Beam commissioning of the high intensity proton source developed at INFN-LNS for ESS

Lorenzo Neri

On behalf of INFN-LNS Accelerator R&D team: S.Gammino, L.Celona, D.Mascali, G.Castro, A.Miraglia, G.Torrisi, O.Leonardi, M.Mazzaglia, F.Chines, N.Amato, S.Marletta, G.Manno, G.Calabrese, G.Gallo, L.Allegra, S.Passarello, G.Pastore, S.Vinciguerra, A.Caruso, A.Longhitano, A.Spartà

Summary

- Italian In-Kind Contribution to European Spallation Source
- Status of the construction of proton source and LEBT
- Improvements with respect to TRIPS and VIS sources
- Commissioning strategy
- Achievement of ESS requirements
- Conclusions

Status of the construction

Activity	Start	End
Phase 1: IS with FC and DSM	03/10/16	31/10/16
Phase 2: + EMU	02/11/16	30/04/17
Phase 3: Full LEBT	01/05/17	29/09/17
Packaging and shipping	02/10/17	31/10/17
Ready for Installation	03/11/17	

Source commissioning setup

INFN

LEBT

Under construction

Background for IKC of INFN-LNS

TRIPS (2001)

VIS (2008)

PS-ESS (2016)

Performance	Value	
Beam energy	80 Kev	+ 25%
Proton beam current	55 mA	
Proton fraction	≈80%	
RF frequency	2.45 GHz	
RF power	Up to 1 kW	to to pulsed
Axial magnetic field	875-1000 G	from ac to pulses
Duty factor	100 % (DC)	
Extraction aperture	6 mm	High stability
Reliability	99.8% @ 35 mA	
Transverse emittance (σ)	0.07 pi.mm.mrad	Low emittance
	@ 35 mA	
Start-up after maintenance	32 hours	

Requirement	Value
Beam energy	75±5 keV
Energy adjustment	±0.01 keV
Total beam current	>90 mA
Proton beam current	74 mA
Proton beam current range	67-74 mA
Proton fraction	>75%
Pulse length	6 ms
Pulse flat top	3 ms
Repetition rate	14 Hz
Pulse to pulse stability	±3.5 %
Flat top stability	±2 %
Transverse emittance (99%)	1.8 pi.mm.mrad
Beam divergence (99%)	<80 mrad
Start-up after maintenance	32 hours

Easy maintenance

Proton Source and LEBT at INFN-LNS

Improvements with respect to TRIPS and VIS

Improvements in the extraction system

- Lower the useless electric field close to the extraction
- X Ray protection
- Beam dynamics through electrodes

- Single alumina to minimize the electric field on the external surface (< 6.6 kV/cm)
- New triple point design (< 6.4 kV/cm)

We had not serious problems of discharge during beam extraction at 75 kV. Extraction column was tested up to 90 kV.

Plasma modeling

Electron Energy Distribution Function

RF energy adsorption

Ion formation

Generation maps

L. Neri et al. "Recent progress in plasma modelling at INFN-LNS", Rev. Sci. Instrum. 2016 Feb, 87(2):02(A)505

Microwave to plasma coupling

3D full wave e-m simulation in presence of the electron plasma density and strong magnetic field has driven the design of **the matching transformer**

Cold tensor plasma approximation

G. Torrisi et al. "Full-wave FEM simulations of electromagnetic waves in strongly magnetized non-homogeneous plasma", JEWA 2014 vol. 20, no. 9, 1085-1099

G. Torrisi et al. "Microwave injection and coupling optimization in ECR and MDIS ion sources", this conference

Magnetic system control interface

I N F N

Very high magnetic flexibility required a dedicated interface developed at INFN that enable direct control and high reproducibility

Semi-automatic characterization tool

MATLAB R2016b - non-degree g	SCCM		Configurations I safe I safe I eff	Coil 1 Const Coil 1	* cois Cois Cois * cois	ESS text: ScanMa	Search Documentation	• 0 • x
Name Cepy_of_GUB/iseConfvs.m GUB/seConfvs.fig GUB/seConfvs.fig GUB/seConfvs.fig GUB/seConfvs.fig GUB/seConfvs.fig Copy_of_ScanMagneticFieldNeECB ScanMagneticFieldNeECB ScanMagneticFieldNeECB ScanMagneticFieldNeECB ScanMagneticFieldNeECB ScanMagneticFieldNeECB ScanMagneticFieldNeECB ScanMagneticFieldNeECB	Type Function Figure Figure Figure 17,2:3:2. MAT-file NoTCR: Function 00 400 400	Dire Meding - Sor 13/02/2017/011111 (K 13/02/2017) 013 65 (K 13/02/2017) 013 65 (K 13/02/2017) 013 65 (K 13/02/2017) 10/17 497.09 13/02/2017) 10/17 497.09 14/02 11/17 427.09 14/02 14/02	MB 12- 6356 10879 6358/10879	try maiput(Conpetting parse(1/10 (Confirm, 0 103.1 197.3 173.2	255.1 21.1 66.1	211.5 419.6 390	011Iv) <1	• 0 •
Conversand Windsv 400 4 1 14h 44m 400 5 0 1 4h 44m 400 5 0 1 4h 44m 400 4 0 1 4h 44m 400 4 0 1 4h 4am 400 4 0 1 4h 4am 401 4 0 1 4h 4am 402 4 0 1 4h 4am 403 4 0 1 4 4am 400 4 0 1 4 4am 400 4 0 1 4 4am 400 4 0 1 4 4 4	400 fg + Busy 0355/10879 6357/10879	4 0d 14h 42m	6359/10879	0.1275 0.1315 0.1433	110.8 III 0.1475 0.1195 0.1435 0.1195 0.1235 0.1275	360.8 615.77998 0.001 (11 620.3031 0.0073889 61.50744 0.0029231824	0.017031443 -0.0079314289 0.021315715 -0.0058910942 0.020524877 -0.0036535692 0.014721012 -0.0084710261 0.01967742 -0.0082304827 0.020413678 -0.0055942578 0.020238146 -0.0037593022 0.019791439 -0.0046384967 0.015731209 -0.010307518	0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005
400 4 0d 14h 42m 400 4 0d 14h 42m	6358/10879 6359/10879	173.2 66.1 149.2 110.8	390 360.8	0.1435 0.1435	0.1315	Plasma mode	lling 🗲	

From the 23/01/2017 the source is extracting beam seamless, more than 300[°]000 tested configurations, no stops due to sparks.

· Bury

 Plasma modelling →

 parameters range to be tested:

 Field @ 0 mm ==> 835:20:975 Gauss

 Field @ 35 mm ==> 795:40:1395 Gauss

 Field @ 84 mm ==> 675:40:1995 Gauss

 H2 flow ==> 2:1:5 SCCM

 RF power ==> 600:200:1200 Watt

 40192 configurations

Semi-automatic characterization

I N F N

In the graphical interface: average, maximum and minimum are evaluated and the trend showed for the beam pulse between 2.9 ms and 5.9 ms.

In the semi-automatic characterization code 26 parameters and two wave forms (@1Ms/s) are saved for each pulse produced at nominal repletion rate of 14Hz.

Data analysis of thousands of different configurations

Doppler shift measurement beam characterization

I N F N

Proton fraction > 75% SATISFIED

ESS stable configurations versus injected H₂ gas *INFN* flux and microwave power

Total current = 100 mA SATISFIED

Increasing the injected microwave power increase the energy transfer and consequently the plasma density

Each point is a large operative range (20 Gauss x 40 Gauss x 40 Gauss x 1 SCCM x 200 Watt)

Lower current (2-5 sccm)

High current (2-4 sccm)

Candidate nominal configuration

109 A coil1; 67 A coil2; 228 A coil3; 3 SCCM H₂

Preliminary beam emittance measurements INFN

Measurement done at 82 mA (74 mA @ 85% \rightarrow 87 mA) (+ 6%) Source Emittance: 1.06 π .mm.mrad (< 1.8 π .mm.mrad t.b.c.) (- 41%) Max divergence: 55 mrad (< 80 mrad t.b.c.) (- 45%)

Check of requirements

Requirement	Value	Measurement done for configurations that satisfy the ESS stability requirements	Comments
Total beam current	>90 mA	40 - 140 mA	J
Nominal proton beam current	74 mA	40 - 105 mA	1
Proton beam current range	67-74 mA	40 - 105 mA	1
Proton fraction	>75%	Up to 85%	1
Pulse length	6 ms	6 ms	1
Pulse flat top	3 ms	3 ms	1
Flat top stability	±2 %	< ±2 % up to 1.5%	1
Pulse to pulse stability	±3.5 %	< ±3.5 % up to 3%	1
Repetition rate	14 Hz	14 Hz	1
Beam energy	75±5 keV	75 keV	1
Energy adjustment	±0.01 keV	±0.01 keV	1
Transverse emittance (99%)	1.8 pi.mm.mrad	1.06 pi.mm.mrad @ 82 mA	Characterization ongoing
Beam divergence (99%)	<80 mrad	50 mrad @ 82 mA	Characterization ongoing
Start-up after source maintenance	32 hours	32 hours	J

Conclusion

- The flexibility inserted in the design enabled the satisfaction of ESS requirements
- NO sparks relevant problems remain unsolved
- Construction of the LEBT is in time
- Training of ESS staff started

Perspectives

- Fast characterization procedure and data analysis will be used also in our the future sources
- The characterization provided know how for the developing of different type of source, different current range and/or different species
- Second source procurement ongoing
- The installation in Lund is planned without delay

Comments are welcome

Thanks to all INFN-LNS staff to valuable support provided during all the phases of the project.

The collaboration with ESS and CEA was intense, profitable, always solution oriented.