Status Reports

Paper Title Page
MOAB01 The Status of the LHC Controls System Shortly Before Injection of Beam 5
 
  • P. Charrue, H. Schmickler
    CERN, Geneva
 
  At the time of the ICALEPCS 2007 conference, the LHC main accelerator will be close to its final state of installation, and major components will have passed the so-called “hardware commissioning.” In this paper the requirements and the main components of the LHC control system will be described very briefly. Out of its classical 3-tier architecture, those solutions will be presented, which correspond to major development work done here at CERN. Focus will be given to the present status of these developments and to lessons learned in the past months.  
slides icon Slides  
MOAB02 The Laser Megajoule Facility: Control System Status Report 10
 
  • J. P. Arnoul, J. J. Dupas, J. I. Nicoloso, P. J. Betremieux
    CEA, Bruyères-le-Châtel
  • F. P. Signol
    CESTA, Le Barp
 
  The French Commissariat à l'Énergie Atomique (CEA) is currently building the Laser MegaJoule (LMJ), a 240-beam laser facility, at the CEA Laboratory CESTA near Bordeaux. LMJ will be a cornerstone of CEA's "Programme Simulation," the French Stockpile Stewardship Program. LMJ is designed to deliver about 2 MJ of 0.35 μm light to targets for high energy density physics experiments, including fusion experiments. LMJ technological choices were validated with the Ligne d'Intégration Laser (LIL), a scale 1 prototype of one LMJ bundle, built at CEA/CESTA. Plasma experiments started at the end of 2004 on LIL. The construction of the LMJ building itself started in March 2003. An important milestone was successfully achieved in November 2006 with the introduction of the target chamber into the building. LMJ will be gradually commissioned from 2011 and will then begin an experimental program toward fusion. The presentation discusses LIL experience feedback, transverse requirements intended to ultimately federate control packages from different contractors, strategy for developing the Centralized Supervisory Controls, and process for computer control system global integration.  
slides icon Slides  
MOAB03 Trends in Software for Large Astronomy Projects 13
 
  • K. K. Gillies
    Gemini Observatory, Southern Operations Center, Tucson, AZ
  • B. D. Goodrich, S. B. Wampler
    Advanced Technology Solar Telescope, National Solar Observatory, Tucson
  • J. M. Johnson, K. McCann
    W. M. Keck Observatory, Kamuela
  • S. Schumacher
    National Optical Astronomy Observatories, La Serena, Chile
  • D. R. Silva
    AURA/Thirty Meter Telescope, Pasadena/CA
  • A. Wallander, G. Chiozzi
    ESO, Garching bei Muenchen
 
  The current 8-10M ground-based telescopes require complex real-time control systems that are large, distributed, fault-tolerant, integrated, and heterogeneous. New challenges are on the horizon with new instruments, AO, laser guide stars, and the next generation of even larger telescopes. These projects are characterized by increasing complexity, where requirements cannot be met in isolation due to the high coupling between the components in the control and acquisition chain. Additionally, the high cost for the observing time imposes very challenging requirements in terms of system reliability and observing efficiency. The challenges presented by the next generation of telescopes go beyond a matter of scale and may even require a change in paradigm. Although our focus is on control systems, it is essential to keep in mind that this is just one of the several subsystems integrated in the whole observatory end-to-end operation. In this paper we show how the astronomical community is responding to these challenges in the software arena. We analyze the evolution in control system architecture and software infrastructure, looking into the future for these two generations of projects.  
slides icon Slides  
TOAA02 Status of the Control System for HICAT at an Advanced Stage of Commissioning: Functions, Restrictions and Experiences 47
 
  • R. Baer, M. Schwickert, T. Fleck
    GSI, Darmstadt
 
  One and a half years after installation of the first components, much progress has been made in commissioning of the accelerator for the clinic in Heidelberg. In the final state it is designed to produce different kinds of heavy ions with energies up to 430 MeV/u to treat about 1300 tumor patients a year at three therapy rooms. Presently the specified parameter space for patient treatment is filled to meet the correct combinations of energies, beam foci, and intensities for the therapy. In this contribution we will first shortly describe the concept of the control system which was designed by GSI but developed by an all-industrial partner who furthermore delivered the front-end control units and has another contract with Siemens Medical Solutions to meet the requirements at the interface to the therapy control system. We will mainly focus on its abilities and experiences with it: different kinds of beam requests, time accuracy, real-time analysis, assurance of consistent device data, offline-diagnostics and the beam diagnostic systems. We also report on known restrictions and the concept to securely provide different operation modes for accelerator adjustment or patient treatment.  
slides icon Slides  
TOAA03 Status of the X-Ray FEL Control System at SPring-8 50
 
  • T. Hirono, N. Hosoda, M. Ishii, T. Masuda, T. Matsushita, T. Ohata, M. T. Takeuchi, R. Tanaka, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  • M. K. Kitamura, H. Maesaka, Y. Otake, K. Shirasawa
    RIKEN Spring-8 Harima, Hyogo
  • T. Fukui
    RIKEN, Hyogo
 
  The X-ray FEL project at SPring-8 aims to build an X-ray lasing facility, which will generate brilliant coherent X-ray beams with wavelength of below 0.1nm. A combination of short-period in-vacuum undulators and an 8GeV high-gradient C-band linear accelerator makes the machine compact enough to fit into the SPring-8 1km-long beamline space. The machine commissioning will be started by March 2011. We designed the control system for the new machine based on the present SCSS test accelerator, which employs the MADOCA framework. The control system is based on the so-called “standard model” and composed of Linux-based operator consoles, database servers, Gigabit Ethernet, VMEbus system, and so on. The control system, also, has a synchronized data-taking scheme to achieve beam-based optics tuning. Most of the device control part is installed in water-cooled 19in. racks together with RF devices for temperature control, which guarantees stable RF phase control. This paper gives an overview of the project and describes the design of the control system. In addition, we briefly report the status of the SCSS test accelerator operated as a VUV-FEL user facility.  
slides icon Slides  
TOAA04 Status of the FLASH Free Electron Laser Control System 53
 
  • K. Rehlich
    DESY, Hamburg
 
  FLASH (Free electron LASer in Hamburg) is the first facility based on the 1.3GHz superconducting cavity technology. It is a test bed for this technology to prepare future accelerators like the XFEL and ILC. Since 2005 FLASH has run as a reliable FEL source for user experiments. The control system DOOCS (Distributed Object-Oriented Control System) provides the required full bunch resolution of the diagnostics. A fast DAQ (Data AQuisition system) has successfully been integrated to support slow feedback, diagnostics, and data recording for both the linac operation and the user experiments. The control system will be slowly upgraded to implement the further requirements for the XFEL.  
slides icon Slides  
TOAA05 Implementation, Commissioning and Current Status of the Diamond Light Source Control System 56
 
  • M. G. Abbott, K. A.R. Baker, T. M. Cobb, P. N. Denison, P. Gibbons, I. J. Gillingham, A. Gonias, P. Hamadyk, S. C. Lay, P. J. Leicester, M. R. Pearson, U. K. Pederson, N. P. Rees, A. J. Rose, J. Rowland, E. L. Shepherd, S. J. Singleton, I. Uzun, M. T. Heron
    Diamond, Oxfordshire
  • A. J. Foster
    OSL, Cambridge
  • S. Hunt
    AHB, Meisterschwanden
  • P. H. Owens
    STFC/DL, Daresbury, Warrington, Cheshire
 
  Starting with the Linac in 2005, the commissioning of the Diamond Light Source accelerators and photon beamlines, together with their related control systems, progressed to an aggressive program such that as of early in 2007, the facility was available for first users with a suite of beamlines and experiment stations. The implementation and commissioning of the control system to meet the overall project objectives are presented. The current status of the control system, including ongoing developments for electron-beam orbit stability and future photon beamline requirements, are also described.  
slides icon Slides  
TOAB01 The New FAIR Accelerator Complex at GSI: Project, Controls Challenges, and First Steps 59
 
  • U. Krause, W. Panschow, V. R.W. Schaa, W. Schiebel, P. Schuett, R. Baer
    GSI, Darmstadt
 
  An international Facility for Antiproton and Ion Research (FAIR) was proposed by GSI in 2001 and is currently under development. This new accelerator complex will be a significant extension to the existing GSI accelerator chain and will provide a range of particle beams from protons and antiprotons to ion beams of all elements up to uranium, as well as secondary beams of short-lived rare isotope beams. The central parts of the FAIR facility are a superconducting double-ring synchrotron and a system of storage rings. This presentation covers the status and scope of the FAIR project and its technical and organizational challenges, in particular in respect to the accelerator control system. As many parts of the new FAIR facility will be independently developed as in-kind contributions by international FAIR partner institutes, one significant point is integration and interface management. Among many other aspects, one important technical consideration is a high degree of parallel beam operation for the different research programs that imposes ambitious demands on the timing and cycle management system. We will discuss first steps towards a new FAIR control system.  
TOAB02 Current Status of the Control System for J-PARC Accelerator Complex 62
 
  • M. Adachi, S. F. Fukuta, S. H. Hatakeyama, M. T. Tanaka
    MELCO SC, Tsukuba
  • A. Akiyama, N. Kamikubota, T. Katoh, K. Kudo, T. Matsumoto, H. Nakagawa, J.-I. Odagiri, Y. Takeuchi, N. Yamamoto
    KEK, Ibaraki
  • H. Ikeda, T. Suzuki, N. T. Tsuchiya
    JAEA, Ibaraki-ken
  • Y. I. Itoh, Y. Kato, M. Kawase, H. Sakaki, H. Sako, G. B. Shen, H. Takahashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Motohashi, M. Takagi, S. Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki
  • S. S. Sawa
    Total Support Systems Corporation, Tokai-mura, Naka-gun, Ibaraki
  • M. S. Sugimoto
    Mitsubishi Electric Control Software Corp, Kobe
  • H. Yoshikawa
    KEK/JAEA, Ibaraki-Ken
 
  J-PARC accelerator complex consists of a proton linac (LINAC), > a Rapid Cycle Synchrotron (RCS), and a Main Ring synchrotron (MR). The commissioning of LINAC already started in November 2006, while the commissioning of Main Ring synchrotron (MR) is scheduled in May 2008. Most of the machine components of MR have been installed in the tunnel. Introduction of electronic modules and wiring will be made by the end of 2007. For the control of MR, the J-PARC accelerator control network was extended to include the MR related parts in March 2007. IOC computers (VME-bus computers) for MR will be introduced in 2007. In addition, more server computers for application development will be also introduced in 2007. This paper reports the status of development for the J-PARC MR control system.  
slides icon Slides  
TOAB03 ALICE Control System – Ready for LHC Operation 65
 
  • A. Augustinus, M. Boccioli, P. Ch. Chochula, S. Kapusta, P. Rosinsky, C. Torcato de Matos, L. W. Wallet, L. S. Jirden
    CERN, Geneva
  • G. De Cataldo, M. Nitti
    INFN-Bari, Bari
 
  ALICE is one of the four LHC experiments presently being built at CERN and due to start operations by the end of 2007. The experiment is being built by a very large worldwide collaboration; about 1000 collaborators and 85 institutes are participating. The construction and operation of the experiment pose many technical and managerial problems, and this also applies to the design, implementation, and operation of the control system. The control system is technically challenging, representing a major increase in terms of size and complexity with respect to previous-generation systems, and the managerial issues are of prime importance due to the widely scattered contributions. This paper is intended to give an overview of the status of the control system. It will describe the overall structure and give some examples of chosen controls solutions, and it will highlight how technical and managerial challenges have been met. The paper will also describe how the various subsystems are integrated to form a coherent control system, and it will finally give some hints on the first experiences and an outlook of the forthcoming operation.  
TOAB04 The LIGO Detectors Controls 68
 
  • D. Sigg
    LIGO Hanford Observatory, Richland
 
  All three LIGO detectors have reached their design sensitivities. A sky-averaged detection range (SNR > 8) of more than 15 Mpc for inspiral binary neutron stars with masses of 1.4 Msol has been achieved with the two 4 km instruments. The fifth LIGO science started in November 2006 and more than 300 days of coincidence data has been collected so far. The feedback controls system is a major component to make LIGO work and its performance has been crucial to achieve the present sensitivity.  
slides icon Slides  
TOAB05 The Status of Virgo 71
 
  • F. Carbognani
    EGO, Pisa
 
  Virgo is the largest gravitational wave detector in Europe. The detector, built by a French–Italian collaboration, is located near Pisa (Italy) and is based on a laser interferometer with 3-km-long arms. It aims at the detection of gravitational waves emitted by galactic and extragalactic sources such as pulsars, supernovae, and the coalescences of binary black holes and neutron stars in a frequency window comprised between 10 Hz and a few kHz. Since 2003 the detector has been going through its commissioning phase, and the first long observing run is planned to start in May 2007. The present status of the experiment and its foreseen upgrades are described in this article.

Franco Carbognani is the corresponding author on behalf of the Virgo Collaboration.

 
slides icon Slides  
TPPB01 The PHELIX Control System Based on CS-Framework 3.0 163
 
  • D. B. Beck, S. Goette, H. Brand
    GSI, Darmstadt
  • M. Kugler
    HDA, Darmstadt
 
  The Petawatt High Energy Laser for Ion eXperiments, http://www.gsi.de/forschung/phelix/indexe.html, will offer the unique combination of a high-current, high-energy (GeV/u) heavy-ion beam with a powerful laser beam thus providing the opportunity to investigate a variety of fundamental science issues in the field of atomic physics, nuclear physics, and plasma physics. The PHELIX Control System (PCS) is based on the CS framework, http://wiki.gsi.de/cgi-bin/view/CSframework/WebHome. About 35 additional classes were developed for the PCS and ~250 objects are running distributed on 13 PCs publishing ~10000 process variables. The PCS has been upgraded to version 3.0 recently. In CS 3.0 the entire communication layer has been changed to DIM (Distributed Information Management), which is a light weight protocol for inter-process communication based on TCP/IP, http://www.cern.ch/dim. The PCS was redesigned to make use and profit from the concept of named services. Clients may receive information from a service (observer pattern) or may send a command to a server (command pattern). By these means the implementation of the PCS behaviour with hierarchical state machines was eased.  
TPPB07 First Steps Towards the New Spiral2 Project Control System 175
 
  • S. A. Avner, P. G. Graehling, J. H. Hosselet, C. M. Maazouzi, C. O. Olivetto
    IPHC, Strasbourg Cedex 2
  • D. Bogard, F. Gougnaud, J.-F. Gournay, Y. Lussignol, P. Mattei
    CEA, Gif-sur-Yvette
  • S. C. Cuzon, D. T. Touchard, E. Lecorche
    GANIL, Caen
 
  The Spiral2 project at Ganil aims to produce rare ion beams using a uranium carbide target fission process. The accelerator consists of an RFQ followed by a superconducting cavity linac and is designed to provide high-intensity primary beams (deuterons, protons, or heavy ions). The accelerator should be commissioned by the end of 2011, and the first exotic beams are planned for one year later. The control system will be a result of collaboration between several institutes, among which is the Saclay Dapnia division, which has good experience and knowledge with EPICS. Because of its widely used functionalities, EPICS has been chosen as the basic framework for the accelerator control, and people from the other laboratories belonging to the collaboration are progressively acquiring their first experiences with it. The paper first explains the organization of the collaboration, then it describes the basic hardware and software choices for the project. Some preliminary implementations are therefore given. As the project is still in its beginning phase, the paper ends by listing some questions not yet resolved for the control system definition and remaining open to discussion.  
TPPB08 Present Status of SSRF Control System 178
 
  • L. R. Shen, D. K. Liu
    SINAP, Shanghai
 
  Shanghai Synchrotron Radiation Facility is a third-generation light source with 150MeV LINAC, 3.5Gev booster, and storage ring. The SSRF control system is a hierarchical standard accelerator control system based on EPICS. The VME 64X system and PLCs are used for various low-level device controls and interlock systems. Serial device servers connect serial devices and instrumentation to the Ethernet. All control subsystems are under construction. The hardware and software system development environment has been set up. Most of the subsystem models, such as the digital power supply control and event timing systems, have been set up and are being tested with devices on schedule. The high-level physical application environment has been set up and undergone online testing of device control using MatLab with Accelerator Toolbox and a middle layer. A set of tools (e.g., configuration tools and an alarm handler) has been set up for the center's database. An enhanced distributed archive engine has been created to store data using native XML data type with XML schema for data storage. Various testing results of the control systems for SSRF equipment will be described in this paper.  
TPPB09 The ALICE Transition Radiation Detector Control System 181
 
  • J. M. Mercado
    Heidelberg University, Physics Institute, Heidelberg
 
  The ALICE experiment at the LHC incorporates a transition radiation detector (TRD) designed to provide electron identification in the central barrel at momenta in excess of 2 GeV/c as well as fast (6 us) triggering capability for high transverse momentum (pt > 3 GeV/c) processes. It consists of 540 gas detectors and about 1.2 million electronics readout channels that are digitized during the 2 us drift time by the front-end electronics (FEEs) designed in full custom for on-detector operation. The TRD detector control system (DCS) back end is fully implemented as a detector-oriented hierarchy of objects behaving as finite state machines (FSMs). PVSS II is used as the SCADA system. The front-end part is composed of a 3-layer software architecture with a distributed information management (DIM) server running on an embedded Linux on-detector system pool (about 550 servers) and the so-called InterComLayer interfacing the DIM client in PVSS as well as the configuration database. The DCS also monitors and controls several hundreds of low- and high-voltage channels, among many other parameters. The layout of the system and status on installation and commissioning are presented.  
TPPB10 Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF) 184
 
  • J. H. Kamperschroer, J. R. Nelson, D. W. O'Brien, R. T. Shelton
    LLNL, Livermore
 
  The extreme physics of targets shocked by NIF’s 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics for fusion ignition are being planned. Many diagnostics are developed at other sites, but ad hoc controls could prove costly or unreliable. The instrument-based controls (IBC) framework facilitates development and eases integration. Each diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, and other devices. Each individual instrument is interfaced to a low-cost WindowsXP processor and Java application. Instruments are aggregated as needed in the supervisory system to form the integrated diagnostic. Java framework software provides data management, control services, and operator GUIs. IBCs are reusable by replication and configured for specific diagnostics in XML. Advantages include small application codes, easy testing, and better reliability. Collaborators save costs by reusing IBCs. This talk discusses target diagnostic instrumentation used on NIF and presents the IBC architecture and framework.  
TPPB11 Status of Control System for RIKEN RI-Beam Factory 187
 
  • M. K. Fujimaki, M. Kase, M. Komiyama
    RIKEN/RARF/CC, Saitama
  • A. Uchiyama
    SHI Accelerator Service ltd., Tokyo
 
  The control system of the RIKEN RI-Beam Factory (RIBF) is based on the Experimental Physics and Industrial Control System (EPICS). To control magnet power supplies of cyclotrons and their beam transport lines, we are using VME and CAMAC as I/O Controllers (IOCs) depending on a kind of their interface boards. To control beam-diagnostic equipment and vacuum systems, small single-board computers mounted with Linux are used as IOCs. Other devices of cyclotrons like RF are controlled by PCs, which are independent systems from EPICS. These details will be reported. Furthermore, we will report about the RIBF beam interlock system using Melsec PLCs. We started beam commissioning of RIBF in July 2006 and succeeded in extracting uranium beam from the Superconducting Ring Cyclotron (SRC), which is the last of the multi-stage accelerators of the RIBF, on March 23, 2007.  
TPPB13 The Detector Control System for the Electromagnetic Calorimeter of the CMS Experiment at LHC 190
 
  • P. Adzic, P. Milenovic, P. Milenovic
    VINCA, Belgrade
  • A. B. Brett, G. Dissertori, G. Leshev, T. Punz
    ETH, Zürich
  • D. Di Calafiori
    UERJ, Rio de Janeiro
  • R. Gomez-Reino, R. Ofierzynski
    CERN, Geneva
  • A. Inyakin, S. Zelepoukine
    IHEP Protvino, Protvino, Moscow Region
  • D. Jovanovic, J. Puzovic
    Faculty of Physics, Belgrade
 
  The successful achievement of many physics goals of the CMS experiment required the design of an electromagnetic calorimeter (ECAL) with an excellent energy and angular resolution. The choice of the scintillating crystals, photodetectors, and front-end readout electronics of the ECAL has been made according to these criteria. However, certain characteristics of the chosen components imposed challenging constraints on the design of the ECAL, such as the need for rigorous temperature and high voltage stability. For this reason an ECAL Detector Control System (DCS) had to be carefully designed. In this presentation we describe the main DCS design objectives, the detailed specifications, and the final layout of the system. Emphasis is put on the system implementation and its specifc hardware and software solutions. The latest results from final system prototype tests in the 2006 ECAL test-beam program, as well as the system installation and commissioning at the CMS experimental construction site, are also discussed.  
TPPB14 Status of the ALBA Control System 193
 
  • D. Fernandez-Carreiras
    ALBA, Bellaterra (Cerdanyola del Vallès)
 
  This paper describes the progress in the design of the control system for the machine and beamlines. Solutions for interfacing devices, networking, interlocks, diagnostics, etc., are presented. Most call for tenders for the machine are placed, and hardware and software choices have been adopted. Alba uses Tango as the toolkit for building the control system. Device servers are mostly written in C++ and Python. Clients are mostly Java (ATK) and Python (+Qt). Different technologies have been chosen for the different subsystems, i.e., PLCs and distributed I/O for the Equipment Protection System, safety PLCs for the Personnel Safety System, event-driven timing system, Ethernet for the power supplies, etc. The actual status of both hardware and software is given, and the plans for the future are presented.  
TPPB15 The CSNS Controls Plan 196
 
  • X. C. Kong, Q. Le, G. Lei, G. Li, J. Liu, J. C. Wang, X. L. Wang, G. X. Xu, Z. Zhao, C. H. Wang
    IHEP Beijing, Beijing
 
  The China Spallation Neutron Source (CSNS) is an accelerator-based high-power project currently under planning in China. For the similarities between the CSNS and the U. S. Spallation Neutron Source (SNS), the SNS control framework will be used as a model for the machine controls. And the software framework used at SNS, XAL, is a natural choice for the CSNS. This paper provides a controls overview and progress. Also, the technical plan, schedule, and personnel plan are discussed.  
TPPB18 Present Status of VEPP-5 Control System 199
 
  • A. Antonov, R. E. Kuskov, D. Bolkhovityanov
    BINP SB RAS, Novosibirsk
 
  As VEPP-5 moves to commissioning, its control system—CX—becomes more mature. CX is a distributed, networked control system based on a 3-layer "standard model." It has been used for VEPP-5 control since 2000; most hardware is CAMAC and CAN-bus. Currently most control programs have switched to modular plugin-based architecture, which significantly eases development of applications and enhances the whole control system integration. Large-data-size control hardware (such as digital oscilloscopes and CCD-cameras) is fully supported by CX now. E-logbook is currently being deployed, both as a web application and with direct support in control programs. GIS technology is being introduced to the control system, which opens many interesting possibilities.  
TPPB20 SSRF Beam Instrumentations System 205
 
  • J. Chen, Y. Z. Chen, Z. C. Chen, D. K. Liu, K. R. Ye, C. X. Yin, J. Yu, L. Y. Yu, R. Yuan, G. B. Zhao, W. M. Zhou, Y. Zou, Y. B. Leng
    SINAP, Shanghai
 
  SSRF is equipped with various beam instrumentations, in which the Linac part has been working well since the start of the commissioning this year, and the booster and storage ring parts are still under implementation and commissioning. The commercial products were adopted to build this system as much as possible. The all-in-one electron beam position monitor processor, Libera, was used for whole facility to provide single-pass, first-turn, turn-by-turn, COD, and fast application beam position data. The Bergoz NPCT175 parametric current transformers were used for DC current measurement in the booster and storage ring. The various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the fast gated camera, and the bunch length monitor will be equipped in the dedicated diagnostics beam line. Data acquisition for beam instrumentation system should be a part of control system, developed on an EPICS platform. There are three kinds of Input Output Controllers (IOCs) used in diagnostics: VxWorks-based VME IOCs, Linux-based Libera IOCs, and Windows-based PC IOCs.  
TPPB25 SPARC Control System 214
 
  • F. A. Anelli, M. Bellaveglia, D. Filippetto, S. Fioravanti, E. Pace, G. Di Pirro
    INFN/LNF, Frascati (Roma)
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma
 
  We describe the control system for the new Frascati injector project (SPARC). The injector starts operation in fall 2007, and at that time the control system must be fully operative and integrate all tools to help the machine operation. To allow a fast development of the control system, we made some choices: (1) Labview as developing system due to its diffusion in the Frascati labs and being a standard-de-facto in the acquisition software; (2) GigaBit Ethernet as interconnection bus in order to have sufficient bandwidth for data exchange; and (3) PCs as front-end CPUs and operator console because they have enough computing power. In 2006 a first operation of the control system, during the SPARC gun test performed with the e-meter diagnostic apparatus, allowed us to test the architecture of the control system both from the hardware and software points of view. All control applications for magnetic elements, vacuum equipment, RF cavities, and some diagnostics have been developed and debugged online. An automatic process stores in a database operating information both periodically and on data change. Information can be sent automatically or manually to our e-logbook.  
TPPB27 The New Control System for the Future Low-Emittance Light Source PETRA 3 at DESY: Sprinting to the Finish 217
 
  • R. Bacher
    DESY, Hamburg
 
  At DESY the existing high-energy physics booster synchrotron PETRA 2 will be transformed into a third-generation light source (PETRA 3). In addition, the technical systems and components of the pre-accelerators LINAC 2 and DESY 2 will be improved. Within the scope of this project, the control system and the front-end electronics will be upgraded. Besides a report on the current project's status, the paper emphasizes the basic conceptual ideas and discusses their implications and how they lead to novel features and development tools.  
TPPB28 Preliminary Design Concepts for the Control and Data Acquisition Systems of the ITER Neutral Beam Injector and Associated Test Facility 220
 
  • G. Manduchi, A. Luchetta
    Consorzio RFX, Euratom ENEA Association, Padova
 
  ITER is a joint international research and development project aiming to demonstrate the scientific and technical feasibility of fusion power. The ITER Neutral Beam Injector (NBI, negative D2 ion source, 1MV acceleration voltage, 40A ion current, 16.5MW beam power, 1 hour continuous operation) is a major component of ITER and will be supported by a dedicated test facility (NBTF). The NBI and the NBTF are being designed with the goal to have one injector fully operational on the ITER device in 2016. The two items need separate, but closely interacting, control and data acquisition systems (CDAs). The NBI CDA system will manage the NBI device and will be installed at the ITER site; the NBTF CDA system will manage the test facility and in particular will enable extensive scientific exploitation of the NBI before its final installation at the ITER site. The paper reports on the design activity for both CDA systems, including the definition of the system requirements, the functional system structure, and the preliminary system architecture.  
TPPB31 Status of the SOLEIL Control System 229
 
  • B. Gagey, N. L. Leclercq, M. O. Ounsy, A. Buteau
    SOLEIL, Gif-sur-Yvette
 
  The SOLEIL synchrotron light source is based on a 2.75 GeV electron storage ring that was commissioned in 2006 at Saint Aubin, France. The first 10 beamlines are currently commissioned, and regular user operation is planned for summer 2007. SOLEIL is also the first 100% TANGO-controlled facility. Originally developed at the ESRF, the object-oriented TANGO Control Framework is now the core component of a close collaboration between four synchrotron facilities: ESRF, SOLEIL, ELETTRA, and ALBA. The SOLEIL control system is an example of the TANGO capability of federating heterogeneous off-the-shelf technologies into a coherent whole on the basis of a single concept: the device. The aim of the presentation is to provide an overview of the “Service-Oriented Architecture,” which is now routinely used for the control of both the SOLEIL accelerators and beamlines. The ubiquity of the TANGO services will be illustrated on both server and client sides of the control system architecture. The main software subsystems will be presented. We will conclude with a feedback report by presenting some figures and statistics about the control system's stability after its first year of operation.  
TPPB32 EPICS at the Synchrotron Radiation Source DELTA 232
 
  • S. Doering, U. Berges
    DELTA, Dortmund
 
  Since 1999 the control system at the synchrotron radiation source DELTA, located at the University of Dortmund, Germany, has operated under EPICS. The change from a nonstandard, handmade system to EPICS has been made stepwise till 2001. Since 2002 the first two beamlines in the soft X-ray region are also operated under EPICS to benefit from the easy communication with the accelerator control system. A complete plane-grating-monochromator-beamline (PGM-beamline U55) with its experiment is operated under EPICS, including the stepper motors and device readout. A toroidal-grating-monochromator-beamline (TGM-beamline) has been completely changed from an old system into EPICS control system. At both beamlines new photon-bpm-readout systems under a LINUX-PC and EPICS from the company ENZ are tested. Also a compact stepper motor driver unit with a small LINUX-PC has succesfully been developed in this cooperation. DELTA works as a test facility for these new developments. The easy and fast exchange of the necessary data with the machine control system is an advantage as is the benefit from the EPICS community.  
TPPB34 ISAC Control System Update 235
 
  • D. Bishop, D. Dale, T. Howland, H. Hui, K. Langton, M. LeRoss, R. B. Nussbaumer, C. G. Payne, K. Pelzer, J. E. Richards, W. Roberts, E. Tikhomolov, G. Waters, R. Keitel
    TRIUMF, Vancouver
 
  At the ISAC radioactive beam facility, the superconducting Linac was commissioned, and several experimental beam lines were added. The paper will describe the additions to the EPICS-based control system, issues with integration of third-party systems, as well as integration of accelerator controls with experiment controls.  
TPPB35 The Control System for the TITAN Experiment at ISAC 238
 
  • T. Howland, H. Hui, R. Keitel, K. Langton, M. LeRoss, R. B. Nussbaumer, K. Pelzer, J. E. Richards, W. Roberts, E. Tikhomolov, D. Dale
    TRIUMF, Vancouver
 
  The TITAN experiment at the ISAC radioactive beam facility consists of an RF cooler system, a Magnetic Penning Trap (MPET), and an Electron Beam Ion Trap (EBIT). These three systems may run together or independently. This paper describes the EPICS-based TITAN control system, which was modeled after the ISAC control system to facilitate integration. Both software and hardware configurations will be described, with emphasis on pulsed diagnostics and the pulse distribution system for synchronizing the traps in different operation modes.  
TPPB37 Status of the MLS Control System 241
 
  • T. Birke, R. Daum, S. Ehlert, D. Faulbaum, B. Franksen, R. Hartmann, B. Kuner, P. Laux, I. Müller, R. Müller, G. Pfeiffer, H. Rüdiger, J. Rahn, D. Thorn, R. Lange
    BESSY GmbH, Berlin
 
  The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has set up in close cooperation with BESSY a low-energy electron storage ring next to the BESSY II site. The new storage ring, named "Metrology Light Source"(MLS), is mainly dedicated to metrology and technological developments in the UV and VUV spectral range. Its commissioning started in March 2007. The MLS control system is based on the Experimental Physics and Industrial Control System (EPICS) toolkit. Design and implementation choices guided by the experiences with the BESSY II control system have been flanked by other techniques and new approaches where needed and appropriate. The presentation introduces the MLS and discusses design and implementation of its control system.  
TPPB38 Status of the ERLP Control System 244
 
  • G. Cox, A. Oates
    STFC/DL, Daresbury, Warrington, Cheshire
  • S. V. Davis, A. J. Duggan, A. Quigley, R. V. Rotheroe, B. G. Martlew
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
  The Energy Recovery Linac Prototype (ERLP) is a 35 Mev superconducting linac currently being commissioned at Daresbury Laboratory. Its purpose is to demonstrate the technology necessary to design and build a 600 Mev energy recovery linac (4GLS), which, together with a suite of XUV, VUV, and IR FELs, can be used to undertake pump-probe experiments to investigate dynamic systems. The ERLP control system is based on EPICS, VME64x hardware, and the vxWorks operating system. Status control and interlock protection are handled by a Daresbury-designed CANbus system that has been tightly integrated into EPICS. Construction and commissioning of ERLP have taken place in parallel, and this introduced a number of problems in the planning and implementation of the control system. This paper describes the ERLP control system and disusses the successes and difficulties encountered during the early phases of commissioning. Plans are already in place to extend the control system to cover EMMA, a novel, non-scaling, fixed-field alternating gradient (FFAG) accelerator that will be added to ERLP in 2008/9.  
TPPB40 The TILECAL Detector Control System 250
 
  • G. Arabidze, N. Giokaris
    University of Athens, Athens
  • T. R.V. Batista, L. G. Cardoso, B. S.M. Peralva
    CERN, Geneva
  • A. Gomes, C. N. Marques, J. Pina
    LIP, Lisboa
  • M. Ouchrif
    Université Blaise Pascal, Clermont-Ferrand
  • L. Sargsyan
    YerPhI, Yerevan
 
  TILECAL is the barrel hadronic calorimeter of the ATLAS detector. The main task of the TILECAL Detector Control System (DCS) is to enable the coherent and safe operation of the detector. All actions initiated by the operator and all errors, warnings, and alarms concerning the hardware of the detector are handled by DCS. Most of the components were already produced and installed in the detector. The SCADA software used is PVSS from the Austrian company ETM. The TILECAL main DCS systems are the low- voltage power supply system, high-voltage distribution system, and cooling of the electronics. All functional blocks can run autonomously. The DCS for the TILECAL is divided in four sectors all identical in the logical point of view, two for the extended barrel regions and two the central region. Each sector is composed by one cooling, HV and LV partition. All these systems are now being implemented and some are already in use for the TILECAL tests and certification. The integration with the global ATLAS DCS system is done by an FSM based on CERN SMI++ which is already in use since December of 2006.  
TPPB41 NSLS II Control System Overview 253
 
  • L. R. Dalesio
    SLAC, Menlo Park, California
 
  The NSLS II is a new light source to be built at Brookhaven National Laboratory. The control system tools will be started this year. Technical areas of interest to improve productivity, maintainability, and performance, include Relational Database tools to support all aspects of the project, online Bbam modelling, intelligent distributed device controllers, and engineering and operation tools. We will discuss our goals and projects to make progress in these areas.