the median plane over its range of movement (13.890 to 161.515 inch). We first made simulations to determine the optimum thickness of the probe head vs the radial length so as to reduce its weight. And then, we compared the simulation results with experimental measurements made. Finally, we calculated the temperature rise caused by the beam power dumped on the probe, and figured out the maximum beam current that can be dumped on the finger.  
WPAE010 Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator 1192
 
  • A. Coniglio, M.P. Pillon, S. Sandri
    ENEA C.R. Frascati, Frascati (Roma)
  • M. D'Arienzo
    CNR/RFX, Padova
 
  Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron activation in the material of the system components. Radioactive inventory and contact dose rate were assessed considering the potential operative scenarios.  
WPAE011 Electrostatic Deflectors: New Design for High Intensity Beam Extraction 1245
 
  • S. Passarello, G. Cuttone, G. Gallo, D. Garufi, A. Grmek, G. Manno, M. Re, E. ZappalÃ
    INFN/LNS, Catania
 
  Funding: INFN-LNS Catania

During the last years big effort was devoted to increase the electrostatic deflectors’ reliability; this provided a better comprehension of the most significant effects concerning their working conditions. Deflectors were checked during the normal operation of the K800 Superconducting Cyclotron (CS) at LNS, at the operating pressure of 1 10-6 mbar and a magnetic field of 3.5 T, the maximum cathodes voltage was –60kV (120 kV/cm). The maximum extracted beam power was, up to now, 100 W; it is foreseen to extract up to 500 W. In this contribution we present the study, the tests and the design of a new water cooled electrostatic deflector. Particular effort was applied to optimise the beam extraction efficiency, the thermal dissipation, and the mechanical stability. In particularly we implemented new insulators, new anodised aluminium cathodes, new Ta septum, new voltage and water feedthroughs and a more efficient cooling system. All these improvements were performed to increase the mean time between failure and the beam current stability.

 
WPAE012 Gamma-Ray Irradiation Experiments of Collimator Key Components for the 3GeV-RCS of J-PARC 1309
 
  • M. Kinsho, F. Masukawa, N. Ogiwara, O. Takeda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • J. Kusano
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
 
  The turbo molecular pump and the stepping motor which can be operated exposed to high radiation has been under development at JAERI for use in the 3GeV-RCS of the J-PARC. In order to determine the extent of radiation damage to those instruments, gamma-ray irradiation testing was performed at JAERI. It was succeed that the turbo molecular pump and stepping motor could operate properly when given an absorption dose more than 15 MGy in a gamma-ray irradiation environment.  
WPAE013 Development of the Collimator System for the 3GEV Rapid Cycling Synchrotron 1365
 
  • K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • M. Kinsho
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
 
  In order to localize the beam loss in the restricted area, the beam collimation system is prepared in the 3GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton Accelerator Complex (J-PARC) Project. The amount of the localized beam loss on the one collimator is estimated about 1.2kW, and that loss generates a large quantity of the secondary radiations. So the beam collimator must be designed that it is covered with enough shielding. We calculated the radiation level of the collimator and decided necessary shielding thickness. This result indicated that the residual dose rate at the outside surface of the shielding is mostly under 1mSv/h. We developed the remote cramp system and rad-hard components in order to reduce the radiation exposure during maintenance of the collimator. And also we coated Titanium Nitride (TiN) film on the inside surface of the vacuum chamber in order to reduce the secondary electron emission from the collimator and chamber surface. Now we investigate the possibility of another coating.  
WPAE014 Conceptual Design of a Longitudinal Halo Collimator for J-PARC Linac 1413
 
  • M. Ikegami
    KEK, Ibaraki
  • T. Ohkawa
    JAERI, Ibaraki-ken
 
  In a high-intensity proton accelerator, avoidance of excess beam loss is essentially important to enable hands-on maintenance. To reduce the uncontrolled beam loss in the following ring, we plan to install a longitudinal halo collimator system in a beam transport line after the injector linac. The collimator system is supposed to have two main roles: One is the elimination of longitudinal tail or halo particles destined to be lost in the following ring, and the other is the removal of anomalous beams which can be resulted from, for example, RF discharge of an accelerating cavity. We plan to adopt a "periodic collimation scheme" in the collimator system taking advantage of the three-fold symmetry of the arc section. The momentum aperture of the collimator system is expected to be reduced by the factor of two adopting periodic collimation. In this paper, conceptual design of the collimator system is presented together with the results of particle simulations.  
WPAE015 High Heat-Load Slits for the PLS Multipole Wiggler 1449
 
  • K.H. Gil, J.Y. Choi, C.W. Chung, Y.-C. Kim, H.-S. Lee
    PAL, Pohang, Kyungbuk
 
  The HFMX (High Flux Macromolecular X-ray crystallography) beamline under commissioning at Pohang Accelerator Laboratory uses beam from a multipole wiggler for MAD experiment. Two horizontal and vertical slits relevant to high heat load are installed at its front-end. In order to treat high heat load and to reduce beam scattering, the horizontal slit has two glidcop blocks with 10° of vertical inclination and its tungsten blades defining beam size are bolted on backsides of both blocks. The blocks of the slit are adjusted on fixed slides by two actuating bars, respectively. Water through channels machined along the actuating bars cool down the heat load of both blocks. The vertical slit has the same structure as the horizontal slit except its installation direction and angle of vertical inclination. The installed slits show stable operation performance and no alignment for the blocks is required by virtue of a pair of blocks translating on slides. The cooling performance of two slits is also shown to be acceptable. In this article, the details of the design and manufacture of the two slits are presented and its operation performance is reported.  
WPAE016 Development of a Precision Amplifier for the Detector 1514
 
  • K.-H. Park, C.W. Chung, S.-M. Hong, S.-H. Jeong, Y.G. Jung, D.E. Kim, H.-S. Lee, W.W. Lee
    PAL, Pohang, Kyungbuk
  • B.-K. Kang
    POSTECH, Pohang, Kyungbuk
 
  A high gain trans-resistance amplfier has been developed for measuring the intensity of synchrotron radiation at Pohang Light Source(PLS). This amplifier built with discrete elements and operational amplifiers.It had the capability of measuring range from 1pA to 1 uA with good linearity. A microprocessor was also installed to interface the amplifier with the computer, and controlled the other sub-circuits. The various characteristics of amplifier such as linearity, sensitivity,stability, etc. have been investigated, and its experimental results carried out at the beam line are presented in this paper.  
WPAE017 Installation of the LHC Long Straight Sections (LSS) 1563
 
  • S. Bartolome-Jimenez, G. Trinquart
    CERN, Geneva
 
  The LHC long straight sections (LSS) serve as experimental or utility insertions. There are two high luminosity experimental insertions located at points 1 and 5 and two more experimental insertions at points 2 and 8 which also contain the injection systems. The beams only cross at these four locations and are focused by superconducting low-beta triplets. Insertions 3 and 7 each contain two collimation systems. Insertion 4 contains two RF systems. Insertion 6 contains the beam dumping system. The installation of the LSS is a challenge due to the compact layout that characterises these areas and the difficulties related to the underground work mainly in zones of restricted access. Specific devices are required for handling and installing various heavy and voluminous elements. This paper reviews the installation scenarios, describes the sequences presently planned and highlights the potential problem areas. The particular case of sector 7-8 where the LSS elements will be installed in parallel with the cryogenic distribution line (QRL) is used as an example of a ‘rapid’ installation scheme to illustrate how resources are used. The consequences of possible shortcuts are also mentioned.  
WPAE018 Performance Tests of Survey Instruments Used in Radiation Fields Around High-Energy Accelerators 1595
 
  • S. Mayer, D. Forkel-Wirth, M. Fuerstner, H.G. Menzel, S. Roesler, C. Theis, H. Vincke
    CERN, Geneva
 
  Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles), spanning a wide range of energies, contribute to the total dose equivalent. In routine-measurements, the total dose equivalent is obtained by the combination of several radiation detectors. Ionisation chambers, which are sensitive to all radiation components, are employed together with so-called REM counters, which are responding mainly to neutrons. The total dose equivalent is correctly assessed provided that the response is interpreted carefully by using appropriate corrections and calibration factors. For this reason measurements were carried out in a high-energy reference field at CERN, which allows one to study the response of the different detectors in a mixed radiation field under controlled conditions. In addition, the field was simulated by Monte Carlo simulations. The outcome of these studies serves on one hand as a basis for quality assurance and improves on the other hand the knowledge of the instrument’s response for future applications at the LHC.  
WPAE019 How to Fill a Narrow 27 km Long Tube with a Huge Number of Accelerator Components? 1634
 
  • Y. Muttoni, J.-P. Corso, R. V. Valbuena
    CERN, Geneva
 
  As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies.This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available.It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.  
WPAE020 A Large Diameter Entrance Window for the LHC Beam Dump Line 1698
 
  • A. Presland, B. Goddard, J.M. Jimenez, D.R. Ramos, R. Veness
    CERN, Geneva
 
  The graphite LHC beam dump block TDE has to absorb the full LHC beam intensity at 7 TeV. The TDE vessel will be filled with inert gas at atmospheric pressure, and requires a large diameter entrance window for vacuum separation from the beam dumping transfer line. The swept LHC beam must traverse this window without damage for regular operation of the beam dump dilution system. For dilution failures, the entrance window must survive most of the accident cases, and must not fail catastrophically in the event of damage. The conceptual design of the entrance window is presented, together with the load conditions and performance criteria. The FLUKA energy deposition simulations and ANSYS stress calculations are described, and the results discussed.  
WPAE021 Short Straight Sections in the LHC Matching Sections (MS SSS): An Extension of the Arc Cryostats To Fulfill Specific Machine Functionalities 1724
 
  • V. Parma, H. Prin
    CERN, Geneva
  • fl. Lutton
    IPN, Orsay
 
  Funding: IPN-CNRS, 15 rue Georges Clémenceau 91406 ORSAY, France.

The LHC insertions require 50 specific superconducting quadrupoles, operating in boiling helium at 4.5 K and housed in individual cryostats to form the MS Short Straight Sections (MS SSS). The quadrupoles and corrector magnets are assembled in 8 families of cold masses, with lengths ranging from 5 to 11 m and weights ranging from 60 to 140 kN. The MS SSS need to fulfil specific requirements related to the collider topology, its cryogenic layout and the powering scheme. Most MS SSS are standalone cryogenic and super-conducting units, i.e. they are not in the continuous arc cryostat, and therefore need dedicated cryogenic and electrical feeding. Specially designed cryostat end-caps are required to close the vacuum vessels at each end, which include low heat in-leak Cold-to-Warm transitions (CWT) for the beam tubes and 6 kA local electrical feedthrough for powering the quadrupoles. This paper presents the design of the MS SSS cryostats as an extension of the arc cryostat’s design to achieve a standard and consequently cost-effective solution, and the design solutions chosen to satisfy their specific functionalities.

 
WPAE022 Progress on the Liquid Hydrogen Absorber for the MICE Cooling Channel 1772
 
  • M.A.C. Cummings
    Northern Illinois University, DeKalb, Illinois
  • S. Ishimoto
    KEK, Ibaraki
 
  This report describes the progress made on the design of the liquid hydrogen absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 21-liter vessel that contains liquid hydrogen (1.5 kg) or liquid helium (2.63 kg). The cryogen vessel is within the warm bore of the superconducting focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber has two 300 mm-diameter thin aluminum windows. The vacuum vessel around the absorber has a pair of thin aluminum windows that separate the absorber vacuum space from adjacent vacuum spaces. The absorber will be cooled down using a heat exchanger that is built into the absorber walls. Liquid nitrogen is used to cool the absorber to 80 K. Liquid helium completes the absorber cool down and condenses hydrogen in the absorber. The absorber may also be filled with liquid helium to measure muon cooling in helium.  
WPAE025 Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac 1877
 
  • C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • Y. He, C.H. Smith
    Cornell University, Ithaca, New York
 
  Funding: Work supported by Cornell University.

The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun testing, and a 500 kW, 5 to 15 MeV copper tube dump for use with the prototype injector under development. We expect to test the beryllium dump within a year, and the higher power copper dump within 2-1/2 years.

 
WPAE027 Magnetic Shielding of an Electron Beamline in a Hadron Accelerator Enclosure 1997
 
  • T.K. Kroc, C.W. Schmidt, A.V. Shemyakin
    Fermilab, Batavia, Illinois
 
  Funding: *Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The Fermilab Electron Cooling Project requires the operation of a 4.35 MeV electron beam in the same enclosure that houses the 120 – 150 GeV Main Injector. Effective shielding of the magnetic fields from the ramped electrical buses and local static fields is necessary to maintain the high beam quality and recirculation efficiency required by the electron cooling system. This paper discusses the operational tolerances and the design of the beamline shielding, bus design, and bus shielding as well as experimental results from the prototype and final installation.

 
WPAE028 Radiation Issues in the Fermilab Booster Magnets 2041
 
  • E. Prebys
    Fermilab, Batavia, Illinois
 
  Funding: Department of Energy.

The demands of the Fermilab neutrino program will require the 30 year old Fermilab 8 GeV Booster to deliver higher intensities than it ever has. Total proton throughput is limited by radiation damage and activation due to beam loss in the Booster tunnel. Of particular concern is the insulation in the 96 combined function lattice magnets. This poster describes a study of the potential radiation damage to these magnets from extended running at the planned intensities.

 
WPAE029 Tevatron Beam-beam Compensation Project Progress 2083
 
  • V.D. Shiltsev, R.J. Hively, V. Kamerdzhiev, A. Klebaner, G.F. Kuznetsov, A. Martinez, H. Pfeffer, G.W. Saewert, A. Semenov, D. Wolff, X. Zhang
    Fermilab, Batavia, Illinois
  • K. Bishofberger
    UCLA, Los Angeles, California
  • I. Bogdanov, E. Kashtanov, S. Kozub, V. Sytnik, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  • A.V. Kuzmin, M.A. Tiunov
    BINP SB RAS, Novosibirsk
  • F. Zimmermann
    CERN, Geneva
 
  Funding: Work supported by the Universities Research Assos., Inc., under contract DE-AC02-76CH03000 with the U.S. Dept. of Energy.

The 2nd Tevatron electron lens (TEL2) is under the final phase of development and prepare for the installation in the Tevatron. In this report, we will describe the system and the main upgrades from the TEL1. We will also show the magnetic field measurement results, beam testing and plan for installation. The special operation consideration of the TEL2 under high radiation dose will also be discussed.

 
WPAE030 Thermal Analysis of the Al Window for a New CESR-c Luminosity Monitor 2137
 
  • Y. He, D.H. Rice
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • Y. Li, M.A. Palmer
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: Work supported by the U.S. National Science Foundation.

A luminosity monitor using photons from radiative bhabha events at the CLEO interaction point (IP) has been installed in the Cornell Electron Storage Ring (CESR). A key vacuum and detector component is the photon window/converter whose uniformity and thickness are critical for determining the resolution of the total energy deposited in the segmented luminosity monitor. The window design must accommodate the operational requirements of the new monitor at CLEO-c beam energies of 1.5-2.5 GeV and also provide sufficient safety margin for operation at 5.3 GeV beam energies for Cornell High Energy Synchrotron Source (CHESS) running. During 5.3 GeV operation, intense stripes of synchrotron radiation from the interaction region superconducting quadrupole magnets as well as nearby bending magnets strike the window. During the course of window development, several materials and designs were evaluated. Thermal stresses were calculated using the finite element code ANSYS for various beam conditions to guide the cooling design. A window using aluminum alloy (6061-T6) was ultimately chosen to provide optimal performance for both CLEO-c and CHESS running conditions. The window has been in successful operation since September 2004.

 
WPAE031 Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line 2185
 
  • W. Stein, L. Ahle
    LLNL, Livermore, California
  • D.L. Conner
    ORNL, Oak Ridge, Tennessee
 
  The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.  
WPAE034 Fast Neutron Damage Studies on NdFeB Materials 2351
 
  • J.E. Spencer, S.D. Anderson, R. Wolf
    SLAC, Menlo Park, California
  • A. Baldwin, D.E. Pellet
    UCD, Davis, California
  • M. Boussoufi
    UCD/MNRC, McClellan, California
  • J.T. Volk
    Fermilab, Batavia, Illinois
 
  Funding: Support of this work was under U.S. Dept. of Energy contracts DE-AC02-76SF00515, DE-AC02-76CH03000 and LCRD contract DE-FG02-03ER41280.

Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large fluences of hadrons, leptons and gammas over the life of the facility. Although the linacs will be superconducting, there are still many potential uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the radiation damage situation for rare earth permanent magnet materials was presented at PAC2003 and our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC2004 where the damage appeared proportional to the distances between the effective operating points and Hc. Here we have extended those doses and included more commercial samples together with the induced radioactivities associated with their respective dopants. Hall probe data for the external induction distributions are compared with vector magnetization measurements for the different materials.

 
WPAE035 SNS Ring Injection Stripped Electron Collection: Design Analysis and Technical Issues 2384
 
  • Y.Y. Lee, G.J. Mahler, W. Meng, D. Raparia, L. Wang, J. Wei
    BNL, Upton, Long Island, New York
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

This paper describes the simulation studies on the motions of stripped electrons generated in the injection section of the Spallation Neutron Source (SNS) accumulator ring and the effective collection mechanism. Such studies are important for high intensity machines, in order to reduce beam loss and protect other components in the vicinity. The magnetic field is applied to guide electrons to a collector, which is located at the bottom of the beam chamber. Part of the study results with and without considering the interactions between electrons and materials are presented and discussed. The final engineering design of the electron collector (catcher) is also presented and described.

 
WPAE036 Harmonic Analysis of Linac Alignment 2431
 
  • R.C. McCrady
    LANL, Los Alamos, New Mexico
 
  Funding: Work conducted at Los Alamos National Laboratory, which is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

We have analyzed the requirements on alignment of the focusing elements (quadrupole doublets) in the Los Alamos Neutron Science Center (LANSCE) side coupled linac. The analysis is performed in terms of harmonics of the quardrupole spacing. This allows us to determine the effect of intentional deviations from a straight line, such as following the curvature of the Earth, and of unintentional deviations introduced by measurement and alignment errors. Results are compared to measured positions of the doublets.

 
WPAE037 Deformation Monitoring of the Spallation Neutron Source (SNS) Tunnels 2509
 
  • J.J. Error, D.R. Bruce, J.J. Fazekas, S.A. Helus, J.R. Maines
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

The SNS Project is a 1.4 MW accelerator-based neutron source located at Oak Ridge National Laboratory in Oak Ridge, Tennessee. For shielding purposes, a 17 foot berm of native soil has been constructed on top of the accelerator tunnel system. This backfill has caused ongoing settlement of the tunnels. The settlement has been monitored by the SNS Survey and Alignment Group at regular intervals, in order to discover the patterns of deformation, and to determine when the tunnels will be stable enough for precise alignment of beam line components. The latest monitoring results indicate that the settlement rate has significantly decreased. This paper discusses the techniques and instrumentation of the monitoring surveys, and provides an analysis of the results.

 
WPAE038 Resonance Control Cooling System Performance and Developments 2541
 
  • P.E. Gibson, A.V. Aleksandrov, M.M. Champion, G.W. Dodson, J.P. Schubert, J.Y. Tang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built at Oak Ridge National Laboratory. The warm linac portion, designed by Los Alamos, has been installed and commissioned. The warm linac is comprised of six Drift Tube Linac (DTL) tanks and four Coupled Cavity Linac (CCL) modules. For commissioning purposes the accelerating systems have been operated at less than the design 6% duty factor. During lower power operation there is less RF cavity heating. This decrease in heat load causes operational stability issues for the associated Resonance Control Cooling Systems (RCCSs) which were designed for full duty factor operation. To understand this effect operational results have been analyzed and tests have been performed. External system factors have been explored and the resulting impacts defined. Dynamic modeling of the systems has been done via a collaboration with the Institute for Nuclear Research (INR), Moscow, Russia. New RCCS operation code has been implemented. Increases in system performance achieved and solutions employed will be presented.

 
WPAE039 Optical Tooling and its Uses at the Spallation Neutron Source (SNS) 2577
 
  • S.A. Helus, D.R. Bruce, J.J. Error, J.J. Fazekas, J.R. Maines
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

Optical tooling has been a mainstay of the accelerator alignment community for decades. Even now in the age of electronic survey equipment, optical tooling remains a viable alternative, and at times the only alternative. At SNS, we combine traditional optical tooling alignment methods, instrumentation, and techniques, with the more modern electronic techniques. This paper deals with the integration of optical tooling into the electronic survey world.

 
WPAE040 Comparison of Techniques for Longitudinal Tuning of the SNS Drift Tube Linac 2616
 
  • D.-O. Jeon
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

It is important to bring the cavity field amplitude and phase to the design values for a high intensity linac such as the Spallation Neutron Source (SNS)linac. A few techniques are available, such as the longitudinal acceptance scan and phase scan. During SNS linac commissioning, tuning of cavities was conducted using the acceptance scan and phase scan technique based on multiparticle simulations. The two techniques are compared.

 
WPAE041 Development of a New Beam Diagnostics Platform 2669
 
  • R.T. Roseberry, S. Assadi, G.R. Murdoch
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source Project (SNS) is an accelerator-based neutron source currently under construction at Oak Ridge National Laboratory (ORNL). The availability of space along completed portions of the accelerator for the addition of beam diagnostic is limited. A new platform for mounting a variety of instruments has been created by replacing part of the Medium Energy Beam Transport (MEBT) section of the accelerator developed by Lawrence Berkeley National Laboratory. The design and current capabilities of this instrument platform will be presented along with plans for future enhancements.

 
WPAE042 Beam Loss and Residual Activation Trending 2726
 
  • G.W. Dodson, M. Giannella, A.T. Ruffin, T.L. Williams
    ORNL, Oak Ridge, Tennessee
 
  Funding: This work was supported by SNS through UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. The SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The SNS Front End, Drift Tube Linac and most of the Coupled Cavity Linac have been operated during commissioning. Beam loss data were taken with differential Beam Current Monitors, and Beam loss Monitors during commissioning. Residual activation data were taken at various times during and after the run. An analysis of beam loss trending, beam loss monitor data and residual activation will be shown.

 
WPAE043 Alignment of the Booster Injector for the Duke Free Electron Laser Storage Ring 2786
 
  • M. Emamian, M.D. Busch, S. Mikhailov
    DU/FEL, Durham, North Carolina
  • N. Gavrilov
    BINP SB RAS, Novosibirsk
 
  Funding: This work is supported by U.S. Department of Energy grant DE-FG02-01ER41175 and by U.S. AFOSR MFEL grant F49620-001-0370.

This paper presents the methodology and initial results for mechanical alignment of the booster synchrotron for the Duke FEL storage ring. The booster is a compact design and requires special considerations for alignment. The magnetic and vacuum elements of the arcs have been designed for alignment by a laser tracker system. A parametric 3D design package has been used to determine target coordinates. These target coordinates evolve from design goals to physically verified dimensions by modifying the parametric model to match mechanical measurement data after fabrication. By utilizing the functionality of the laser tracker system and a parametric 3D modeler, a direct and efficient measurement and alignment technique has been developed for a complex geometry.

 
WPAE044 An Alignment of J-PARC Linac 2851
 
  • T. Morishita, H. Ao, T. Ito, A. Ueno
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa
    JAERI, Ibaraki-ken
  • M. Ikegami, C. Kubota, F. Naito, E. Takasaki, H. Tanaka, K. Yoshino
    KEK, Ibaraki
 
  J-PARC linear accelerator components are now being installed in the accelerator tunnel, whose total length is more than 400 m including the beam transport line to RCS (Rapid Cycling Synchrotron). A precise alignment of accelerator components is essential for a high quality beam acceleration. In this paper, planned alignment schemes for the installation of linac components, the fine alignment before beam acceleration, and watching the long term motion of the building are described. Guide points are placed on the floor, which acts as a reference for the initial alignment at the installation and also as a relay point for the long surveying network linking at the fine alignment. For a straight line alignment, the wire position sensor is placed on the offset position with respect to the beam center by a target holder, then a single wire can cover the accelerator cavities and the focusing magnets at the DTL-SDTL section (120m). The hydrostatic levering system (HLS) is used for watching the floor elevation (changes) over the long period.  
WPAE045 Progress on RF Coupling Coil Module Design for the MICE Channel 2869
 
  • D. Li, M.A. Green, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • W. Lau, A. E. White, S.Q. Yang
    OXFORDphysics, Oxford, Oxon
 
  Funding: This research work is supported by the US Department of Energy, under Contract No. DE-AC03-76SF00098.

We describe the progress on the design of the RF coupling coil (RFCC) module for the international Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory (RAL) in the UK. The MICE cooling channel design consists of two SFOFO cells that is similar to that of the US Study-II of a neutrino factory. The MICE RFCC module comprises a superconducting solenoid, mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises, so thatnecessitating separate power feeds for each of the four cavities has to be separately powered. The coil package that surrounds the RF cavities sits is mounted on a vacuum vessel. The RF vacuum is shared between the cavities and the vacuum vessel around the cavities such that. Therefore there is no differential pressure on the thin beryllium windows. This paper discusses the design progress of the RFCC module, the fabrication progress of a prototype 201.25-MHz cavity, and the superconducting coupling coil that will be cooled using a single, small 4 K cooler.

 
WPAE046 Diffusion Brazing and Welding of the Accelerating Structure 2938
 
  • V.S. Avagyan
    CANDLE, Yerevan
 
  Funding: This work has been performed in Yerevan Physics Institute and the Institute of Electrowelding E.O. Paton, the Ukraine.

This work presents technologies of copper accelarating structure diffusion joints. The formation conditions of copper diffusion joint with minimal residual plastic strain are determined experimentally.

 
WPAE050 First Calibrations of Alanine and Radio-Photo-Luminescence Dosemeters to a Hadronic Radiation Environment 3097
 
  • M. Fuerstner, I. Brunner, D. Forkel-Wirth, S. Mayer, H.G. Menzel, H. Vincke
    CERN, Geneva
  • I. Floret
    Ecole d'ingénieurs de Genève, Genève
 
  Alanine and Radio-Photo-Luminescence (RPL) dosimeters are used to monitor radiation doses occurring inside the tunnels of all CERN accelerators including the Large Hadron Collider (LHC). They are placed close to radiation sensitive machine components like cables or insulation of magnet coils to predict their remaining lifetime. The dosimeters are exposed to mixed high-energy radiation fields. However, up to now both dosimeter types are calibrated to 60Co-photons only. In order to study the response of RPL and alanine dosimeters to mixed particle fields like those occurring at CERN’s accelerators, an irradiation campaign at the CERN-EC High-Energy Reference field Facility (CERF-field) was performed. Moreover, the dosimeters were first time calibrated to a proton radiation field of a constant momentum of 24 GeV/c. In addition to the experiment FLUKA Monte Carlo simulations were carried out, which provide information concerning the energy deposition and the radiation field at the dosimeter locations.  
WPAE053 Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept 3227
 
  • J.L. Boles, L. Ahle, S. Reyes, W. Stein
    LLNL, Livermore, California
 
  Funding: Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

 
WPAE054 Irradiation Effects on RIA Fragmentation Cu Beam Dump 3265
 
  • S. Reyes, L. Ahle, J.L. Boles, W. Stein
    LLNL, Livermore, California
  • B.D. Wirth
    UCB, Berkeley, California
 
  Funding: U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Within the scope of conceptual R&D activities in support of the Rare-Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be not a significant issue. Preliminary radiation transport simulations show significant damage (dpa) in the vicinity of the Bragg peak of uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 dpa, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 100 appm are produced in the beam dump after several weeks of continuous operation and He embrittlement should be a concern. Recommendations are made for further investigation of Cu irradiation effects RIA-relevant conditions.

 
WPAE056 Geant4-Based Simulation Study of PEP-II Beam Backgrounds in the BaBar Detector at the SLAC B-Factory 3351
 
  • W.S. Lockman
    SCIPP, Santa Cruz, California
  • D. Aston, G.R. Bower, M. Cristinziani, H. Fieguth, D. H. Wright
    SLAC, Menlo Park, California
  • N.R. Barlow, C.L. Edgar
    Manchester University, Manchester
  • N.L. Blount, D. Strom
    University of Oregon, Eugene, Oregon
  • M. Bondioli
    INFN-Pisa, Pisa
  • G. Calderini
    UNIPI, Pisa
  • B. Campbell, S.H. Robertson
    CHEP, Montreal, Quebec
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • B.A. Petersen
    Stanford University, Stanford, Califormia
 
  To improve the understanding of accelerator-induced backgrounds at the SLAC B-Factory and validate the proposed PEP-II luminosity upgrade, we simulate lost-particle backgrounds in the BaBar detector originating from beam-gas interactions and radiative-Bhabha scatters. To perform this study, we have extended the GEANT4-based BaBar detector simulation to include PEP-II beam-line components and magnetic fields up to 10m away from the interaction point. We first describe the simulation model and then compare predicted background levels with measurements from dedicated single-and colliding-beam experiments. Finally, we compare the simulated background levels in the current and the proposed luminosity-upgrade configurations.  
WPAE057 Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction
 
  • K. Nagarathnam
    UTRON Inc, Manassas, Virginia
 
  Funding: Funding Agency: Department of Energy (DOE) Under SBIR Contracts#DE-FG02-02ER83567 and DE-FG02-03ER83816.

We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vacuum seals, accelerator/RF microwave components, high temperature nozzle liner parts/heat sinks, and advanced high density magnets.

 
WPAE058 High Voltage Measurements on Nine PFNs for the LHC Injection Kicker Systems 3402
 
  • M.J. Barnes, G.D. Wait
    TRIUMF, Vancouver
  • L. Ducimetière
    CERN, Geneva
 
  Funding: National Research Council of Canada

Each of the two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7.86 microseconds, and rise and fall times of less than 900 ns and 3 microseconds, respectively. A kicker magnet system consists of four 5 Ohm transmission line magnets with matching terminating resistors, four 5 Ohm Pulse Forming Networks (PFN) and two Resonant Charging Power Supplies (RCPS). Nine PFNs, together with associated switch tanks, and dump switch terminating resistors have been built at TRIUMF and all have been tested at high voltage (54 kV) to ensure that the performance is within specification. This paper describes the HV measurements, compares these results with low voltage measurements and analyses the pulse performance of the PFNs. The measurements are compared with results from PSpice simulations and small discrepancies between the predictions and measurements are explained.

 
WPAE060 Programmable Power Supply for AC Switching Magnet of Proton Accelerator 3508
 
  • S.-H. Jeong, H.S. Han, Y.G. Jung, H.-S. Kang, H.-G. Lee, K.-H. Park, C. K. Ryu, H.S. Suh
    PAL, Pohang, Kyungbuk
  • H.H. Lee
    UU, Gyeongju
 
  Funding: Ministry of Science and Technology.

The 100-MeV PEFP proton linac has two proton beam extraction lines for user’ experiment. Each extraction line has 5 beamlines and has 5 Hz operating frequency. An AC switching magnet is used to distribute the proton beam to the 5 beamlines, An AC switching magnet is powered by PWM-controlled bipolar switching-mode converters. This converter is designed to operate at ±350A, 5 Hz programmable step output. The power supply is employed IGBT module and has controlled by a DSP (Digital Signal Process). This paper describes the design and test results of the power supply.

 
WPAE061 LC Filter for High Accuracy and Stability Digital MPS at PLS 3550
 
  • S.-C. Kim, J. Choi, K.M. Ha, J.Y. Huang
    PAL, Pohang, Kyungbuk
 
  Funding: Work supported by the Ministry of Science and Technology, Korea.

High accuracy and stability digital power supply for magnet is developed at PLS. This power supply has three sections. The first section is digital controller including DSP&FPGA and precision ADC, the second consists of IGBT driver and four quad IGBT switch, and the third is LC output section. AC input voltage of power supply is 3-phase 21V, output current is 0 ~ 150 A dc. Switching frequency of IGBT is 25 kHz. The output current of power supply has very high accuracy of 100 mA step resolution at full range and the stability of ± 1.5 ppm for short term and ± 5 ppm for long term. This paper describes characteristics of filter and output current performance improvement after LC output filter at four quad digital power supplies.

 
WPAE062 AC Power Supply for Wobbler Magnet of the MC-50 Cyclotron 3576
 
  • Y.-S. Kim, J.-S. Chai
    KIRAMS, Seoul
  • C.W. Chung, H.-G. Lee, W.W. Lee, K.-H. Park
    PAL, Pohang, Kyungbuk
  • B.-K. Kang
    POSTECH, Pohang, Kyungbuk
 
  The MC-50 cyclotron (k=50) produces the ion beam for nuclear physics, chemistry, and applied researches in Korea. It has a small beam diameter with Gaussian beam shape, whereas many users want a beam irradiation on a large target. A wobbler magnet and an AC power supply were designed and constructed to meet the users’ requirement. The power supply has two independently operating channels for the vertical and horizontal coils of the wobbler magnet. The frequency of the AC power supply for both coils is programmable from 1 to 20 Hz in a step of 1 Hz, and the maximum rms output current is 12 A. Various properties of the power supply and experimental results are given in the paper.  
WPAE063 CERN-PS Main Power Converter Renovation: How To Provide and Control the Large Flow of Energy for a Rapid Cycling Machine? 3612
 
  • F. Bordry, J.-P. Burnet, F. Voelker
    CERN, Geneva
 
  The PS (Proton-Synchrotron) at CERN, which is part of the LHC injector chain, is composed of 101 main magnets connected in series. During a cycle (about 1 second), the active power at the magnet terminals varies from plus to minus 40 MW. Forty years ago, the solution was to insert a motor-generator (M-G) set between the AC supply network and the load. The M-G set acts as a fly-wheel with a stored kinetic energy of 233 MJ. The power converter is composed of two 12-pulse rectifiers connected in series. A renovation or replacement of the installation is planned in the near future as part of the consolidation of the LHC injectors. This paper presents a first comparison of technical solutions: - a direct connection to the 400 kV mains; - a kinetic energy storage system either by the existing or by a new “state of the art” M-G set; - a new local inductive or capacitive energy storage system. All these solutions need new power electronics equipment, which should be based on proven industrial topologies, techniques and components. The related studies will address the challenge of controlling by a modern power converter with local energy storage the positive and negative flow of energy to a rapid cycling accelerator load.  
WPAE064 "Fast-Slow" Beam Chopping for Next Generation High Power Proton Drivers 3635
 
  • M.A. Clarke-Gayther
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Funding: Work supported by CCLRC/RAL/ASTeC and by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

A description is given of two "state of the art" high voltage pulse generator systems, designed to address the requirements of a fast beam chopping scheme for next generation high power proton drivers.[1] Measurements of output waveform and timing stability, for fast transition short duration, and slower transition long duration pulse generators, are presented.

[1]M. A. Clarke-Gayther, "A Fast Beam Chopper for Next Generation High Power Proton Drivers," Proc. of the ninth European Particle Accelerator Conference (EPAC), Lucerne, Switzerland, 5-9 July, 2004, p. 1449-145.

 
WPAE065 Jefferson Lab's Trim Card II 3670
 
  • T.L. Allison, H. Higgins, E. Martin, W. Merz, S. Philip
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work was supported by DOE contract DE-AC05-84ER40150 Modification No. M175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility.

Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

 
WPAE066 PEP-II Large Power Supplies Rebuild Program at SLAC 3685
 
  • A.C. de Lira, P. Bellomo, J.J. Lipari, F.S. Rafael
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.

At PEP-II, seven large power supplies (LGPS) are used to power quad magnets in the electron-positron collider region. The LGPS ratings range from 72kW to 270kW, and were installed in 1997. They are unipolar off-line switch mode supplies, with a 6 pulse bridge rectifying 480VAC, 3-phase input power to yield 650VDC unregulated. This unregulated 650VDC is then input into one (or two) IGBT H-bridges, which convert the DC into PWM 16 kHz square wave AC. This high frequency AC drives the primary side of a step-down transformer followed by rectifiers and low pass filters. Over the years, these LGPS have presented many problems mainly in their control circuits, making it difficult to troubleshoot and affecting the overall accelerator availability. A redesign/rebuilding program for these power supplies was established under the coordination of the Power Conversion Department at SLAC. During the 2004 accelerator summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control board, programmable logic controller, and touch panel were all installed to improve LGPS reliability, and to make troubleshooting easier. In this paper we present the details of this rebuilding program and results.

 
WPAE069 The APS Septum Magnet Power Supplies Upgrade 3795
 
  • B. Deriy, A.L. Hillman, G.S. Sprau, J. Wang
    ANL, Argonne, Illinois
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

The higher requirements for beam injection stability at the APS storage ring demand improvement of pulsed power supplies for the septum magnets. The upgrade will be performed in two stages. In the first stage we will implement a new power supply circuit with a new regulation timing sequence that will provide better voltage regulation performance. A common design was made for all of the septum magnet power supplies at the APS. The new regulation module has already been tested on both thin and thick septum magnet power supplies. This test showed that the new target for the current regulation stability, 1/2000 with less than 10-ns jitter, is achievable with this approach. In the second stage we will implement an embedded microprocessor system that will provide digitally controlled shot-to-shot current regulation of the power supply. The system comprises modules for communication with EPICS, data acquisition, and precise timing. A prototype has already been built and will also be discussed.

 
WPAE070 Injector Power Supplies Reliability Improvements at the Advanced Photon Source 3804
 
  • A.L. Hillman, S.J. Pasky, N. Sereno, R. Soliday, J. Wang
    ANL, Argonne, Illinois
 
  Funding: *Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Operational goals for the APS facility include 97% availability and a mean time between unscheduled beam losses (faults) of 70 hours, with more than 5000 user hours of scheduled beam per year. To meet this objective, our focus has changed to maximizing the mean time between faults (MTBF). We have made various hardware and software improvements to better operate and monitor the injector power supply systems. These improvements have been challenging to design and implement in light of the facility operating requirements but are critical to maintaining maximum reliability and availability of beam for user operations. This paper presents actions taken as well as future plans to continue improving injector power supply hardware and software to meet APS user operation goals.

 
WPAE071 Power Supply for Magnet of Compact Proton and/or Heavy Ion Synchrotron for Radiotherapy 3859
 
  • S. Yamanaka
    NIRS, Chiba-shi
  • K. Egawa, K. Endo, Z. Fang
    KEK, Ibaraki
 
  A resonant type pulse power supply, for an application to a compact proton and/or heavy ion synchrotron with a several Hz repetition rate, is attractive from the view point of attaining an average beam current that is enough for the radiation therapy. Maximum ampere-turn of the dipole magnet is as large as 200 kAT to make the bending radius as small as possible. Pulse current is generated by discharging the stored energy in a capacitor bank through a pulse transformer. Moreover, the auxiliary power supply for the dipole magnets which adds the flat magnetic field (10-20μs) for the multi-turn beam-injection is being developed. The power supply for the quadrupole magnets is the high switching frequency (20 kHz × 5) switching-mode Power Supply for the adjusting tune and the tracking between the quadrupole and the dipole fields.Detailed analyses on these pulse power supplies will be presented.  
WPAE072 Installation and Testing of SNS Magnet Power Supplies 3889
 
  • K.R. Rust, W.E. Barnett, R.I. Cutler, J. T. Weaver
    ORNL, Oak Ridge, Tennessee
  • S. Dewan, R. Holmes, S. Wong
    IE Power Inc., Mississauga, Ontario
  • R.F. Lambiase, J. Sandberg
    BNL, Upton, Long Island, New York
  • J. Zeng
    Digital Predictive Systems Inc., Toronto
 
  Funding: This work was supported by SNS through UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

This paper describes the types and quantities of magnet power supplies required for the SNS Linear Accelerator, High-Energy Beam Transport (HEBT), Ring and the Ring-Target Beam Transport (RTBT). There are over 600 magnets and more than 550 magnet power supplies. These magnet power supplies range in size from the bipolar-corrector supplies rated at 35 volts, 20 amps to the main-ring dipole supply that is rated at 440 volts, 6000 amps. The Linac power supplies have a ripple/stability specification of 1000 parts per million while the ring supplies have a specification of 100 parts per million. There are also pulsed power supplies for beam injection and beam extraction. The paper will show acceptance test results from the manufacturers as well as test results performed by the SNS magnet power supply group.

 
WPAE073 3 kA Power Supplies for the Duke OK-5 FEL Wigglers 3901
 
  • V. Popov, S.M. Hartman, S. Mikhailov, O. Oakeley, P.W. Wallace, Y.K. Wu
    DU/FEL, Durham, North Carolina
 
  Funding: U.S. AFOSR MFEL grant F49620-001-0370.

The next generation electromagnetic OK-5/Duke storage ring FEL wigglers require three 3kA/70V power supplies with current stability about 20 ppm and current ripples less than 20ppm in their full operating range. Duke FEL Laboratory acquired three out-of-service thyristor controllable power supplies (Transrex, 5kA/100V) which was built almost 30 years ago. The existing archaic firing circuit, lack of any output voltage filtering and outdated DCCT, would not be able to meet the above requirements.To deliver the desirable high performance with very limited funds, all three T-Rex power supplies have been completely rebuilt in house at DFELL. Modern high stability electronic components and a Danfysik DCCT with a high current stability have been used. New symmetrical firing circuit, efficient passive LC filter and reliable transformer-coupled active filter are used to reduce output current ripples to an appropriate level. At the present time, the first refurbished power supply in operation since August, 2004 with good overall performance. The power supply testing results of this unit will also be presented in this paper.

 
WPAE074 Trim Power Supplies for the Duke Booster and Storage Ring 3919
 
  • V. Popov, S.M. Hartman, S. Mikhailov, O. Oakeley, P.W. Wallace, Y.K. Wu
    DU/FEL, Durham, North Carolina
 
  Funding: U.S. AFOSR MFEL grant F49620-001-0370 and HIGS Upgrade DOE grant number is DE-FG02-01ER41175.

The on-going Duke storage ring upgrades and the development of a new booster synchrotron injection require more than 100 units of high performance unipolar and bipolar trim power supplies in the current range of -15A to +15A. However, most of the trim power supplies on the market do not deliver two critical performance features simultaneously: a high current stability and a low current noise.An in-house trim power supply development program is then put in force to design, fabricate, and test low cost linear power supplies with current stability about 100 ppm and current ripples less than 100 ppm in a broad band. A set of unipolar power supplies (0-12A) have been designed, fabricated and successfully tested. Since August, 2004 they have been used in storage ring operation with excellent performance. The prototype of bipolar power supplies (± 15 A) has been designed and tested as well. The main design principles and their performance results of both unipolar and bipolar supplies will be presented in this paper.

 
WPAE075 Compact Digital High Voltage Charger 3964
 
  • G. Li, Y.G. Zhou
    USTC/NSRL, Hefei, Anhui
 
  The operation of classical resonant circuit developed for the pulse energizing is investigated. The HV pulse or generator is very compact by a soft switching circuit made up of IGBT working at over 30 kHZ. The frequencies of macro pulses andμpulses can be arbitrarily tuned below resonant frequency to digitalize the HV pulse power. Theμpulses can also be connected by filter circuit to get the HVDC power. The circuit topology is given and its novel control logic is analyzed by flowchart. The circuit is part of a system consisting of a AC or DC LV power supply, a pulse transformer, the pulse generator implemented by LV capacitor and leakage inductance of the transformer, a HV DC or pulse power supply and the charged HV capacitor of the modulators.  
WPAE079 Dual Power Supplies for PEP-II Injection Kickers 4045
 
  • J. Olszewski, F.-J. Decker, R.H. Iverson, A. Kulikov, G.C. Pappas
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.

Originally the PEP-II injection kickers where powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independant power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of five since there are no long cables that have to be charged. The kickers are now independantly adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

 
WPAE082 Design of a Precision Positioning System for the Undulators of the Linac Coherent Light Source 4099
 
  • E. Trakhtenberg, J.T. Collins, P.K. Den Hartog, M. White
    ANL, Argonne, Illinois
 
  A precision positioning system has been designed for the Linac Coherent Light Source (LCLS) and a prototype system is being fabricated. The LCLS will use a beam based alignment technique to precisely align all of the segments of the 130-m long undulator line. The requirement for overlap between the electron beam and the x-ray beam, in order to develop and maintain lasing, demands that each of the quadrupoles be aligned within a tolerance of ± 2 μm and that the undulator axis be positioned within ± 10 μm vertically and horizontally. Five cam movers, each with an eccentricity of 1.5 mm, will allow adjustment of a cradle supporting the undulator, its vacuum chamber, a quadrupole, and a beam position monitor. An additional motion transverse to the beam axis allows removal of individual undulators from the beam path. Positioning feedback will be provided by a wire position monitor system and a hydrostatic leveling system.