Review of Acceleratorbased Boron Neutron Capture Therapy IPAC16

Masakazu Yoshioka

Okinawa Institute of Science and Technology (OIST)

May 12, 2016

Principle of BNCT

Cell-level feature page2

Tumor cell

2

33

page2

Principle of BNCT

selective drug-delivery

page2

Principle of BNCT

Cell-level feature

page2

Principle of BNCT

a and Li-particle kills tumor cell selectively

Only Slow neutron reacts with boron

Courtesy of H. Kumada

Only Slow neutron reacts with boron

Courtesy of H. Kumada

Only Slow neutron reacts with boron

Courtesy of H. Kumada

$n + B(10) = Li + \alpha + \gamma$

Boron Neutron Capture Therapy

Moss, R. L. Critical Review, with an Optimistic Outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11.

page4

$n + B(10) = Li + \alpha + \gamma$

Boron Neutron Capture Therapy

Moss, R. L. Critical Review, with an Optimistic Outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11.

Collaborative work of different fields is essential

$n + B(10) = Li + \alpha + \gamma$ Main molecules used in BNCT

Main issues

- \Rightarrow Not patentable => design of new boron-containing molecules and nanoparticles
- \Rightarrow Well known => encapsulation and vectorization inside tumours

Mechanism of boron delivery to tumor cell through blood vessels

Obstinate cancer therapy (brain cancer case)

Tumor cells invasion to normal brain zone

Malignant glioma :

- 3 months to live without therapy
- 12 months to live with standard therapy

Obstinate cancer therapy (brain cancer case)

Tumor cells invasion to normal brain zone

Malignant glioma :

- 3 months to live without therapy
- 12 months to live with standard therapy

Brain cancer

Obstinate cancer therapy (brain cancer case)

Tumor cells invasion to normal brain zone

Malignant glioma :

- 3 months to live without therapy
- 12 months to live with standard therapy

Excision with surgery

Obstinate cancer therapy (brain cancer case)

Tumor cells invasion to normal brain zone

Malignant glioma :

- 3 months to live without therapy
- 12 months to live with standard therapy

Standard X-ray therapy

Obstinate cancer therapy (brain cancer case)

Tumor cells invasion to normal brain zone

Malignant glioma :

- 3 months to live without therapy
- 12 months to live with standard therapy

Standard X-ray therapy

Obstinate cancer therapy (brain cancer case)

Tumor cells invasion to normal brain zone

Malignant glioma :

- 3 months to live without therapy
- 12 months to live with standard therapy

Cell-level therapy is indispensable

Reactor-based BNCT facilities in the world Courtesy of H. Kumada

By Hiroaki Kumada (Tsukuba Univ.)

page8

paae9

Reactor-based BNCT facilities in Japan

By Hiroaki Kumada (Tsukuba Univ.)

Reactor-based BNCT facilities in Japan

Reactor-based BNCT in Japan

Reactor can be used only for clinical study.
 Reactor has to be stopped about a few months in a year for the inspection and maintenance by law.

• The number of the BNCT facilities was only two, and unfortunately JRR-4 has stopped by the huge earthquake in 2011.

It is almost impossible to develop new reactor-based BCNT facility in Japan

By Hiroaki Kumada (Tsukuba Univ.)

KURRI, KUR

Methodology of accelerator-based neutron source design

Step1 :Protons are accelerated up to 2.5 ~ 30 MeV.
Step2 :Protons are injected to Li or Be target to produce neutrons.
Step3 :Fast neutrons are generated.
Step4 :Slow down fast neutrons by moderator to "BNCT epithermal" neutrons. (Step 4 is in common with a reactor-based BNCT)

Steps in designing of an accelerator-based neutron source for BNCT, Step1: We should choose the neutron production target material (Be or Li),

Step2: Proton beam power can be decided from the necessary neutron flux for patient treatment,

Step3: We choose accelerator technology by considering required proton energy and current.

Starting point 🗲

IAEA-TECDOC-1223

1.2. Epithermal beam intensity

For the purposes of reporting beam intensity, the common definition for an epithermal energy range should be used, namely 0.5 eV to 10 keV. If other energy limits are used, they should be clearly reported.

Current experience shows that a desirable minimum beam intensity would be 10^9 epithermal neutrons cm⁻² s⁻¹. Beams of 5×10^8 n cm⁻² s⁻¹ are useable, but result in rather long irradiation times.

1.3.1. The fast neutron component

Upper limit of harmful component for patient

In BNCT the energy range for fast neutrons is taken as >10 keV. Fast neutrons, which invariably accompany the incident beam, have a number of undesirable characteristics such as the production of high LET protons with a resulting energy dependence of their induced biological effects. Therefore, it is one of the main objectives of BNCT beam design to reduce the fast neutron component of the incident beam as much as possible.

Another major objective is clearly to have as high an epithermal flux as possible. In existing facilities the range of dose from this component is from 2.5 to 13×10^{-13} Gy cm² per epithermal neutron. A target number should be 2×10^{-13} Gy cm² per epithermal neutron.

1.3.2. The gamma ray component Upper limit of harmful component for patient

Because of the energy range of the gamma radiation, it results in an non-selective dose to both tumour tissue and a large volume of healthy tissue. Hence it is desirable to remove as much gamma radiation from the beam as possible. Since there are also (n,γ) reactions occurring inside the patient, the importance of this component in the incident beam is somewhat reduced. Nevertheless, a target number for this should be 2×10^{-13} Gy cm² per epithermal neutron. The range in existing facilities is from 1 to 13×10^{-13} Gy cm² per epithermal neutron.

page12

Comparison between Lithium and Beryllium

Neutron energy spectrum of lithium and beryllium for various production angle (by Yoshiaki Kiyanagi)

Criteria of the technology choice

Target	Proton Energy	Problems to be solved		
Solid Lithium	⁷ Li(p,n) ⁷ Be 2.5∼3 MeV	 Low melting point (180.5° C) → heavy target heat load must be cooled effectively to avoid evaporation Generation of ⁷Be (radioactive nuclide with half-life of 53 days) Generation of tritium by reaction of ⁶Li(n,t)⁴He → ⁶Li /⁷Li (7.59/92.41%) Vigorous reaction with water and easy-oxidization 		
Liquid Lithium		 Generation of ⁷Be and Tritium (same as above). Need to handle liquid metal in a hospital cautiously. 		
900(n n)90	> 13 MeV	 ➢ High energy neutrons produce many kind of active nuclides. → Heavy residual radiation (> 100 mSv/h) ➢ High energy neutrons may give damages to healthy tissues (need more study). 		
Beryllium	< 13 MeV	 Lower yield → Need to develop a high current accelerator. Heavy target heat load must be cooled efficiently. Avoid target damage by blistering (Blistering: stopped proton in the metal easily capture free electrons and generate hydrogen in the target → flaking/peeling takes place). 		

Current status for accelerator-based BNCT in the world

Location		Machine (Status)	Target & reaction	Beam Energy (MeV)	Beam current (mA)
Budker Institute (Russia)		Vacuum insulated Tandem (Ready)	Solid ⁷ Li(p, n)	2	2
iPPE-Obninsk (Russia)		Cascade generator KG- 2.5 (Ready)	Solid ⁷ Li(p, n)	2.3	3
Birmingham Univ. (UK)		Dynamitron (Ready)	Solid ⁷ Li(p, n)	2.8	1
Soreq (Israel)		RFQ-DTL (Ready)	Liquid ⁷ Li(p, n)	4	1
Legnaro INFN (Italy)		RFQ	Be(p, n)	4-5	30
CNEA Buenos Aires (Argentina)		Single ended Tandem Electrostatic	Be(d, n)	1.4	30
		Quadrupole (TESQ)	Solid ⁷ Li(p, n)	2.5	30
Japan	KURRI	Cyclotron (Clinical Trial)	Be(p, n)	30	1
	University of Tsukuba	RFQ-DTL	Be(p, n)	8	10
	NCCenter, CICS	RFQ	Solid ⁷ Li(p, n)	2.5	20
	Fukushima South Tohoku Hospital	Cyclotron	Be(p, n)	30	1
	Osaka University	Neutron target system only	Liquid ⁷ Li(p, n)	~2.5	-
	Nagoya University	Dynamitron	Solid ⁷ Li(p, n)		

Planning and designing : OIST (Okinawa), Osaka Medical College (Osaka), Edogawa Hospital (Tokyo)

By Hiroaki Kumada (Tsukuba Univ.)

page16

In Japan, many institutes and hospitals are developing an accelerator-based BNCT facility, in which most combinations of accelerator and target technologies are included. As a typical example of these technologies, I will show following six cases.

Various technology choice

Group		Accelerator Beam Energy		Power	<u>Target material</u>		
1.	Kyoto University ==Clinical trial==	Cyclotron	30 MeV	33 kW	Thick beryllium (5.5 mm)		
2.	National Cancer Center	CW RFQ	2.5 MeV	50 kW	Solid lithium		
	==Passed radiation facili	ty inspection==					
З.	Nagoya University	Dynamitron	2.8 MeV	50 kW	Hermetic liquid lithium		
	==Accelerator commissioning and target development phase==						
4.	Tokyo Institute of Technolo	ogy			Liquid lithium target		
5	Taukuba University	Pulcad PEO 1 DTI	90MaV	ONLIN	This hasullium (0.5 mm)		
э.	==Accelerator commissio	puisea krQ + DTL pning==	. 0.0 IVIEV	80 K VV	111111 Derymun (0.5 mm)		
6.	OIST	Pulsed RFQ	3.0 MeV	30 kW	Solid lithium		
==Design phase based on new solid lithium target technology==							

Characteristics:

- Cyclotron is a mature technology
- 5.5 mm thick target \rightarrow no risk on the target manufacturing technology
- Proton beam stops in water ightarrow free from the blistering problem

Photos and the figures are by Motoki Tanaka (Kyoto University)

Technology-1:

30 MeV, 1.1 mA (33 kW) cyclotron + beryllium target

Kyoto University & Sumitomo Heavy Industries, Ltd.

The most advanced group and in clinical trial phase

Technology-2: 2.5 MeV, 20 mA (50 kW) RFQ (CW) + solid lithium target National Cancer Center & CICS, Inc.

Passed the radiation facility safety inspection in March 2016

• Complex target design, structure and operation

How to avoid concentration/accumulation of ⁷Be.

Three rotating units are used

- D Port 1: irradiation port
- Port 2: wash out port
 - > (utilizing that lithium reacts with water actively)
 - ➢ Lithium target layer can be washed out with water before accumulating ⁷Be frequently and waste liquid is stored in a tank.
- ③ Port 3: vapor deposition port
 - New lithium layer is developed on the heat sink with vapor deposition method.

The photo and drawings are from Home Page Of National Cancer Center, CICS and paper by Linac Systems INC.

Figure 4: Manifold with target heat exchanger installed.

Figure 1: Protons (1) strike a 50- μ m lithium metal layer (2) that is deposited on a Pd anti-blistering substrate (3), supported by a channelized conical heat exchanger (4). Coolant (5) flows through a conical-annular duct that encompasses the channels of the heat exchanger; reverses at the apex; returns via an outer conical-annular duct, and exits (6).

Issues

Issues
Layer thickness control is difficult.
Storage of waste liquid is troublesome.
==Unsealed Radioactive material====

Figures: by Yoshiaki Kiyanagi of Nagoya University

page23

Cross sectional view of the Compact Sealed Li target

 (1) Ta backing plate is connected to a Cu cooling base by HIP process*. The emboss-structure is prepared on the surface of Ta plate. Ta : High threshold for blistering (H⁺ fluence > 1.6 x 10²¹ H⁺/cm²) High corrosion resistance and good wettability for liquid Lithium

Cross sectional view of the Compact Sealed Li target

 (1) Ta backing plate is connected to a Cu cooling base by HIP process*. The emboss-structure is prepared on the surface of Ta plate. Ta : High threshold for blistering (H⁺ fluence > 1.6 x 10²¹ H⁺/cm²) High corrosion resistance and good wettability for liquid Lithium

(2) Thin Ti foil is jointed to the Ta plate by Hot press process. Ti : High corrosion resistance and good wettability for liquid Lithium

Cross sectional view of the Compact Sealed Li target

(1) Ta backing plate is connected to a Cu cooling base by HIP process*. The emboss-structure is prepared on the surface of Ta plate. Ta : High threshold for blistering (H⁺ fluence > 1.6 x 10²¹ H⁺/cm²) High corrosion resistance and good wettability for liquid Lithium
(2) Thin Ti foil is jointed to the Ta plate by Hot press process. Ti : High corrosion resistance and good wettability for liquid Lithium
(3) Li is set in the thin space of the emboss structure.

Beam shaping assembly

	Original	Improved	(Total we	right :5.46 t)
N _{epi} [×10 ⁹ n/cm ² /s]	0.78	1.89	<u>≥</u> 1	Epi-thermal
D_{f} [×10 ⁻¹³ Gy • cm ²]	1.99	1.99	<u>≦</u> 2	Fast neutron rate
D_{g} [×10 ⁻¹³ Gy \cdot cm ²]	1.79	1.69	<u>≦</u> 2	γ ray rate
N _{t/e}	0.036	0.047	<i>≦</i> 0.05	Thermal neutron rate
C/F	0.785	0.704	<i>≧</i> 0.7	Current/Flux

page25

Technology-4:

Liquid lithium target development

Tokyo Institute of Technology & SUKEGAWA ELECTRIC CO., Ltd.

Verification test only

Liquid lithium flow is successfully realized

Temperature22Flow speed30Vacuum pressure10Layer width45Length50Liq. Li circulationele

220 º C 30 m/s 10⁻⁴ Pa 45 ~ 50 mm 50 mm electromagnetic pump

Figures: Home page of Tokyo Institute of Technology

Ibaraki-BNCT

Accelerator Parameter:

Energy	8 MeV		
Peak beam current	50 mA (max)		
Beam pulse width	1 ms (max)		
Repetition rate200 H	Iz (max)		
Duty	20 % (max)		
lon course	EO KOVECD I I		

Technology-5:

8 MeV, 10 mA (80 kW) RFQ + DTL linac + beryllium target

Tsukuba University, KEK, JAEA, Ibaraki prefecture

• Accelerator commissioning phase

• Ion source

50 keV ECR + Low Energy Beam Transport

Characteristics:

- J-PARC design base RF frequency 324 MHz
- Pulsed linac
- High peak current → ECR ion source (pulse operation) with 60 mA peak current
- Long pulse width and high repetition rate → innovative water cooling system

New developments in the linac system:

• Long pulse and high duty klystron modulator power supply

→ KEK + DAWONSYS CO., LTD. (Korea)

 Cooling water system for high duty RFQ and DTL with a large temperature difference (△T=10 ° C) and dynamic temperature control → KEK and MHI

Technology-5 (continued):

Why 8 MeV ?

- *Neutron energy < 6 MeV*
- Below threshold energy of many nuclear reaction channels

page29

Target and moderator development

Technology-5 (continued):

page30

Design of OIST-BNCT frontend based on solid lithium target

l **~**1ms

1~200Hz

Beam energy	3 MeV	
Max. peak current	50 mA	
Beam pulse width	0.1~1	
Repetition rate	SS, 1 🔷	
Max. duty	20%	
Max. power	30 kW	

Subsystem (red frame only)

- 1. 50kV-ECR ion source
- Low Energy Beam Transport 2.
- 3 352MHz RFQ
- Multi-beam Klystron 4. 600 kW, 352 MHz
- 5. Klystron modulator HV < 35 kVCapacitor Charging PS Droop Compensation circuit
- 6. Cooling water system

Require more consideration

- Larger size solid lithium target manufacturing (50mm so far) 1.
- Neutron moderator design 🗲 learn from Nagoya 2.

➔ Ibaraki type

➔ Ibaraki type

- New, higher than Ibaraki
- → New
- → Ibaraki type but lower HV

Technology-6:

3 MeV, 10 mA (30 kW) RFQ linac + solid littium target

OIST

Design phase

page32

Innovative solid lithium target development by ULVAC, Inc. and SANKI INDUSTRY ----- Stable and tractable ----

Courtesy of ULVAC, Inc and SANKI INDUSTRY, Inc.

Bonding a thin solid lithium plate on copper heat sink in the glow box (left photo)
----- Good thermal contact at the layer boundary and special water flow channel structure to make an effective heat removal are realized by ----① Layer boundary is cleaned up before bonding
② Copper heat sink structure
③ Lithium surface is covered with stable thin film (a few micron)
==sealed radioactive material===

Irradiation experiment with the DC accelerator (right figure)

60 μA,

5 mm

- Beam energy 3MeV,
- Beam current (DC) \geq
- Beam spot diameter

→ No damage by blistering, no evaporation of lithium

Courtesy of ULVAC, Inc and SANKI INDUSTRY, Inc.

Equivalent to 34 mA

average current

for 120 mm target

and beam spot diameter.

Copyright @2012,ULVAC,Inc.All rights reserved

Page 8

Summary and conclusion, my personal view

Various technology choice

	Group	Accelerator Bea	m Energy	Power	<u>Target material</u>
1.	Kyoto University ==Clinical trial==	Cyclotron	30 MeV	33 kW	Thick beryllium (5.5 mm)
2.	National Cancer Center ==Passed radiation facili	CW RFQ tv inspection==	2.5 MeV	50 kW	Solid lithium
3.	Nagoya University ==Accelerator commission	Dynamitron	2.8 MeV levelopment p	50 kW phase==	Hermetic liquid lithium
4.	Tokyo Institute of Technolo ==Target development of	ogy nly==			Liquid lithium target
5.	Tsukuba University ==Accelerator commissio	Pulsed RFQ + DTL pning==	. 8.0 MeV	80 kW	Thin beryllium (0.5 mm)
6.	OIST	Pulsed RFQ	3.0 MeV	30 kW	Solid lithium
==Design phase based on new solid lithium target technology==					

- 1. The most advanced project in Japan is the group-1 (Kyoto University). Southern TOHOKU General Hospital in Fukushima, Japan has already constructed the same type and ready for the clinical trial. A few more hospitals are going to introduce the same type.
- 2. It should be mentioned that we still need more studies and experiences to establish the real mass production type for the wide application.
- 3. We should not forget that the accelerator and target are the only frontend of the facility.
- 4. Important development items are the better drag delivery system, the method of clinical treatment planning including imaging technology and understanding of cancer mechanism.