8th International Particle Accelerator Conference Bella Center, Copenhagen, Denmark May 17, 2017

HTS Magnets for Accelerator Applications

K. Hatanaka hatanaka@rcnp.osaka-u.ac.jp

Research Center for Nuclear Physics Osaka University

Outline

- 1. Introduction
- 2. High Temperature Superconducting (HTS) wire
- 3. Development of HTS magnets at RCNP

Models:

ECR mirror coil

Scanning magnet

Superferic dipole magnet with bana-shaped coil

Magnets for practical use:

UCN polarizer

Beam line switching magnet

design and performance

hysteresis loss of HTS coil

4. Summary

Motivations to develop HTS magnets

Compact system

Beam line, Gantry for particle therapy, Accelerators

Low power consumption system

Advantages over LTS system No liquid helium is required Cooled by conduction to cryo-coolers Operating temperature can be 20 K or higher Cryogenic components become simpler Cooling power of refrigerators is much larger Temperature range for superconductivity is wider AC and pulsed magnets may be possible.

HTS materials

- 1986: discovery of (La_{1-x}Ba_x)₂CuO₄
 J.G. Bednorz and K.A. Müller
- Significant effort went into the development of new and improved conductor materials.

• Two wires are commercially available, which are long over km. 1^{st} generation HTS wires ($T_c = 110$ K) $Bi_2Sr_2Ca_2Cu_3O_{10}$ (Bi-2223) 2^{nd} generation HTS wires ($T_c = 95$ K) $YBa_2Cu_3O_7$ (REBCO / Y-123)

 Many prototype devices using HTS wires have been developed so far. History of transition temperature of HTS materials

Year

1st generation HTS wire

- Wire consists of a flexible composite in a silver alloy matrix with a thin stainless steel (or copper alloy) lamination that provides mechanical stability and transient thermal conductivity.
- Wire is in thin tape-form approximately 4mm wide and 0.3mm thick.


```
Bi_2Sr_2Ca_2Cu_3O_x (Bi-2223)
```

(Sumitomo Electric Industries, Ltd.)

Critical current depends on the operating temperature and the strength and direction of magnetic field on the tape surface. They are scaled by Ic at 77K and with self field.

Structure and Design parameters

Coils	Inner size	$B_x: 150 \text{ mm} \times 300 \text{ mm}, B_y: 150 \text{ mm} \times 380 \text{ mm}$		
	Cross section	$30 \text{ mm} \times 30 \text{ mm}$		
	Separation	70 mm		
	Max. field	0.6 T		
	Superconductor	Bi-2223/Ag alloy wire		
	Total length	$B_x: 412 \text{ m} \times 2, B_y: 460 \text{ m} \times 2$		
	Number of turns	420×2 coils for both B_x and B_y		
	Winding construction	3 double pancakes/coil		
	Inductance of single coil	B_x : 75mH, B_y : 92 mH		
	Critical current at 77 K	40-43 A		
	Rated current	200 A		
	Operating temperature	20 K		
Cryostat	Cooling method	Conduction cooling by two GM refrigerators		
	Thermal insulation	Vacuum isolation, 80 K shield, super-insulation		
	Cooling power of	45 W at 20K,		
	the GM refrigerator	53 W at $80 K$		

Double pancakes and cooling plates.

Assembled one B_x coil.

- Ic of the HTS wire over the full length was measured at 77K in a 10m pitch and was 125-140A.
- 0.2mm thick layer insulation is put in the middle of each double pancake.
- Double pancale is covered with a 0.5mm thick ground insulation.
- Four 0.9 mm thick brass plates are fixed to a coil with epoxy resin.

AC losses in superconducting magnet

Q_H: hysteresis losses (in the superconductor)

$$Q_{\rm H} = \oint P dt = -\mu_0 \oint dt \oint \mathbf{M} d\mathbf{H} = \oint dt \int_V (\mathbf{i} \cdot \mathbf{E}) dV$$

- Q_C: coupling losses (between filaments)
- Q_E: eddy current losses in the metallic sheath/substrate and supporting structures
- Q_D: dynamic resistance losses caused by the flux flow
- Q_R: current sharing in metallic sheath (I>Ic)

AC losses per cycle of HTS conductors

- $Q_H \propto I^{3-4}$ $Q_D \propto I^2$
- $Q_C \propto f \cdot I^2$
- $Q_E \propto f \cdot I^2$ $Q_R \propto I^2$

So far studies have been limited to such simple structures as tapes, cables and simple coils in both experimental and theoretical points of view.

AC losses at 20 K Comparison with calculations

Ultra Cold Neutron polarizer

Magnetic field on the axis

Ultra Cold Neutron polarizer

UCN was successfully polarized. Polarization is higher than 90 %. Polarizer has been transported to TRIUMF already, and is used for neutron EDM project at TRIUMF.

Dipole magnet for beamline switching

A-A' Cross Section

No.	Description	Material	
1	Bi-2223 DPC		
2	Winding Frame	Stainless Steel	
3	Cooling Plate	Copper	
4	Reinforcing Plate	Stainless Steel	
5	Reinforcing Bar	Stainless Steel	

Specifications of the SW magnet

Maximum magnetic field	1.6 T			
Fastest switching time	10 s			
Bi-2223 wire	DI-BSCCO type HT-CA			
	(Sumitomo Electric Industries, Ltd.)			
Number of total turns	512 turns			
2-stage 10 K GM cryo-cooler	SRDK-408S2			
	(Sumitomo Heavy Industries, Ltd.)			
Cooling	Conduction cooling			
Cooling power	1st stage: 40 W at 45 K			
	(Radiation shield,			
	Thermal anchor to Cu conductor)			
	2nd stage: 6.3 W at 10 K			
	(Coil assembly)			
Peak perpendicular field	0.8 T	Detect imbalance		
Coil temperature	< 20 K	hetween 11 & 1		
Critical current	330 A at 20 K Trigger			
Maximum operating current	200 A			
Maximum ramping speed	20 A/s			
Stored energy	45.5 kJ			
		$ \downarrow \downarrow \downarrow \downarrow$		

Quench detect and protect circuit

Loss in the wire is the hysteresis loss by screening current.

Effects of the screening current on the magnetic field is expected to be small in the present structure.

I_c measurement at 77 K

Cryo-cooler temperature measured during triangular wave excitation with a cycle time of 160 s.

J.Yoshida et al., IEEE, vol. 27 No. 4 (2017)

Field drift

 $b = 1.08 \times 10^{-4} (\text{mT/s})$

Field drift

 $b = 1.07 \times 10^{-5} (\text{mT/s})$

Coil temperature during a pattern operation of the switching magnet

Summary and perspectives

Development of HTS magnets at RCNP

- for compact and low power consumption system (e.g. next generation particle therapy facilities)
- As prototypes, toy-model, a scanning and a dipole magnets were fabricated.
- For practical use, a UCN polarizer and a switching magnet were constructed.
- Performance tests were performed with DC, AC and pulsed currents.
- AC losses were measured by electrical or calorimetric method.
- Hysteresis losses of wire are several tens Joule/cycle.
- Hysteresis loss is expected to be smaller for 2nd generation (Y-123/REBCO) wire.
- Feasibility study of HTS cyclotrons is continued and conceptual design has been started at RCNP.

Collaborators

RCNP: M. Fukuda, T. Yorita, H. Ueda, J. Nakagawa, N. Izumi, T. Saito, H. Tamura, Y. Yasuda, M. Nakao, K. Kamakura, N. Hamatani, S. Hara

Tohoku U.: Y. Sakemi

- Kyushu U.: T. Wakasa
- NIRS: K. Noda
- KT Science: T. Kawaguchi
- SHI: J. Yoshida, T. Morie, A. Hashimoto, H. Mitsubori,

Y. Mikami, K. Watazawa

Thank you for your attention